Как определить граничную частоту усиления полевого транзистора
Перейти к содержимому

Как определить граничную частоту усиления полевого транзистора

  • автор:

Граничная частота полевых транзисторов.

У ламп тоже не указывают граничную частоту. Зато приводятся параметры, которые как раз влияют на частотные свойства ламп и участвуют в расчётах, например межэлектродные ёмкости — входная, выходная, проходная.

  • VT1
  • Сообщений: 2458
  • Зарегистрирован: Вс июл 11, 2010 14:39:04
  • Откуда: Россия.
  • Сайт

Re: Граничная частота полевых транзисторов.

Вс май 12, 2019 20:58:57

Нужна ГЧ BFT46

Судя по даташиту этот транзистор предназначен для работы на низких частотах.
Ориентировочно граничную частоту(частоту единичного усиления) подобного транзистора можно оценить по формуле.

Иногда, если не хватает данных в даташите, то можно оценить транзистор по его аналогам. Например отечественным аналогом этого транзистора является транзистор 2П308А9. Его параметры можно посмотреть здесь.
https://eandc.ru/pdf/tranzistor/2p308_kp308.pdf

Исходя из «времени включения» и «времени выключения» у этого класса транзисторов порядка 20 нс можно утверждать, что спад усиления начинается с частоты порядка 25 МГц
Fсп=1/Tвкл+Твыкл=1/20нс+20нс=25 МГц
А исходя из выше выложенной формулы, где то на частоте 100 МГц усиление становится уже единичным. Вложения 1.gif (13.64 KiB) Скачиваний: 763 1.gif (2.03 KiB) Скачиваний: 758

Powered by phpBB © phpBB Group.

phpBB Mobile / SEO by Artodia.

5.1.4. Параметры полевых транзисторов

Значение параметров определяется в пологой части выходной характеристики, там где выбирается рабочая точка. К ним относятся следующие: крутизна характеристики S, коэффициент усиленияКU, внутреннее диффференциальное сопротивлениеRi.

1. Крутизна характеристики рассчитывается из соотношения

. (5.11)

Крутизна характеристики показывает, на сколько мА увеличивается ток стока Ic при изменении напряжения затвора на 1 В. Для определения крутизныSследует продифференцировать выражение (5.6) для входной характеристики:

,

где – максимальное значение крутизны приUзи=0,

Следовательно, выражение для крутизны имеет вид

. (5.12)

Пример. По формуле (5.12) рассчитать значение крутизны S при Uзи= –2 В, если Ic max=5 мА, Uотс= –5 В.

Сначала рассчитаем .Следовательно,

. Таким образом, при увеличении по абсолютной величине напряжения на затворе значение крутизны характеристики уменьшается.

2. Коэффициент усиления КUполевого транзистора характеризует изменение напряжения на стокеUсив зависимости от изменения напряженияUзина затворе транзистора и определяется из соотношения

. (5.13)

3. Внутреннее (выходное) дифференциальное сопротивление полевого транзистора Ri характеризуется сопротивлением канала в области насыщения и определяется из соотношения

. (5.14)

Между коэффициентами КU,SиRicуществует связь:

. (5.15)

Действительно, . ПолагаяS=0,1…5мА/В,Ri=10 2 кОм, для величиныμполучаем значения от 10 до 500.

5.1.5. Частотные свойства полевых транзисторов

Частотные свойства полевых транзисторов являются количественной характеристикой их быстродействия. Для оценки частотных свойств транзистора рассмотрим малосигнальную эквивалентную схему полевого транзистора при подаче на его вход переменного сигнала высокой частоты (рис. 5.10).

На этой схеме:Сзи≈1…5 пФ – входная емкость затвор-исток;Сзс≈0,2 пФ – проходная емкость затвор-сток;Сси≈2…5 пФ – выходная емкость сток-исток;Ri≈0,1…1 МОм – внутреннее сопротивление транзистора;SUзи– генератор токаIсв цепи стока.

Быстродействие ПТ с затвором в виде р-nпереходов обусловлено зарядкой барьерных емкостейСзизатворныхр-nпереходов через сопротивление каналаRi. Постоянная времени затвора

Граничная частота усиленияωгр=1/τз= (Сзи·Ri) -1 — это значение частоты, на которой коэффициент усиления полевого транзистораКU=1. Подставляя в это выражение значениеRiU /S, гдеКUпринято равным единице, получим:

, или . (5.16)

Пример. Рассчитать граничную частоту fгр полевого транзистора с крутизной S=5 мА/В и емкостью Сзи=5 пФ:

.

Для ПТШ транзисторов, в которых емкость Сзимала, физически достижимое быстродействие определяется временем пролётаtпрносителей заряда через канал длинойLкполевого транзистора. Время пролёта определяется соотношением, гдеvдр– скорость дрейфа носителей в электрическом поле с напряженностьюЕ.

Величину времени пролёта можно оценить из выражения для подвижности носителей заряда, например, электронов, μn:

,

где Uси– напряжение, приложенное к каналу.

Отсюда, время пролета равно

,

а граничная частота (5.17)

Пример. Рассчитать граничную частоту полевого транзистора, если μn=0,8 м 2 /В·с, Ucи=5 В, Lк=5·10 -6 м.

.

Таким образом, реальная граничная частота усиления полевого транзистора значительно ниже физически достижимой граничной частоты. Это связано с наличием паразитной входной емкости транзистора Сзи и высоким сопротивлением канала.

Биполярные транзисторы. For dummies

Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.

Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики

Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.

Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной.

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

  1. Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки. Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

УСИЛИТЕЛИ НИЗКОЙ ЧАСТОТЫ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ

Применение полевых транзисторов во входных каскадах усилителей низкой частоты, предназначенных для работы от высокоомных источников сигнала, позволяет улучшить коэффициент передачи и существенно понизить коэффициент шума таких усилителей. Высокое входное сопротивление ПТ позволяет избежать необходимости использования переходных конденсаторов большой ёмкости. Применение ПТ в первом каскаде УНЧ радиоприемника увеличивает входное сопротивление до 1-5 МОм. Такой УНЧ не будет нагружать оконечный каскад усилителя промежуточной частоты. Используя это свойство полевых транзисторов (высокое Rвх), можно значительно упростить целый ряд схем; при этом уменьшаются габариты, масса и потребление энергии от источника питания.

В данной главе рассматриваются принципы построения и схемы УНЧ на полевых транзисторах с р-n-переходом.

Полевой транзистор может быть включен по схеме с общим истоком, общим стоком и общим затвором. Каждая из схем включения обладает определенными характеристиками, от которых зависит их применение.

УСИЛИТЕЛЬ С ОБЩИМ ИСТОКОМ

Это наиболее часто используемая схема включения ПТ, которая характеризуется высоким входным сопротивлением, высоким выходным сопротивлением, коэффициентом усиления по напряжению, большим единицы, а также инвертированием сигнала.

На рис. 10, а изображена схема усилителя с общим истоком, в котором имеются два источника питания. Генератор напряжения сигнала Uвх подключен ко входу усилителя, а выходной сигнал снимается между стоком и общим электродом.

Фиксированное смещение невыгодно, так как требует дополнительного источника питания, и вообще нежелательно по той причине, что характеристики полевого транзистора значительно изменяются в зависимости от температуры и имеют большой разброс от экземпляра к экземпляру. По этим причинам в большинстве практических схем с полевыми транзисторами применяется автоматическое смещение, создаваемое током самого полевого транзистора на резисторе Rи (рис. 10, б) и аналогичное автоматическому смещению в ламповых схемах.

Рис. 10. Схемы включения ПТ с общим истоком.

а — с фиксированным смещением; б — с автоматическим смещением; в — с нулевым смещением; г — эквивалентная схема.

Рассмотрим схему с нулевым смещением (рис. 10, в). На достаточно низких частотах, когда сопротивлением конденсаторов Сз.с (рис. 10, г) и Сз.и можно пренебречь по сравнению с Rз, коэффициент усиления по напряжению можно записать [7]:

где Ri — динамическое сопротивление ПТ; оно определяется следующим образом:

здесь же заметим, что SRi = μ, где μ — собственный коэффициент усиления транзистора по напряжению.

Выражение (1) можно записать иначе:

При этом выходное сопротивление усилителя (рис. 10, в)

При автоматическом смещении (рис. 10, б) режим каскада определяется системой уравнений [9]:

Решение этой системы даёт значение тока стока Iс в рабочей точке ПТ:

При заданном значении Ic из выражения (4) найдём значение сопротивления в цепи истока:

Если задано значение напряжения Uз.и, то

Значение крутизны для каскада с автоматическим смещением можно найти по выражению

УСИЛИТЕЛЬ С ОБЩИМ СТОКОМ

Каскад с общим стоком (рис. 11, а) часто называют истоковым повторителем. В этой схеме входное сопротивление выше, чем в схеме с общим истоком. Выходное сопротивление здесь низкое; инвертирование сигнала от входа к выходу отсутствует. Коэффициент усиления по напряжению всегда меньше единицы, нелинейные искажения сигнала незначительные. Коэффициент усиления по мощности может быть большим из-за значительного отношения входного и выходного сопротивлений.

Истоковый повторитель используется для получения малой входной ёмкости, для преобразования полного сопротивления в сторону его уменьшения или для работы с большим входным сигналом.

Рис. 11. Схемы усилителей с общим стоком.

а — простейший истоковый повторитель; б — эквивалентная схема; в — истоковый повторитель с увеличенным сопротивлением смещения.

На частотах, где 1/ωСз.и значительно больше, чем Ri и Rн (рис. 11, б), входное и выходное напряжения связаны между собой соотношением [7]

откуда коэффициент усиления по напряжению Ки

Входное сопротивление каскада, изображённого на рис. 11, а, определяется сопротивлением Rз. Если Rз соединить с истоком, как показано на рис. 11, в, входное сопротивление усилителя резко возрастает:

Так, например, если Rз = 2 МОм, а коэффициент усиления по напряжению Ки=0,8, то входное сопротивление истокового повторителя равно 10 МОм.

Входная ёмкость истокового повторителя для чисто омической нагрузки уменьшается вследствие присущей этой схеме обратной связи:

Выходное сопротивление Rвых истокового повторителя определяется по формуле

При Ri>>Rн, что часто имеет место на практике, согласно (11) имеем:

При больших сопротивлениях нагрузки

Выходная ёмкость истокового повторителя

Надо сказать, что коэффициент усиления истокового повторителя слабо зависит от амплитуды входного сигнала, в связи с чем эта схема может быть использована для работы с большим входным сигналом.

УСИЛИТЕЛЬ С ОБЩИМ ЗАТВОРОМ

Эта схема включения используется для преобразования низкого входного сопротивления в высокое выходное. Входное сопротивление имеет здесь примерно то же значение, что и выходное в схеме с общим стоком. Каскад с общим затвором используется также в высокочастотных схемах, так как при этом в большинстве случаев отпадает необходимость в нейтрализации внутренней обратной связи.

Коэффициент усиления по напряжению для схемы с общим затвором [1]

где Rr — внутреннее сопротивление генератора входного сигнала.

Входное сопротивление каскада

ВЫБОР РАБОЧЕЙ ТОЧКИ ПТ

Выбор рабочей точки транзистора определяется [1] максимальным выходным напряжением, максимальной рассеиваемой мощностью, максимальным изменением тока стока, максимальным коэффициентом усиления по напряжению, наличием напряжений смещения, минимальным коэффициентом шума.

Для достижения максимального выходного напряжения следует прежде всего выбрать наибольшее напряжение питания, значение которого ограничивается допустимым напряжением стока транзистора. Чтобы найти нагрузочное сопротивление, при котором получается максимальное неискаженное выходное напряжение, определим последнее как полуразность между напряжением источника питания Еп и напряжением насыщения (равным напряжению отсечки). Разделив это напряжение на выбранное значение тока стока в рабочей точке Iс, получим оптимальное значение нагрузочного сопротивления:

Минимальное значение рассеиваемой мощности достигается при минимальных напряжении и токе стока. Этот параметр важен для портативной аппаратуры, работающей от батарейных источников питания. В тех случаях, когда требование минимальной рассеиваемой мощности имеет первостепенное значение, необходимо использовать транзисторы с низким напряжением отсечки Uотс. Ток стока можно уменьшить при помощи изменения напряжения смещения на затворе, но при этом необходимо иметь в виду снижение крутизны, сопровождающее уменьшение тока стока.

Минимальный температурный дрейф тока стока для некоторых транзисторов может быть достигнут путем совмещения рабочей точки с точкой на проходной характеристике транзистора, имеющей нулевой температурный коэффициент. При этом ради точной компенсации приносится в жертву взаимозаменяемость транзисторов.

Максимальный коэффициент усиления при малых значениях нагрузочного сопротивления достигается при работе транзистора в точке с максимальной крутизной. У полевых транзисторов с управляющим p-n-переходом этот максимум имеет место при напряжении затвор — исток, равном нулю.

Минимум коэффициента шума достигается установлением режима малых напряжений на затворе и стоке.

ВЫБОР ПОЛЕВОГО ТРАНЗИСТОРА ПО НАПРЯЖЕНИЮ ОТСЕЧКИ

В ряде случаев выбор ПТ по напряжению отсечки оказывает решающее влияние на работу схемы [3]. Транзисторы с низким напряжением отсечки имеют ряд преимуществ в схемах, где используются маломощные источники питания и где требуется большая температурная стабильность.

Рассмотрим, что происходит, когда два полевых транзистора, имеющих различные напряжения отсечки, используются в схеме с общим источником при одинаковом напряжении питания и нулевом смещении на затворе.

Рис. 12. Характеристика передачи ПТ.

Обозначим Uотс1 — напряжение отсечки транзистора ПТ1 и Uотс2 — напряжение отсечки транзистора ПТ2, при этом Uотс1отс1. Если сопротивление нагрузки в обоих случаях выбирается таким образом, что

где Uc1 и Uc2 — напряжения на стоках первого и второго ПТ соответственно,

Введем термин «показатель качества» [2]:

Значение М можно уяснить из рис. 12, на котором представлена типичная характеристика передачи полевого транзистора с каналом p-типа.

Наклон кривой при Uз.и=0 равен Sмакс. Если касательную в точке Uз.и=0 продолжить до пересечения с осью абсцисс, то она отсечёт на этой оси отрезок Uотс/M. Это легко показать, исходя из (20):

Следовательно, М есть мера нелинейности проходной характеристики полевого транзистора. В [2] показано, что при изготовлении полевых транзисторов диффузионным методом М = 2.

Найдём значение тока Ic0 по выражению (21):

Подставив его значение в (19), получим:

Если в формуле (1) положить Ri>>Rн, то коэффициент усиления по напряжению для схемы с общим истоком

Подставив значение коэффициента усиления (23) в выражение (22), получим:

Из соотношения (24) можно сделать следующий вывод: при заданном напряжении питания коэффициент усиления каскада обратно пропорционален напряжению отсечки полевого транзистора. Так, для полевых транзисторов, изготовленных методом диффузии, М = 2 и при Uотс1 = 1,5 В (КП103Е), Uотс2=7 В (КП103М), напряжении питания 12,6 В и Uc = 7 В коэффициенты усиления каскадов равны соответственно 7,5 и 1,6. Коэффициент усиления каскада с ПТ1 возрастает ещё больше, если за счёт увеличения сопротивления нагрузки Rн уменьшить Uс до 1,6 В. Следует отметить, что в этом случае при неизменном напряжении питания Еп транзистор с малой крутизной может обеспечить больший коэффициент усиления по напряжению, чем транзистор с большей крутизной (за счёт большего сопротивления нагрузки).

В случае малого сопротивления нагрузки Rн желательно использовать полевые транзисторы с большим напряжением отсечки для получения большего коэффициента усиления (за счёт увеличения S).

У транзисторов с низким напряжением отсечки изменение тока стока от температуры много меньше, чем у транзисторов с большим напряжением отсечки, и поэтому требования к стабилизации рабочей точки ниже. При смещениях на затворе, задающих нулевой температурный коэффициент изменения тока стока, у транзисторов с меньшим напряжением отсечки ток стока выше, чем у транзистора с более высоким напряжением отсечки. Кроме того, поскольку напряжение смещения на затворе (при нулевом температурном коэффициенте) у второго транзистора больше, то транзистор будет работать в режиме, при котором сильнее сказывается нелинейность его характеристик [3].

При заданном напряжении питания полевые транзисторы с низким напряжением отсечки позволяют получить больший динамический диапазон. Например, из двух транзисторов, имеющих напряжение отсечки 0,8 и 5 В при напряжении питания 15 В и максимальном сопротивлении нагрузки, рассчитываемом из соотношения (18), на выходе первого можно получить удвоенную амплитуду выходного сигнала (определяемую как разницу между Еп и Uотс), равную 14,2 В, в то время как во втором — лишь 10 В. Различие в усилении будет еще более наглядным, если Еп уменьшить. Так, если напряжение питания снизить до 5 В, то удвоенная амплитуда выходного напряжения первого транзистора будет составлять 4,2 В, второй же транзистор использовать для этих целей практически невозможно [3].

НЕЛИНЕЙНЫЕ ИСКАЖЕНИЯ В УСИЛИТЕЛЯХ

Величина нелинейных искажений, возникающих в усилителях на ПТ, определяется многими параметрами схемы: смещением, рабочим напряжением, сопротивлением нагрузки, уровнем входного сигнала, характеристиками полевых транзисторов.

При подаче на вход усилителя с общим истоком синусоидального напряжения U1sinωt мгновенное значение полного напряжения в цепи затвор — исток можно записать

где Eсм — напряжение внешнего смещения, поданного на затвор.

Учитывая квадратичную зависимость тока стока от напряжения на затворе (1), мгновенное значение ic будет равно:

Раскрыв скобки в уравнении (24а), получим развернутое выражение для тока стока:

Из выражения (24б) видно, что в выходном сигнале наряду с постоянной составляющей и первой гармоникой содержится вторая гармоника частоты входного сигнала.

Нелинейные искажения определяются отношением среднеквадратичного значения всех гармоник к среднеквадратичному значению основной гармоники в выходном сигнале. Используя это определение, из выражения (24б) найдем коэффициент гармоник, выразив (Eсм-Uотс) через Iс0 [2]:

Выражение (24в) даёт лишь приблизительный результат, поскольку реальные проходные характеристики ПТ отличаются от описываемых выражением (1).

Для достижения минимальных нелинейных искажений необходимо [4]:

— поддерживать значение Uс.и достаточно большим для того, чтобы при максимальном перепаде выходного сигнала соблюдалось условие

— не работать при напряжениях затвор — сток, близких к пробою;
— сопротивление нагрузки выбирать достаточно большим.

На рис. 16, в приведена схема, в которой полевой транзистор работает с большим Rн, чем обеспечиваются малые искажения и высокое усиление. В качестве сопротивления нагрузки здесь используется второй полевой транзистор Т2. Эта схема обеспечивает коэффициент усиления по напряжению порядка 40 дБ при Епит=9 В.

Выбор типа ПТ, обеспечивающего наименьшие искажения, зависит от уровня входного сигнала, напряжения питания и требуемой полосы пропускания. При большом уровне выходного сигнала и значительной полосе пропускания желательны ПТ с большим Uотс. При малом уровне входного сигнала или низком напряжении питания предпочтительны ПТ с малым Uотс.

СТАБИЛИЗАЦИЯ КОЭФФИЦИЕНТА УСИЛЕНИЯ

Коэффициент усиления УНЧ на ПТ, как и на других активных элементах, подвержен влиянию различных дестабилизирующих факторов, под действием которых он изменяет свое значение. Один из таких факторов — изменение окружающей температуры. Для борьбы с этими явлениями в основном применяются те же методы, что и в схемах на биполярных транзисторах: используют отрицательную обратную связь как по току, так и по напряжению, охватывающую один или несколько каскадов, вводят в схему температурно-зависимые элементы.

В полевом транзисторе с p-n-переходом под действием температуры изменяется по экспоненциальному закону ток обратносмещенного затвора, изменяются ток стока и крутизна.

Воздействие изменения тока затвора Iз на коэффициент усиления можно ослабить, уменьшая сопротивление резистора Rз в цепи затвора. Для уменьшения влияния изменений тока стока, как и в случае применения биполярных транзисторов, может использоваться отрицательная обратная связь по постоянному току (рис. 13,а).

Рассмотрим более подробно некоторые способы уменьшения влияния на коэффициент усиления изменений крутизны S.

В режиме усиления слабых сигналов коэффициент усиления некомпенсированного каскада на полевом транзисторе падает при повышении температуры. Например, коэффициент усиления схемы на рис. 13, а, равный 13,5 при 20° С, уменьшается до 12 при +60° С. Это уменьшение обусловлено в первую очередь температурным изменением крутизны полевого транзистора. Параметры смещения, такие как ток стока Iс, напряжение между затвором и истоком Uз.и и напряжение между истоком и стоком Uc.и изменяются незначительно благодаря существующей обратной связи по постоянному току.

Рис. 13. Схемы усилителей со стабилизацией коэффициента усиления.

а — некомпенсированный каскад; б — компенсированный каскад усиления; в — компенсированный каскад усиления с ООС; г -переходная характеристика.

Включив несколько обычных диодов в цепь отрицательной обратной связи между затвором и истоком (рис. 13, б), можно стабилизировать коэффициент усиления усилителя без введения дополнительных каскадов. При увеличении температуры снижается прямое напряжение каждого диода, что в свою очередь приводит к уменьшению напряжения Uз.и.

Экспериментально показано [8], что результирующее изменение напряжения перемещает рабочую точку таким образом, что крутизна S относительно стабильна в определенных пределах изменения температуры (рис. 13, г). Например, коэффициент усиления усилителя по схеме рис. 13, б, равный 11, практически сохраняет своё значение в пределах изменения температуры 20-60° С (Ки изменяется всего на 1%).

Введение отрицательной обратной связи между затвором и истоком (рис. 13, в) уменьшает коэффициент усиления, но обеспечивает лучшую стабильность. Коэффициент усиления усилителя по схеме рис. 13, в, равный 9, практически не изменяется при изменении температуры от 20 до 60°.

Путём тщательного выбора рабочей точки и количества диодов можно стабилизировать коэффициент усиления с точностью 1% в диапазоне до 100° С [8].

УМЕНЬШЕНИЕ ВЛИЯНИЯ ВХОДНОЙ ЁМКОСТИ ПТ НА ЧАСТОТНЫЕ СВОЙСТВА УСИЛИТЕЛЕЙ

Для истокового повторителя, изображенного на рис. 11, а, по его эквивалентной схеме (рис. 11, б) постоянную времени входной цепи можно определить с достаточной для практических расчётов точностью следующим образом:

где Rг и Сг — параметры источника сигнала.

Из выражения (25) видно, что постоянная времени входной цепи находится в прямой зависимости от ёмкостей Сз.с и Сз.и, причём ёмкость Сз.и за счет влияния ООС уменьшена в (1-Ки) раз.

Однако получение коэффициента усиления по напряжению, близкого к единице (с целью устранения влияния ёмкости Сз.и), в схеме обычного истокового повторителя сопряжено с трудностями, связанными с малым пробивным напряжением полевого транзистора. Так, чтобы на полевом транзисторе КП102Е с максимальным током стока Iс0=0,5 мА, максимальной крутизной 0,7 мА/В получить коэффициент усиления по напряжению 0,98, необходимо использовать сопротивление Rн=65 кОм. При Iс0 = 0,5 мА падение напряжения на сопротивление Rн составит около 32,5 В, а напряжение питания должно быть, как минимум, больше этого напряжения на величину Uотс, т. е. Eп=35 В.

Чтобы избежать необходимости использования высокого напряжения питания для получения коэффициента усиления, близкого к единице, на практике часто применяют схемы комбинированных повторителей на полевых и биполярных транзисторах.

На рис. 14, а изображена комбинированная схема как по типу применяемых в ней транзисторов, так и по схеме их соединения, носящая название истокового повторителя со следящей связью [2]. Сток полевого транзистора Т1 подсоединён к базе биполярного транзистора Т2, с коллектора которого сигнал подаётся на истоковый вывод полевого транзистора в противофазе с входным сигналом. Подбором резисторов R5 и R6 можно напряжение сигнала на истоке получить равным входному напряжению, тем самым устраняя влияние ёмкости Сз.и.

Резистор R1 установленный в цепи смещения затвора, присоединён к истоку транзистора Т1 через конденсатор С2 большой ёмкости. Эффективное сопротивление в цепи смещения определяется сопротивлением резистора R1 и коэффициентом обратной связи [3], так что

где Uи — амплитуда сигнала на истоке транзистора Т1.

Рис. 14. Схемы усилителей с уменьшенной входной ёмкостью.

а — истоковый повторитель со следящей связью; б — с уменьшенной ёмкостью Сз.с ; в — истоковый повторитель с динамической нагрузкой.

При больших значениях β биполярного транзистора Т2 коэффициент усиления схемы приблизительно можно оценить следующим выражением:

Если усилитель предназначен для работы на низких частотах, то резистор R6 можно зашунтировать конденсатором С3 (на рис. 14, а показан пунктиром); при этом верхний частотный предел определяется выражением [3]

Выше был рассмотрен метод уменьшения влияния ёмкости затвор — исток Сз.и на частотную характеристику усилителя путем получения у истокового повторителя коэффициента усиления, близкого к единице. Влияние ёмкости Сз.с при этом оставалось неизменным.

Дальнейшее улучшение частотных характеристик усилителей может быть достигнуто за счет ослабления статической ёмкости затвор — сток во входной цепи схемы.

Чтобы уменьшить влияние ёмкости между затвором и стоком, можно применить способ, аналогичный описанному выше для снижения влияния ёмкости Сз.и, т. е. уменьшить напряжение сигнала на ёмкости. В схеме, показанной на рис. 14, б [6], влияние ёмкости Сз.с снижено настолько, что входная ёмкость каскада почти полностью определяется расположением деталей в схеме и ёмкостью монтажа.

Первый каскад на транзисторе T1 имеет малую нагрузку в цепи стока и для сигнала, снимаемого с истока, является истоковым повторителем. Выходной сигнал подается на каскад с общим коллектором, в котором используется биполярный транзистор.

Для снижения влияния ёмкости Сз.с сигнал с выходного каскада (эмиттерного повторителя) подается через конденсатор С2 на сток транзистора T1 в фазе с входным сигналом. Для повышения эффекта компенсации необходимо принять меры для увеличения коэффициента передачи первого каскада. Это достигается подачей на резистор смещения R3 сигнала с эмиттерного повторителя. В итоге подаваемое на сток напряжение становится больше, а отрицательная обратная связь — действеннее. Кроме того, повышение коэффициента передачи первого каскада дополнительно уменьшает влияние ёмкости Сз.и.

Если не использовать перечисленные методы снижения ёмкости затвора, то входная ёмкость, как правило, довольно значительна (у транзистора КП103 составляет 20-25 пФ). В результате удается снизить входную ёмкость до 0,4-1 пФ.

Истоковый повторитель с динамической нагрузкой (По материалам Ю. И. Глушкова и В. Н. Семенова), охваченный следящей обратной связью на сток, изображен на рис. 14, в. С помощью такой схемы удается исключить влияние статического коэффициента усиления полевого транзистора μ на коэффициент передачи истокового повторителя, а также уменьшить ёмкость Сз.с. Транзистор Т2 выполняет роль генератора стабильного тока, задавая ток в цепи истока полевого транзистора Т1. Транзистор Т3 является динамической нагрузкой в цепи стока полевого транзистора но переменному току. Параметры истокового повторителя:

Коэффициент передачи 0,98
Входное сопротивление Определяется сопротивлением резистора R1
Выходное сопротивление, Ом 50-100
Входная ёмкость, пФ ≤ 1
Потребляемый ток, мА 3

Снизив с помощью указанных методов влияние ёмкостей Сз.и и Сз.с, необходимо позаботиться об устранении паразитных ёмкостей схемы, приведенных ко входу усилителя. Влияние паразитных ёмкостей можно существенно ослабить, заключив входной каскад усилителя в экран и подключив его к такой точке схемы, где коэффициент усиления приблизительно равен единице.

ЭКОНОМИЧНЫЕ УНЧ

Перед разработчиком иногда встает задача создания экономичных усилителей низкой частоты, работающих от низковольтного источника питания. В таких усилителях могут быть использованы полевые транзисторы с малыми напряжением отсечки Uотс и током насыщения Iс0; эти схемы имеют несомненные преимущества перед ламповыми и схемами на биполярных транзисторах.

Выбор рабочей точки в экономичных усилителях на полевых транзисторах определяется исходя из условия получения минимальной рассеиваемой мощности. Для этого напряжение смещения Uз.и выбирается почти равным напряжению отсечки, при этом ток стока стремится к нулю. Такой режим обеспечивает минимальный нагрев транзистора, что приводит к малым токам утечки затвора и высокому входному сопротивлению. Необходимый коэффициент усиления при малых токах стока достигается увеличением сопротивления нагрузки.

В экономичных усилителях низкой частоты широко применяется схема каскада, изображенного на рис. 10, б. В этой схеме напряжение смещения образуется на сопротивлении в цепи истока, что создает отрицательную обратную связь по току, стабилизирующую режим от влияния колебаний температуры и разброса параметров.

Можно предложить следующий порядок расчета экономичных каскадов УНЧ, выполненных по рис. 10, б.

1. Исходя из условия получения минимальной рассеиваемой мощности, выбираем полевой транзистор с малыми напряжением отсечки Uотс и током насыщения Iс0.
2. Выбираем рабочую точку полевого транзистора по току Ic (единицы — десятки микроампер).
3. Учитывая, что при напряжении смещения, близком к напряжению отсечки, ток стока можно приблизительно определить по выражению

сопротивление в цепи истока

4. Исходя из необходимого коэффициента усиления, находим Rн. Так как коэффициент усиления

то, пренебрегая шунтирующим действием дифференциального сопротивления сток-исток Ri и подставляя вместо S её значение, полученное путем дифференцирования выражения для тока стока в (40), получаем:

Из последнего выражения находим необходимое сопротивление нагрузки:

На этом расчет усилителя заканчивается и в процессе регулировки лишь уточняются номиналы резисторов Rн и Rи.

На рис. 15 приведена практическая схема экономичного усилителя низкой частоты [5], работающего от ёмкостного датчика (например, от пьезокерамического гидрофона).

Благодаря малому току смещения выходного усилителя, состоящего из двух транзисторов Т2 и Т3, мощность рассеяния всего предварительного усилителя составляет 13 мкВт. Предварительный усилитель потребляет ток 10 мкА при напряжении питания 1,35 В.

Рис. 15. Принципиальная схема экономичного усилителя.

Входное сопротивление предварительного усилителя определяется сопротивлением резистора R1. Собственно входным сопротивлением полевого транзистора можно пренебречь, поскольку оно на порядок больше сопротивления резистора R1.

В режиме малых сигналов входной каскад предварительного усилителя эквивалентен схеме с общим истоком, в то время как цепи смещения выполнены как в схеме истокового повторителя.

Используемый в данной схеме полевой транзистор должен иметь небольшое напряжение отсечки Uотс и малый ток стока Iс0 при напряжении на затворе Uз.и=0.

Проводимость канала полевого транзистора T1 зависит от тока стока, и так как последний незначителен, то и проводимость мала. Поэтому выходное сопротивление схемы с общим истоком определяется сопротивлением резистора R2. По данным [5] выходное сопротивление усилителя 4 кОм, коэффициент усиления по напряжению равен 5 (14 дБ).

КАСКАДЫ УНЧ С ДИНАМИЧЕСКОЙ НАГРУЗКОЙ

Полевые транзисторы позволяют легко реализовать схемы усилителей низкой частоты с динамической нагрузкой. По сравнению с реостатным каскадом усиления, у которого сопротивление нагрузки постоянно, усилитель с динамической нагрузкой имеет больший коэффициент усиления по напряжению.

Принципиальная схема усилителя с динамической нагрузкой приведена на рис. 16, а.

В качестве динамического сопротивления стоковой нагрузки полевого транзистора Т1 используется активный элемент — полевой транзистор Т2, внутреннее сопротивление которого зависит от амплитуды сигнала на стоке транзистора Т1. Транзистор Т1 включён по схеме с общим истоком, а Т2 — по схеме с общим стоком. По постоянному току оба транзистора включены последовательно.

Рис. 16. Принципиальные схемы усилителей с динамической нагрузкой.

а — на двух ПТ; б — на ПТ и биполярном транзисторе; в — с минимальным количеством деталей.

Входной сигнал Uвх подается на затвор полевого транзистора Т1, а снимается с истока транзистора Т2.

Каскад усиления (рис. 16, а) может служить в качестве типового при построении многокаскадных усилителей. При использовании полевых транзисторов типа КП103Ж каскад имеет следующие параметры:

Коэффициент усиления по напряжению 130
Частотная характеристика (по уровню 0,7), Гц 10-10000
Максимальный выходной сигнал (при напряжении питания 9 В), В 1,4

Следует отметить, что при использовании полевых транзисторов с малым напряжением отсечки можно получить больший коэффициент усиления по напряжению, чем при использовании полевых транзисторов с большим напряжением отсечки. Это объясняется тем, что у ПТ с малым напряжением отсечки внутреннее (динамическое) сопротивление больше, чем у ПТ с большим напряжением отсечки.

В качестве динамического сопротивления можно использовать и обычный биполярный транзистор. При этом коэффициент усиления по напряжению получается даже несколько выше, чем при использовании в динамической нагрузке полевого транзистора (за счёт большего Ri). Но в этом случае увеличивается количество деталей, необходимых для построения каскада усиления с динамической нагрузкой. Принципиальная схема такого каскада изображена на рис. 16, б, причем параметры его близки к параметрам предыдущего усилителя, изображенного на рис. 16, а.

Усилители с динамической нагрузкой следует использовать для получения большого коэффициента усиления в малошумящих УНЧ с низким напряжением питания.

На рис. 16, в изображен усилительный каскад с динамической нагрузкой, в котором число деталей сведено к минимуму, причем эта схема обеспечивает коэффициент усиления до 40 дБ при малом уровне шума. Усиление по напряжению для этой схемы можно выразить формулой

где Sмакс1 — крутизна транзистора Т1; Ri1, Ri2 — динамические сопротивления транзисторов Т1 и Т2 соответственно.

УНЧ НА МИКРОСХЕМАХ

Микросхема типа К2УЭ841 — одна из первых линейных микросхем, освоенных нашей промышленностью. Она представляет собой двухкаскадный усилитель с глубокой отрицательной обратной связью (повторитель), собранный на полевых транзисторах [10,11]. Микросхемы этого типа нашли широкое применение в качестве входных каскадов чувствительных широкополосных усилителей, в качестве выносных каскадов при передаче сигналов через кабель, в схемах активных фильтров и других схемах, требующих высокое входное и малое выходное сопротивления и стабильный коэффициент передачи.

Принципиальная электрическая схема такого усилителя изображена на рис. 17, а; способы включения микросхемы — на рис. 17, б, в, г.

Резистор R3 введён в схему для защиты выходного транзистора от перегрузок при коротких замыканиях на выходе. Небольшим уменьшением обратной связи (на рис. 17, в R показано пунктиром) можно получать коэффициент передачи, равный единице или несколько больше.

Входное сопротивление повторителей можно значительно увеличить (в 10-100 раз), если осуществить посредством конденсатора С обратную связь в цепь затвора (показано пунктиром на рис. 17, в). При этом входное сопротивление повторителя приблизительно равно:

где Ки — коэффициент передачи повторителя.

Основные электрические, параметры повторителя следующие:

Коэффициент передачи ≥0,98
Выходное сопротивление, Ом 30-100
Коэффициент нелинейных искажений, % ≤0,3
Входная ёмкость, пФ
Ток потребления, мА
Изменение коэффициента усиления при изменении температуры от -45 до +55°С, % 0,5

Промышленностью освоен выпуск гибридных пленочных микросхем серии К226, представляющих собой малошумщцие усилители низкой частоты с полевым транзистором на входе. Их основное назначение — усиление слабых сигналов переменного тока от датчиков с высоким внутренним сопротивлением.

Рис. 17. Микросхема К24Э841.

а — принципиальная схема; б — схема с одним источником питания напряжением 12,6 В; в — схема с двумя источниками питания напряжением +-6,3 В; г — схема с одним источником питания напряжением -6,3 В.

Микросхемы выполнены на ситалловой подложке по гибриднопленочной технологии с применением полевых и биполярных бескорпусных транзисторов.

Микросхемы усилителей низкой частоты разделяются на группы по коэффициенту усиления и уровню шумов (табл. 1). Внешний вид и габаритные размеры представлены на рис. 18.

Принципиальные электрические схемы усилителей приведены на рис. 19, а, б и 20, а, б, а их схемы включения — на рис. 21, а, г. При включении микросхем по схемам рис. 21, а и в входное сопротивление усилителей равно сопротивлению внешнего резистора Ri. Для повышения входного сопротивления (до 30 МОм и более) необходимо использовать схемы рис. 21,6, г.

Типы микросхемКоэффициент усиленияНапряжение шумов, мкВ
К2УС261А3005
К2УС265А1005
К2УС261Б30012
К2УС265Б10012
К2УС262А305
К2УС262Б3012
К2УС263А3006
К2УС263Б30012
К2УС264А106
К2УС264Б1012

Рис. 18. Внешний вид и габаритные размеры микросхем К2УС261-К2УС265.

Основные электрические параметры микросхем К2УС261 и К2УС262:

Напряжение питания +12,6 В +-10%
-6,8 В +-10%
Потребляемая мощность:
от источника +12,6 В Не более 40 мВт
от источника -6,3 В Не более 50 мВт
Изменение коэффициента усиления в диапазоне рабочих температур (от -45 до +55°С) +-10%
Напряжение собственных шумов в полосе 20 Гц — 20 кГц в зависимости от групп (при закороченном входе конденсатором ёмкостью 5000 пФ) 5 мкВ и 12 мкВ
Входное сопротивление на частоте 100 Гц 3 МОм
Выходное сопротивление 100 Ом
Входная ёмкость 15 пФ
Верхняя граничная частота по уровню 0,7 Не менее 200 кГц
Нижняя граничная частота Определяется внешними ёмкостями фильтра
Максимальное выходное напряжение на внешней нагрузке 3 кОм в полосе частот до 100 кГц при коэффициенте нелинейных искажений не более 5% Не менее 1,5 В

Рис. 19. Принципиальные схемы усилителей.

а — К2УС261; б — К2УС262.

Рис. 20. Принципиальные схемы усилителей.

а — К2УС263; б — К2УС264 (все диоды типа КД910Б).

Основные электрические параметры микросхем К2УС263 и К2УС264:

Напряжение питания +6 В ±10% -9 В +-10%
Потребляемая мощность:
от источника +6 В 10 мВт
от источника — 9 В 50 мВт (К2УС263), 25 мВт (К2УС264)
Изменение коэффициента усиления в диапазоне рабочих температур (от -45 до +55° С) +-10%
Входное сопротивление на частоте 100 Гц Не менее 10 МОм
Входная ёмкость Не более 15 пФ
Выходное сопротивление 100 Ом (К2УС263),
300 Ом (К2УС264)
Верхняя граничная частота при амплитуде выходного сигнала не менее 2,5 В и неравномерности частотной характеристики +-5% 100 кГц (К2УС263),
200 кГц (К2УС264)
Нижняя граничная частота Определяется внешней ёмкостью фильтра
Коэффициент нелинейных искажений при выходном напряжении 2,5 В 5% (К2УС263),
10% (К2УС264)

Рис. 21. Схемы включения усилителей.

Рекомендации по применению микросхем. Частотная зависимость и граничная частота по уровню 0,7 В в области нижних частот при достаточно большой постоянной времени входной цепи определяется внешним конденсатором фильтра отрицательной обратной связи С2 и сопротивлением резистора цепи обратной связи Rо.с в соответствии с соотношениями:

Пиковые напряжения на входе микросхем К2УС261, К2УС262 не должны превышать 1 В для положительной полярности и 3 В для отрицательной; на входе микросхем К2УС263, К.2УС264 — не более 2 В для положительной полярности и не более 1 В — для отрицательной.

Сопротивление утечки R1 для входного тока в диапазоне рабочих температур -60 до +70° С не должно превышать 3 МОм. В диапазоне более низких максимальных температур или при снижении требований к значению выходного напряжения сопротивление резистора R1 может быть увеличено с целью повышения входного сопротивления каскада.

Ток утечки входного разделительного конденсатора С1 не должен превышать 0,06 мкА.

Для сохранения максимального выходного напряжения ток утечки конденсатора С2 в диапазоне рабочих температур не должен превышать 20 мкА. Этому требованию удовлетворяет конденсатор типа К52-1А ёмкостью 470 мкФ, ток утечки которого не превышает при данных напряжениях 10 мкА.

ПРАКТИЧЕСКИЕ СХЕМЫ УСИЛИТЕЛЕЙ НИЗКОЙ ЧАСТОТЫ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ

Обычно полевые транзисторы используются в усилителях совместно с биполярными транзисторами, но их можно также применять и в качестве активных приборов в многокаскадных усилителях звуковой частоты с резистивно-ёмкостной связью. На рис. 22 приведён пример использования полевых транзисторов в схеме RC-усилителя. Схема этого усилителя использовалась для записи звуковых сигналов моря. Сигнал на вход усилителя снимался с пьезокерамического гидрофона Г, а нагрузкой усилителя служил кабель типа КВД4×1.5 длиной 500 м.

Входной каскад усилителя выполнен на полевом транзисторе типа КП103Ж с минимальным коэффициентом шума. Для этой же цели (уменьшения шумов) два первых каскада питаются пониженным напряжением, получаемым с помощью параметрического стабилизатора Д1R8. Благодаря этим мерам уровень шумов, приведённых ко входу, в полосе частот 4 Гц-20 кГц составлял 1,5-2 мкВ.

Для корректировки частотной характеристики усилителя в области высших частот параллельно резисторам R6 и R10 можно подключить соответствующие корректирующие конденсаторы.

Для согласования высокого выходного сопротивления усилителя с низкоомной нагрузкой (кабелем) служит повторитель напряжения на транзисторах Т4, Т5, представляющий собой двухкаскадный усилитель с непосредственной связью. Для устранения шунтирующего действия резисторов смещения R11, R12 вводится положительная обратная связь по переменному току через цепочку R13, С6. Расчётное значение выходного сопротивления такого повторителя 10 Ом.

Для проверки работоспособности и коэффициента усиления усилителя служит генератор калибровки, собранный по схеме симметричного мультивибратора. Генератор калибровки выдает прямоугольные стабилизированные по амплитуде с помощью стабилитронов Д2-Д5 типа Д808 импульсы частотой 85 Гц, которые в момент включения калибратора подаются через гидрофон на вход усилителя. С помощью делителя напряжения на резисторах R16, R17 амплитуда импульсов устанавливалась равной 1 мВ.

Несмотря на простоту схемы усилителя коэффициент усиления изменяется незначительно (около 2%) при изменении окружающей температуры в диапазоне 0-40° С, причём коэффициент усиления при комнатной температуре 20° С был равен 150.

Рис. 22. Принципиальная схема гидроакустического усилителя.

Если же выходное сопротивление первого каскада на полевом транзисторе удается понизить настолько, что становится возможным применение в последующих каскадах обычных биполярнымх транзисторов, то использовать для дальнейшего усиления полевые транзисторы не экономично. В этих случаях применяются усилители, использующие полевые и биполярные транзисторы.

На рис. 23 изображена принципиальная схема усилителя низкой частоты на полевом и биполярном транзисторах, обладающего близкими по отношению к трёхкаскадному RС-усилителю на полевых транзисторах (рис. 22) параметрами. Так, при коэффициенте усиления, равном 150, частотной характеристике по уровню 0,7 от 20 Гц до 100 кГц значение максимального выходного неискаженного сигнала на Rн = 3 кОм равно 2 В.

Полевой транзистор Т1 (рис. 23) включён по схеме с общим истоком, а биполярный — по схеме с общим эмиттером. Для стабилизации рабочих характеристик усилитель охвачен отрицательной обратной связью по постоянному току.

На рис. 24 изображена схема усилителя низкой частоты с непосредственными связями, разработанная В. Н. Семеновым и В. Г. Федориным, предназначенного для усиления слабых сигналов от источников с высоким входным сопротивлением. Усилитель не содержит разделительных конденсаторов, поэтому габариты его могут быть малыми.

Параметры усилителя следующие:

Коэффициент усиления по напряжению 500
Частотная характеристика (по уровню 0,7), Гц 20-20000
Максимальное выходное напряжение при нагрузке 3 кОм, В 4
Коэффициент нелинейных искажений при максимальном выходном напряжении, % < 10
Входное сопротивление на частоте 20 Гц, МОм 3
Напряжение шумов, пересчитанное на вход в полосе 20 Гц — 20 кГц, мкВ 7
Напряжение питания, В 24

Схема представляет собой УПТ со 100%-ной обратной связью по постоянному току; за счёт этого достигается минимум дрейфа и стабильность режимов. Обратная связь по постоянному току вводится через фильтр нижних частот, поэтому нижняя граничная частота усилителя определяется параметрами этого фильтра.

Для стабилизации коэффициента усиления используется отрицательная обратная связь на частоте сигнала глубиной около 20 дБ. Усиление зависит от глубины обратной связи.

Рис. 23. Принципиальная схема УНЧ на полевом и биполярном транзисторах.

Рис. 24. Принципиальная схема УНЧ с непосредственными связями.

Применение обратных связей делает усилитель некритичным к изменению напряжения питания и разбросу параметров транзисторов и всех деталей, кроме R10 и R11. К особенностям схемы можно отнести то, что транзисторы Т3 и Т4 работают с напряжениями Uб.э, равными Uк.э.

Высокое входное сопротивление усилителя достигается благодаря применению полевых транзисторов. На нижних частотах оно будет определяться сопротивлением резистора R1, на верхних — входной ёмкостью схемы.

  1. Полевые транзисторы. Физика, технология и применение. Пер. с англ. под ред. А. Майорова. М., «Советское радио», 1971.
  2. Севин Л. Полевые транзисторы. М., «Советское радио», 1968.
  3. Малин В. В.‚ Сонин М. С. Параметры и свойства полевых транзисторов. М., «Энергия», 1967.
  4. Шервин В. Причины искажений в усилителях на полевых транзнсторах. — «Электроника»‚ 1966, №25.
  5. Даунс Р. Экономичный предварительный усилитель. «Электроника», 1972, №5.
  6. Холзман Н. Устранение выбросов посредством операционного усилителя. «Электроника», 1971, №3.
  7. Гозлинг В. Применение полевых транзисторов. М., «Энергия». 1970.
  8. Де Колд. Использование диодов для температурной стабилизации коэффициента усиления полевого транзистора — «Электроника», 1971, №12.
  9. Гальперин М. В.‚ Злобин Ю. В.‚ Павлеико В. А. Транзнсторные усилители постоянного тока. М., «Энергия», 1972.
  10. Технический каталог. «Новые приборы. Полевые транзисторы. гибридные интегральные схемы». Изд. ЦНИИ «Электроника», 74.
  11. Топчилов Н. А. Гибридные линейные микросхемы с высокоомным входом — «Электронная промышленность», 1973, №9.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *