Что называется контуром электрической цепи
Перейти к содержимому

Что называется контуром электрической цепи

  • автор:

Большая Энциклопедия Нефти и Газа

Контуром электрической цепи называется замкнутый путь, образуемый одной или несколькими ветвями. Если внутри площади выбранного контура не лежат другие ветви, связывающие между собой точки, принадлежащие тому же контуру, то такой контур будем называть простым, или ячейкой. [3]

Контуром электрической цепи называют любой замкнутый путь, проходящий по нескольким ветвям. [4]

Для контура электрической цепи , изображенного на рис. 2.2, стрелками показаны положительные направления токов. Источники электрической энергии, внутренними сопротивлениями которых можно пренебречь или внутренние сопротивления которых учтены в значениях сопротивлений ветвей н, г2, г3, обозначены кружками со стрелками, показывающими направления действия ЭДС. [5]

Систему контуров электрической цепи системы будем выбирать так, чтобы ветвь, содержащая нагрузку, входила лишь в один из соответствующих контуров трехфазной системы. Это объясняется тем, что активное сопротивление нагрузки следует считать величиной того же порядка, что и индуктивное сопротивление статорных цепей. Поэтому уравнения Кирхгофа для контуров, содержащих нагрузку, будут формально описывать быстрые процессы, а медленные процессы и отвечающие им медленные переменные окажутся скрытыми. Для выделения скрытых переменных необходимо преобразовать уравнения цепей, что равносильно введению контуров, включающих только цепи статоров двух машин. [6]

Потенциальная диаграмма контура электрической цепи показывает распределение электрического потенциала вдоль его обхода, если по оси абсцисс отложены в принятом масштабе величины сопротивлений между отдельными точками контура электрической цепи, а по оси ординат — соответствующие величины электрического потенциала. [8]

Кирхгофа для узлов и контуров электрической цепи . [10]

При уменьшении токов в контурах электрических цепей энергия поля может быть полностью или частично возвращена или преобразована в другие виды энергии. [11]

Примерами дифференцирующих звеньев могут служить контуры электрических цепей , состоящие из активного и индуктивного сопротивлений или из емкостного и активного сопротивлений. [13]

График распределения потенциала вдоль какого-либо контура электрической цепи называют потенциальной диаграммой. [15]

Независимый контур

Независимый контур — это замкнутый участок электрической цепи, проложенный через ветви цепи, содержащий хотя бы одну новую ветвь, неиспользованную при поиске других независимых контуров.

Независимый контур содержит не менее одной новой ветви. Он и не получается из контуров, которые уже были выбраны, как независимые путем удаления из этих контуров общих ветвей.

На рисунке независимыми контурами являются:

R2, R3, R4, R5, R10, R9, R8, R7.

Зависимый и независимый контур

Лекции по ТОЭ

  • История электротехники
  • ТОЭ и электроника
  • Основные сведения
    • Основные определения
    • Топология цепи
    • Преобразование цепей
    • Элементы электрической цепи
    • Режимы работы
    • Постояный ток
    • Переменный ток
    • Постоянный ток
    • Переменный ток
    • Мощность
    • Магнитное поле
    • Постоянная МДС
    • Переменная МДС
    • Ферромагнитные материалы
    • Однофазный трансформатор
    • Трехфазный трансформатор
    • Постоянный ток
    • Переменный ток
    • Электропривод
    • Параметры
    • Уравнения
    • Схемы замещения
    • Фильтры
    • Холостой ход
    • Короткое замыкание
    • Характеристическое сопротивление
    • Коэффициент распространения
    • Передаточная функция
    • Обратные связи
    • Общие сведения
    • Классический метод
    • Операторный метод
    • Интеграл Дюамеля
    • Основная литература
    • Дополнительная литература
    • Сборники задач

    Топологии цепи — основные понятия

    Электрическая цепь — это совокупность устройств (элементов) и соединяющих их проводников, по которым может протекать электрический ток. Все элементы электрических цепей делят на пассивные и активные.

    Активные элементы преобразуют различные виды энергии (механическую, химическую, световую и т.д.) в электрическую. На пассивных элементах электрическая энергия преобразуется в другие виды энергии. Активные элементы называют источниками, пассивные — потребителями или приемниками.

    В теории цепей рассматриваются идеализированные модели электрических элементов. Это позволяет сделать описание элементов максимально простым. Более сложные, реальные элементы моделируются совокупностью идеализированных элементов.

    Основными пассивными элементами электрических цепей являются резистор (резистивный элемент), катушка индуктивности (индуктивный элемент) и конденсатор (емкостный элемент). Элементы устанавливаются в электрическую цепь для формирования напряжения и тока заданной величины и формы (смотрите — Электрическая цепть и ее элементы).

    Электрическая цепь состоит из ветвей и узлов. Ветвь — это участок электрической цепи (схемы), по которому течет один и тот же ток. Узел — соединение трех и более ветвей. На электрической схеме узел обозначается точкой (рис. 1).

    Обозначение узла на схеме

    Рис. 1. Обозначение узла на схеме

    При необходимости на схеме узлы нумеруются слева направо сверху вниз.

    На рис. 2 изображена резистивно-емкостная ветвь, в которой протекает ток iС.

    Резистивно-емкостная ветвь

    Рис. 2. Резистивно-емкостная ветвь

    Можно дать еще одно определение ветви — это участок цепи между двумя смежными узлами (узлы (1) и (2) на рис. 2).

    Контур — это любой замкнутый путь на электрической схеме. Контур может замыкаться через любые ветви, включая условные ветви, сопротивление которых равно бесконечности.

    На рис. 3 изображена разветвленная электрическая цепь, которая состоит из трех ветвей.

    Двухконтурная электрическая цепь

    Рис. 3. Двухконтурная электрическая цепь

    На схеме обозначены три контура, причем контур I замыкается через ветвь с бесконечным сопротивлением. Это ветвь обозначена как напряжение uLC .

    Для схемы на рис. 3 можно составить множество контуров, замыкающихся через реальные или условные ветви, однако для расчета электрических испей используют понятие «независимый контур». Число независимых контуров схемы всегда определено как минимально необходимое для расчета.

    Независимые контуры всегда замыкаются но ветвям, имеющим сопротивление, не равное бесконечности и каждый независимый контур включает в себя хотя бы одну ветвь, не входящую в другие контуры. Для сложных электрических цепей определить число независимых контуров можно, использую граф схемы.

    Графом электрической цепи называется условное изображение схемы, в котором каждая ветвь заменяется отрезком линии. Элементы в ветвях не изображаются. Например, на рис. 4 изображены разветвленная электрическая цепь и ее граф.

    Разветвленная электрическая цепь

    Рис. 4. Разветвленная электрическая цепь: а — схема цепи, б — граф схемы

    Для составления графа схемы нужно соединить узлы линиями ветвей без указания на них элементов. Ветви нумеруются, а направления токов на них указываются стрелками. Сам граф не имеет никакого физического смысла, однако с его помощью можно определить число и вид независимых контуров. Для этого составляется «дерево графа».

    Дерево графа — это граф схемы, на котором узлы соединены ветвями таким образом, чтобы не получилось ни одного замкнутою контура. Вариантов изображения дерева графа может быть несколько. На рис. 5 изображены два возможных вариантадля схемы рис. 4.

    Дерево графа схемы

    Рис. 5. Дерево графа схемы

    Число отсутствующих ветвей на дереве графа равно числу независимых контуров схемы. В примере — это три ветви, три независимых контура. Конфигурацию независимых контуров можно получить, последовательно соединяя узлы дерева графа ветвями, не обозначенными на дереве графа. Например, для дерева графа рис. 5, а независимые контуры изображены на рис. 6.

    Определение независимых контуров по дереву графа

    Рис. 6. Определение независимых контуров по дереву графа

    Выбор варианта конфигурации независимых контуров для расчета цепи осуществляется при анализе схемы. Выбрать нужно такие контуры, чтобы расчет получился максимально простым, т.е. число зависимых уравнений в системе было минимальным.

    Топологические уравнения устанавливают связь между напряжениями и токами цепи, причем число и вид уравнений не зависит от того, какие элементы входят в состав ветвей. К топологическим уравнениям относятся уравнения, составленные по законам Кирхгофа.

    Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

    Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

    Не пропустите обновления, подпишитесь на наши соцсети:

    Контур

    Контур — это замкнутый участок электрической цепи (схемы), составленный из одной или нескольких ветвей. Любой замкнутый путь, проложенный через ветви цепи и есть замкнутый контур.

    На рисунке изображен замкнутый контур из сопротивлений R2, R3, R4, R5, R7, R8, R9, R10.

    Замкнутый контур электрической цепи

    Количество контуров в схеме — 6

    Это следующие контура:

    R1, R4, R5, R10, R9, R8, R7

    R2, R3, R4, R5, R10, R9, R8, R7

    R2, R3, R4, R6, R10, R9, R8, R7

    R1, R4, R6, R10, R9, R8, R7

    Зависимый и независимый контур

    Лекции по ТОЭ

    • История электротехники
    • ТОЭ и электроника
    • Основные сведения
      • Основные определения
      • Топология цепи
      • Преобразование цепей
      • Элементы электрической цепи
      • Режимы работы
      • Постояный ток
      • Переменный ток
      • Постоянный ток
      • Переменный ток
      • Мощность
      • Магнитное поле
      • Постоянная МДС
      • Переменная МДС
      • Ферромагнитные материалы
      • Однофазный трансформатор
      • Трехфазный трансформатор
      • Постоянный ток
      • Переменный ток
      • Электропривод
      • Параметры
      • Уравнения
      • Схемы замещения
      • Фильтры
      • Холостой ход
      • Короткое замыкание
      • Характеристическое сопротивление
      • Коэффициент распространения
      • Передаточная функция
      • Обратные связи
      • Общие сведения
      • Классический метод
      • Операторный метод
      • Интеграл Дюамеля
      • Основная литература
      • Дополнительная литература
      • Сборники задач

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *