Из чего обмотка в трехфазовом конденсаторе
Перейти к содержимому

Из чего обмотка в трехфазовом конденсаторе

  • автор:

Из чего обмотка в трехфазовом конденсаторе

В процессе работы двигателей по обмотке течет ток, на 20-40% превышающий номинальный, поэтому при использовании электромотора в недозагруженном режиме или в режиме холостого хода, емкость рабочего конденсатора следует уменьшить.

В целях безопасности все пусковые конденсаторы должны использоваться с разрядным резистором. Сопротивление разрядного резистора подбирается так, чтобы по истечении 50 секунд полностью снять остаточное напряжение с конденсатора.

В случаях когда конденсатор используется при последовательной схеме включения со вспомогательной обмоткой электродвигателя, напряжение на клеммах конденсатора при рабочей скорости может быть значительно выше напряжения сети.

В процессе эксплуатации конденсаторов они могут устанавливаться непосредственно в физическом контакте с электродвигателем. В этом случае при выборе типа конденсатора необходимо учитывать, что конденсатор будет подвергаться воздействию повышенной температуры и вибраций — как от самого электродвигателя, так и от других пассивных элементов различного рода устройств, в составе которых будет применятся конденсатор.

При работе моторных конденсаторов проходят различного рода сложнейшие коммутационные процессы, в результате которых происходят скачкообразные изменения напряжения на клеммах конденсатора, в связи с чем номинальное напряжение конденсатора нужно выбирать так, чтобы в процессе работы изделия рабочее напряжение не превышало его более чем на 10%.

В процессе выбора необходимой емкости и рабочего напряжения нужно учитывать фактор резонанса, то есть когда значения напряжения вспомогательной обмотки электродвигателя и конденсатора находятся в околорезонансной точке. В этом случае происходит повышение напряжения на клеммах изделия.

Предельное напряжение на клеммах пускового конденсатора должно быть не более 450В, а его емкость выбирается, как правило, в два и более раз больше емкости рабочего конденсатора.

Как показывает практика, на каждые 100 Вт мощности электродвигателя требуется около 6-7 мкФ.

В случае, если не удается подобрать емкость в одном корпусе, допускается комбинирование путем параллельного соединения конденсаторов Собщ=С1+С2….+Сn.

При правильно подобранном конденсаторе мощность трехфазного двигателя, включенного в однофазную сеть, не должна уменьшиться более чем на 30%.

Область применения конденсаторов для асинхронных двигателей

Таблица: Область применения конденсаторов для асинхронных двигателей

рабочий пусковой
Применение В схемах асинхронных электродвигателей В схемах асинхронных электродвигателей
Тип подключения Последовательно со вспомогательной обмоткой электродвигателя Параллельно рабочему конденсатору
В качестве Является фазосмещающим элементом
Предназначение Позволяет получить круговое вращающееся магнитное поле, необходимое для работы электродвигателя Позволяет получить магниное поле, необходимое для повышения пускового момента электродвигателя
Время включения В процессе работы электродвигателя В момент пуска электродвигателя

Существуют две основные области применения конденсаторов для асинхронных электродвигателей.

1) Трёхфазный асинхронный электродвигатель, включаемый через конденсатор в однофазную сеть

В случае когда трехфазный электродвигатель необходимо подключить к однофазной сети, существует два возможных варианта подключения: «звезда» и «треугольник», причем наиболее предпочтительным во многих случаях является вариант «треугольник».

Приблизительный расчет для данного типа соединения производится по следующей формуле:

Сраб.=k*Iф/Uсети

  • k – коэффициент, зависящий от соединения обмоток.
  • – номинальный фазный ток электродвигателя А.
  • Uсети – напряжение однофазной сети В.

Для схемы соединения «Звезда» k=2800

Для схемы соединения «Треугольник» k=4800

Для определения пусковой емкости Спуск. исходят из пускового момента. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется.

Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением Сп.=(2.5-3) Ср.

Рабочее напряжение конденсаторов должно быть в 1,5 раза выше напряжения сети.

Схема подключения

Рис. 1

Рис 1. Схема включения в однофазную сеть трехфазного асинхронного двигателя с обмотками статора, соединенными по схеме «звезда» (а) или «треугольник» (б):

  • B1 Переключатель направления вращения (реверс)
  • В2 — Выключатель пусковой емкости;
  • Ср — рабочий конденсатор;
  • Cп — пусковой конденсатор;
  • АД — асинхронный электродвигатель.

2) Асинхронный электродвигатель, питаемый от однофазной сети и имеющий на статоре две обмотки, одна из которых включается в сеть непосредственно, а другая — последовательно с электрическим конденсатором для образования вращающегося магнитного поля. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве. Наибольший вращающий момент развивается, когда сдвиг фаз токов составляет 90°, а их амплитуды подобраны так, что вращающееся поле становится круговым. При пуске конденсаторного асинхронного двигателя оба конденсатора включены, а после его разгона один из конденсаторов отключают; это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске. конденсаторного асинхронного электродвигателя по пусковым и рабочим характеристикам близок к трехфазному асинхронному двигателю. Применяется в электроприводах малой мощности; при мощностях свыше 1 квт используется редко вследствие значительной стоимости и размеров конденсаторов.

Схема подключения

Рис. 2

Рис 2. Схема (а) и векторная диаграмма (б) конденсаторного асинхронного двигателя:

  • U, UБ, UC — напряжения;
  • IA, IБ — токи;
  • А и Б — обмотки статора;
  • В — центробежный выключатель для отключения С1 после разгона двигателя;
  • C1 и C2 — конденсаторы.

Подключение трехфазного двигателя к однофазной сети через конденсатор

Трёхфазное напряжение имеет максимум своего значения, который перемещается последовательно от одной фазы к другой. В трехфазном двигателе три обмотки статора подключены к трёхфазному напряжению. Поэтому максимум магнитного поля статора также перемещается от одной обмотки к другой, двигаясь вокруг оси вращения ротора. В зависимости от конструкции электродвигателя при этом ротор вращается с соответствующей скоростью.

Однако перемещение максимума напряжения можно достичь и при однофазном питающем напряжении. Для этого потребуется электрическая ёмкость. Изменение величины напряжения на электрической ёмкости отстаёт от изменения величины тока. Поэтому процесс формирования эффективного максимума перемещаемого магнитного поля статора с использованием конденсаторов становится возможным при правильно выбранных величинах их ёмкости.

В лучшем случае удаётся использовать двигатель на уровне 65 – 85 процентов от его номинальной мощности. При этом реактивная составляющая мощности, потребляемая от сети может быть близка к нулю, поскольку функцию источника реактивной мощности выполняет электрическая ёмкость. Но для наилучшей работы электродвигателя с трёхфазным статором от однофазной сети нужны конденсаторы, как для запуска, так и для рабочего режима.

А поскольку для большей электрической мощности требуется увеличение тока, потребуется также и увеличение ёмкости конденсаторов. Поэтому начиная с некоторой величины мощности электродвигателей, конденсаторная батарея получается слишком громоздкой и дорогостоящей. В таком случае преимущества включения трёхфазного двигателя в однофазную сеть утрачиваются. Обычно граничным значением величины мощности электродвигателя являются два киловатта.

Схемы включения

Схемы включения трёхфазного двигателя с использованием электрических ёмкостей приведены на изображении ниже:

Схемы включения трёхфазного двигателя с использованием электрических ёмкостей

Изменение соединений обмоток на изображениях а) и б) делается для реверса вращения ротора. Аналогично и для соединений обмоток на изображениях в) и г). На изображении ниже показано переключение соединений выводов обмоток в случае реверса для схемы г):

Переключение соединений выводов обмоток в случае реверса для схемы

Для схем включения трёхфазных электродвигателей с конденсаторами в однофазную сеть в) и г) применяются два определения для обозначения обмоток:

  • конденсаторная фаза для обмотки соединённой с конденсатором;
  • главная фаза для обмоток соединённых с питающей сетью.

Величина номинального тока Iном существует для обмоток электродвигателя присоединённого к трёхфазной сети. При его подключении к однофазной сети на величину тока будет оказывать влияние ёмкость конденсатора. Можно получить ток как больше номинального, так и меньше номинального значения. Превышение номинального тока приводит к перегреву обмоток и к увеличению напряжения на конденсаторной фазе.

Расчёт конденсаторов

Особенно вредным могут быть резонансные явления, приводящие к существенному увеличению напряжения, которое может стать опасным как для целостности изоляции обмоток и конденсаторов, так и для обслуживающего персонала. Если ток меньше номинального значения двигатель будет использоваться не эффективно. Поэтому надо применять такие значения ёмкостей, при которых величины напряжений и токов для обмоток близки к номинальным значениям.

Для частоты питающего напряжения со значениями U Вольт и 50 Герц для каждой из схем, приведенных выше существует приближённый расчёт рабочей ёмкости Ср,ном:

а) — Ср,ном ≈2800Iном/U;

б) — Ср,ном ≈4800 /U;

в) — Ср,ном ≈1600Iном/U;

г) — Ср,ном ≈2740Iном/U.

Величина ёмкости при запуске электродвигателя выбирается в два – три раза больше чем величина Ср,ном. Для увеличения пускового момента надо выбирать схемы в) и г). Но при этом возможны перенапряжения на конденсаторной фазе. После переходного процесса часть конденсаторов отключается так, чтобы ёмкость оставшихся равнялась Ср,ном. С этой конденсаторной батареей электродвигатель может продолжать вращение.

Выбрать соответствующие электротехническое оборудование можно на сайте elektropostavka.ru. Они осуществляют доставку по всей России и СНГ.

Конденсаторные двигатели — устройство, принцип действия, применение

Конденсаторные двигатели - устройство, принцип действия, применение

В этой статье поговорим о конденсаторных двигателях, которые по сути являются обычными асинхронными, отличающимися лишь способом подключения к сети. Затронем тему подбора конденсаторов, разберем причины необходимости точного подбора емкости. Отметим основные формулы, которые помогут в приблизительной оценке требуемой емкости.

Конденсаторным двигателем называется асинхронный двигатель, в цепь статора которого включена дополнительная емкость, с целью создать сдвиг фаз тока в обмотках статора. Зачастую это касается однофазных цепей при использовании трехфазных или двухфазных асинхронных двигателей.

Обмотки статора асинхронного двигателя физически сдвинуты друг относительно друга, и одна из них включается непосредственно в сеть, в то время как вторая, либо вторая и третья подключаются к сети через конденсатор. Емкость конденсатора подбирается так, чтобы сдвиг фаз токов между обмотками получился бы равным или хотя бы близким к 90°, тогда ротору будет обеспечен максимальный вращающий момент.

Схема конденсаторного двигателя

При этом модули магнитной индукции обмоток должны получиться одинаковыми, чтобы магнитные поля обмоток статора оказались бы сдвинуты относительно друг друга так, чтобы суммарное поле вращалось по кругу, а не по эллипсу, увлекая за собой ротор с наибольшей эффективностью.

Очевидно, ток и его фаза в подключенной через конденсатор обмотке связаны как с емкостью конденсатора, так и с эффективным импедансом обмотки, который в свою очередь зависит от скорости вращения ротора.

При старте двигателя импеданс обмотки определяется лишь ее индуктивностью и активным сопротивлением, поэтому он относительно мал в момент пуска, и здесь нужен конденсатор большей емкости для обеспечения оптимального пуска.

Когда же ротор разгонится до номинальных оборотов, магнитное поле ротора станет индуцировать в обмотках статора ЭДС, которая будет направлена против питающего обмотку напряжения — эффективное сопротивление обмотки теперь растет, и требуемая емкость снижается.

При оптимально подобранной емкости в каждом режиме (пусковой режим, рабочий режим) магнитное поле будет круговым, и здесь имеет значение как скорость вращения ротора, так и напряжение, и число витков обмотки, и подключенная в текущий момент емкость. Если оптимальное значение какого-нибудь параметра нарушено, поле становится эллиптическим, характеристики двигателя соответственно падают.

Для двигателей разного назначения схемы подключения емкостей разные. Когда требуется значительный пусковой момент, применяют конденсатор большей емкости, чтобы обеспечить оптимальные ток и фазу именно в момент пуска. Если пусковой момент не особо важен, то внимание уделяют только созданию оптимальных условий рабочего режима, при номинальной скорости вращения, и емкости подбирается для номинальных оборотов.

Довольно часто для качественного пуска применяют пусковой конденсатор, который на время запуска подключается параллельно рабочему конденсатору относительно малой емкости, чтобы вращающееся магнитное поле и при пуске было круговым, затем пусковой конденсатор отключают, и двигатель продолжает работу только с рабочим конденсатором. В особых случаях прибегают к набору конденсаторов с возможностью переключения для разных нагрузок.

Конденсаторный двигатель

Если пусковой конденсатор случайно не будет отключен после выхода двигателя на номинальные обороты, сдвиг фаз в обмотках уменьшится, не будет уже оптимальным, и магнитное поле статора станет эллиптическим, что ухудшит рабочие характеристики двигателя. Крайне важно правильно подобрать пусковую и рабочую емкости, чтобы двигатель работал эффективно.

На рисунке показаны типичные схемы включения конденсаторных двигателей, применяемые на практике. Например рассмотрим двухфазный двигатель с короткозамкнутым ротором, статор которого имеет две обмотки для питания в двух фазах А и В.

Типичные схемы включения конденсаторных двигателей

В цепь дополнительной фазы статора включен конденсатор С, поэтому токи IA и IВ текут в обеих обмотках статора в двух фазах. Наличием емкости добиваются фазового сдвига токов IA и IВ в 90°.

Векторная диаграмма показывает, что суммарный ток сети образован геометрической суммой токов обеих фаз IA и IВ. Подбором емкости С добиваются такого сочетания с индуктивностями обмоток, чтобы фазовый сдвиг токов получился именно 90°.

Векторная диаграмма конденсаторного двигателя

Ток IA запаздывает относительно приложенного сетевого напряжения UА на угол φА, а ток IВ — на угол φВ относительно напряжения UB, приложенного к зажимам второй обмотки в текущий момент. Угол между напряжением сети и напряжением, приложенным ко второй обмотке составляет 90°. Напряжение на конденсаторе UС образует угол 90° с током IВ.

По диаграмме видно, что полная компенсация фазового сдвига при φ = 0 достигается тогда, когда реактивная мощность потребляемая двигателем из сети равна реактивной мощности конденсатора С. Рядом на рисунке показаны типичные схемы включения трехфазных двигателей с конденсаторами в цепях обмоток статоров.

Промышленностью сегодня выпускаются конденсаторные двигатели на базе двухфазных. Трехфазные легко модифицируются вручную для питания от однофазной сети. Встречаются и мелкосерийные трехфазные модификации, уже оптимизированные при помощи конденсатора под однофазную сеть.

Часто такие решения можно встретить в бытовых приборах, таких как посудомоечные машины и комнатные вентиляторы. Промышленные циркуляционные насосы, воздуходувки и дымососы также часто используют в своей работе конденсаторные двигатели. Если требуется включить трехфазный двигатель в однофазную сеть — применяют фазосдвигающий конденсатор, то есть опять же переделывают двигатель в конденсаторный.

Для приблизительного расчета емкости конденсатора применяют известные формулы, в которые достаточно подставить напряжение питания и рабочий ток двигателя, и легко вычислить необходимую емкость для соединения обмоток звездой или треугольником.

Для нахождения рабочего тока двигателя достаточно прочитать данные на его шильдике (мощность, кпд, косинус фи), и так же подставить в формулу. В качестве пускового конденсатора принято устанавливать конденсатор в два раза большей емкости, чем рабочий.

Однофазный конденсаторный двигатель

К преимуществам конденсаторных двигателей, по сути — асинхронных, относится главным образом одно — возможность включить трехфазный двигатель в однофазную сеть. Из недостатков — необходимость оптимальной емкости под конкретную нагрузку, и недопустимость питания от инверторов с модифицированной синусоидой.

Надеемся, что эта статья была для вас полезной, и теперь вы понимаете, для чего асинхронным двигателям конденсаторы, и как подбирать их емкость.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Из чего обмотка в трехфазовом конденсаторе

  • Работа в компании
  • Закупки
  • Библиотека
  • Охрана труда
  • Рус / Eng
  • О заводе
  • Каталог
    • Установки компенсации реактивной мощности
      • Регулируемые конденсаторные установки КРМ (АУКРМ) — 0,4 кВ
      • Нерегулируемые конденсаторные установки КРМ (УКРМ ) — 0,4 кВ
      • Тиристорные конденсаторные установки КРМТ (АУКРМТ) — 0,4 кВ
      • Комплектующие для конденсаторных установок
      • Серия PSPE1 (однофазные конденсаторы)
      • Серия PSPE3 (трехфазные конденсаторы)
      • Конденсаторы серии AFC3
      • Конденсаторы серии FA2
      • Конденсаторы серии FA3
      • Конденсаторы серии FB3
      • Конденсаторы серии FO1
      • Конденсаторы серии PO1
      • Конденсаторы серии SPC
      • Серия K78-99 (пластиковый корпус)
      • Серия К78-99 A (алюминиевый корпус)
      • Серия К78-99 AP2 (взрывозащищенный)
      • Серия К78-98 (пластиковый корпус)
      • Серия К78-98 A (алюминиевый корпус)
      • Серия К78-98 АР2 (взрывозащищенный)

      rezident

      • офис: с 9 00 до 17 30
      • склад: с 9 00 до 17 00

      +7 (925) 517-34-27 (отдел продаж);

      +7 (495) 744-31-71 (отдел продаж);
      +7 (926) 673-77-58 (отдел персонала).

      • Охрана труда
      • Установки компенсации реактивной мощности
        • Регулируемые конденсаторные установки КРМ (АУКРМ) — 0,4 кВ
        • Нерегулируемые конденсаторные установки КРМ (УКРМ ) — 0,4 кВ
        • Тиристорные конденсаторные установки КРМТ (АУКРМТ) — 0,4 кВ
        • Комплектующие для конденсаторных установок
        • Серия PSPE1 (однофазные конденсаторы)
        • Серия PSPE3 (трехфазные конденсаторы)
        • Конденсаторы серии AFC3
        • Конденсаторы серии FA2
        • Конденсаторы серии FA3
        • Конденсаторы серии FB3
        • Конденсаторы серии FO1
        • Конденсаторы серии PO1
        • Конденсаторы серии SPC
        • Серия K78-99 (пластиковый корпус)
        • Серия К78-99 A (алюминиевый корпус)
        • Серия К78-99 AP2 (взрывозащищенный)
        • Серия К78-98 (пластиковый корпус)
        • Серия К78-98 A (алюминиевый корпус)
        • Серия К78-98 АР2 (взрывозащищенный)

        Сертификаты
        ЗАДАТЬ ВОПРОС
        ЗАДАЙТЕ ВОПРОС ONLINE
        на Ваши вопросы ответят профильные специалисты
        ЗАДАТЬ ВОПРОС
        Спасибо за интерес, проявленный к нашей Компании

        • Словарь терминов
        • Двигатели конденсаторные

        Двигатели конденсаторные
        Отправить другу

        Двигатели конденсаторные — Разновидность асинхронных двигателей, в цепь одной или нескольких обмоток статора включены конденсаторы для создания сдвига фазы тока в этих обмотках.

        Чаще всего применяются для использования в однофазных цепях и имеют две обмотки, обычно с разным количеством витков. Оси обмоток в пространстве сдвинуты на 90°. Одна из обмоток подключена непосредственно к питающей цепи, а вторая подключена к ней же через конденсатор. Для обеспечения максимального вращающего момента величина емкости конденсатора выбирается такой, чтобы сдвиг фазы тока между обмотками был близок к 90° , и модули магнитной индукции обмоток были примерно одинаковыми. В этом случае магнитные поля, создаваемые обмотками, сдвинуты по фазе, а суммарное поле вращается по кругу, увлекая за собой ротор.

        Следует, однако, заметить, что сила и фаза тока в обмотке, подключенной через конденсатор, зависят не только от емкости конденсатора, но и от эффективного импеданса обмотки. Последний, в свою очередь, зависит от скорости вращения ротора. В момент пуска двигателя импеданс обмотки определяется только сопротивлением и индуктивностью обмотки и относительно мал. Поэтому для создания оптимальных условий для пуска двигателя требуется конденсатор достаточно большой емкости. После того, как ротор двигателя раскрутится, магнитное поле ротора создает в обмотках статора электродвижущую силу, направленную против напряжения, прикладываемого к обмоткам снаружи. Это приводит к увеличению эффективного сопротивления обмоток, и существенному снижению оптимального значения емкости конденсатора. Таким образом, круговое поле в двигателе имеет место лишь при определенном значении емкости конденсатора, скорости вращения, напряжения и чисел витков обмоток. При изменении какой-либо из этих величин (например, скорости вращения) поле становится эллиптическим, а характеристики двигателя ухудшаются.

        В зависимости от назначения двигателя применяются разные схемы включения емкостей в цепь обмотки статора. Если необходимо обеспечить большой стартовый момент вращения ротора, то выбирают конденсатор большой емкости, обеспечивающий оптимальный по величине и фазе ток в момент пуска двигателя. Если пусковой момент не критичен и может быть достаточно малым, но необходимо обеспечить оптимальные условия при номинальной скорости вращения, то емкость рассчитывается из условия номинальной скорости вращения. Часто на время пуска параллельно с рабочим конденсатором относительно малой емкости включается пусковой конденсатор, емкость которого значительно больше, в результате чего поле при пуске приближается к круговому. После пуска эта емкость отключается, и двигатель работает лишь с рабочим конденсатором (см. схему). Иногда используется и большее число переключаемых конденсаторов.

        Если после окончания пуска не отключить пусковую емкость, то сдвиг фаз токов в обмотках из-за повышения импедансов обмоток после раскрутки двигателя сильно уменьшится, магнитное поле станет эллиптическим, и рабочие характеристики двигателя значительно ухудшаются.

        Важно: Правильный подбор конденсаторов весьма важен для обеспечения работы конденсаторного двигателя. Ассортимент специальных конденсаторов, выпускаемых заводом Нюкон позволяет выбрать наиболее подходящие и получить наилучшие результаты для любых возможных вариантов таких устройств.

        Если Вас интересует цена на конденсаторы для двигателей (моторные конденсаторы) или сроки их производства и условия поставок, позвоните по указанному ниже телефону или заполните предлагаемую форму

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *