За счет чего солнце излучает энергию
Перейти к содержимому

За счет чего солнце излучает энергию

  • автор:

Что такое термоядерный синтез и почему его так сложно запустить?

Пятьсот лет назад ацтеки, проживавшие на территории современной Мексики, верили, что солнечная энергия иссякнет без крови от человеческих жертвоприношений. Сегодня мы знаем, что Солнце, а также все другие звезды вырабатывают энергию за счет реакции, называемой термоядерным синтезом. Если термоядерный синтез удастся воспроизвести на Земле, то будет получено практически безграничное количество чистой, безопасной и доступной энергии для удовлетворения мирового спроса.

Как именно происходит термоядерный синтез? Вкратце термоядерный синтез — это процесс, в ходе которого два легких атомных ядра объединяются в одно более тяжелое ядро с высвобождением огромного количества энергии. Термоядерные реакции происходят в материи, находящейся в состоянии плазмы — горячего заряженного газа, состоящего из положительных ионов и свободно движущихся электронов и обладающего уникальными свойствами, отличными от твердых тел, жидкостей и газов.

При слиянии на Солнце ядра сталкиваются друг с другом при очень высокой температуре, превышающей десять миллионов градусов Цельсия, что необходимо для преодоления взаимного электрического отталкивания. Как только ядра преодолевают это отталкивание и оказываются на очень близком расстоянии друг от друга, ядерная сила притяжения между ними перевешивает электрическое отталкивание и позволяет им слиться. Чтобы это произошло, ядра должны находиться в замкнутом пространстве, что увеличивает вероятность их столкновения. На Солнце условия для термоядерного синтеза создаются в результате колоссального давления, создаваемого его огромной гравитацией.

Количество энергии, выделяемой при термоядерном синтезе, очень велико — в четыре раза больше, чем при реакциях деления ядер. На термоядерных реакциях может быть основана работа будущих термоядерных энергетических реакторов. Согласно планам в термоядерных реакторах первого поколения будет использоваться смесь тяжелых изотопов водорода — дейтерия и трития. В теории с использованием всего нескольких граммов этих реагентов можно произвести один тераджоуль энергии, что приблизительно равно энергии, необходимой одному человеку в развитой стране в течение шестидесяти лет.

Путь к звездам

На Солнце термоядерный синтез естественным образом вызывается огромной гравитационной силой, однако без этой силы для протекания реакции необходима более высокая температура. На Земле для слияния дейтерия и трития нужна температура, превышающая 100 миллионов градусов Цельсия, и сильное давление, а также достаточно замкнутое пространство для удержания плазмы и обеспечения протекания термоядерной реакции в течение определенного времени для достижения чистого прироста энергии, когда количество произведенной термоядерной энергии больше, чем количество энергии, использованной для нагрева плазмы.

Хотя в настоящее время в ходе экспериментов регулярно достигаются условия, очень близкие к тем, которые требуются в термоядерном реакторе, необходимо улучшить показатели удержания и стабильности плазмы. Ученые и инженеры со всего мира продолжают испытывать новые материалы и разрабатывать новые технологии для получения термоядерной энергии.

Исследования в области термоядерного синтеза и физики плазмы проводятся более чем в 50 странах, и в ходе многих экспериментов были успешно проведены термоядерные реакции, хотя чистый прирост энергии так и не был достигнут. Количество времени, необходимого для воссоздания процесса, происходящего на звездах, будет зависеть от мобилизации ресурсов в рамках глобального партнерства и сотрудничества.

История сотрудничества

С тех пор как в 1930‑е годы стало понятно, как работает термоядерный синтез, ученые не оставляют попыток воспроизвести и использовать его. Вначале эти попытки держались в секрете. Однако вскоре стало ясно, что такие сложные и дорогостоящие исследования можно проводить только на основе сотрудничества. На второй Международной конференции Организации Объединенных Наций по использованию атомной энергии в мирных целях, состоявшейся в 1958 году в Женеве, Швейцария, ученые поведали миру об исследованиях в области термоядерного синтеза.

МАГАТЭ всегда было в авангарде международных термоядерных исследований. В 1960 году МАГАТЭ начало издавать журнал «Ядерный синтез» в целях обмена информацией о соответствующих достижениях, и сегодня он считается ведущим периодическим изданием в этой области. Первая международная Конференция МАГАТЭ по энергии термоядерного синтеза состоялась в 1961 году, и с 1974 года МАГАТЭ проводит такую конференцию каждые два года, чтобы стимулировать обсуждение событий и достижений в этой сфере.

В 2007 году по итогам длившихся два десятилетия переговоров относительно конструкции и местонахождения крупнейшей в мире международной термоядерной установки во Франции началось строительство ИТЭР, чтобы продемонстрировать научную и техническую возможность выработки термоядерной энергии. Депозитарием Соглашения ИТЭР является Генеральный директор МАГАТЭ. После ИТЭР планируется создание демонстрационных термоядерных энергетических установок (DEMO), призванных показать, что управляемый термоядерный синтез может генерировать нетто-электроэнергию. МАГАТЭ проводит семинары-практикумы по DEMO для облегчения сотрудничества в определении и координации регулярной деятельности по программе DEMO во всем мире.

Ожидается, что термоядерный синтез сможет удовлетворять энергетические потребности человечества в течение миллионов лет. Термоядерное топливо имеется в избытке, и его легко получить: дейтерий можно с небольшими затратами добывать из морской воды, а тритий можно производить из широко распространенного в природе лития. Термоядерные реакторы не будут вырабатывать высокоактивные долгоживущие ядерные отходы, а аварии с расплавлением активной зоны термоядерного реактора практически невозможны.

Важно отметить, что в результате термоядерного синтеза в атмосферу не выбрасывается углекислый газ и другие парниковые газы. Вместе с АЭС, работа которых основана на принципе деления ядер и которые также являются низкоуглеродным источником энергии, в будущем термоядерные электростанции смогут внести вклад в смягчение последствий изменения климата.

За счет чего солнце излучает энергию

После беглого знакомства с главными способами астрофизических исследований обратимся теперь к результатам изучения звезд и звездных систем. В этой главе нас будут интересовать главным образом спокойные стадии жизни объектов, обычные будничные биографии звезд и галактик. «Мятежными» звездами и бурными стадиями в их жизни займемся позже.

Первым светилом, о котором пойдет речь, будет, естественно, Солнце. Когда были измерены расстояния до звезд и для их исследования был применен спектральный анализ, то стало ясно, что звезды — гигантские горячие шары из газа, а наше Солнце — одна из многих звезд. Но Солнце — единственная звезда, у которой мы видим поверхность. Остальные звезды вследствие удаленности видны как точки, и только у ближайших из них специальными приборами можно измерить угловые размеры.

Излучающая поверхность Солнца, называемая фотосферой,- сравнительно небольшой по толщине слой газа, излучение из которого почти свободно выходит в космическое пространство. Фотосфера создает непрерывный спектр Солнца. Измерение энергии, излучаемой Солнцем в непрерывном спектре, показывает, что она соответствует температуре около 6000 К. Температура верхнего слоя фотосферы, который называется обращающим слоем, на тысячу кельвинов ниже. В нем идут два процесса, создающие линии поглощения солнечного спектра. С одним мы знакомы — это поглощение более холодным газом в соответствии с законом Кирхгофа. Но основная доля интенсивности линий поглощения связана с процессом рассеяния квантов. В отличие от процесса поглощения атом в этом случае только переизлучает захваченный квант в каком-нибудь направлении. Таким образом, из-за рассеяния мы недополучим квант и видим ослабление спектра — линию поглощения.

Наблюдения солнечных затмений позволили обнаружить еще две внешние оболочки солнечной атмосферы, прозрачные для излучения фотосферы. Это — хромосфера, спектр которой состоит из ярких линий, и солнечная корона. Особенностями этих оболочек Солнца являются высокая разреженность и высокие температуры, значительно превышающие температуру фотосферы: у хромосферы температура около 10000 К, а у короны она доходит до 2 млн. кельвинов. Сходную структуру внешних слоев имеют и другие звезды.

Солнце излучает огромную энергию. На квадратный сантиметр поверхности Земли, перпендикулярной к лучам Солнца, мы получаем (если не учитывать поглощение в атмосфере) две калории в минуту. Полное излучение Солнца (его светимость) составляет 3.8*10 33 эргов в секунду. Откуда же оно черпает такую энергию? Можно подсчитать, что энергии сжатия его газа под действием силы тяготения к центру хватило бы всего на 50 млн. лет. Это немного меньше длительности последней геологической эры (кайнозойской). Возраст же Земли составляет около 4.5 млрд. лет, а Солнца, как мы далее увидим, и того более. Следовательно, сжатие Солнца не может служить единственным и постоянным источником энергии.

Источник мощного излучения Солнца таится в структуре его внутренних слоев, которые недоступны прямым наблюдениям. Однако представление о них дают теоретические исследования. Газовый шар с массой Солнца г находится под воздействием двух сил: силы тяготения к своему центру у и силы газового давления, стремящейся расширить шар. Силы эти уравновешены. Давление внутри Солнца растет в глубину и в центре доходит до 200 млрд. ат при температуре около 13 млн. градусов и плотности около 100 г/см.

Высокая температура в центре Солнца создает благоприятные условия для протекания термоядерных реакций. Так называются реакции между ядрами атомов, при которых происходит слияние двух легких ядер и образование более тяжелого ядра атома другого химического элемента. При этом слиянии выделяется большое количество энергии. При температурах 10-14 млн. кельвинов может идти реакция слияния протонов, т. е. ядер водорода. Окончательным продуктом ее являются ядра атомов гелия.

В ходе последовательных превращений водорода сначала в тяжелый водород, а затем в гелий выделяется 200 млрд. калорий на каждый грамм водорода. Это в десять раз больше того, что выделяет один грамм урана-235 в известной реакции деления его атомных ядер. Другой важной особенностью термоядерных реакций этого типа является медленный характер некоторых из них, что обеспечивает спокойный равномерный темп выделения энергии в центре звезды. С ростом температуры увеличивается скорость термоядерных реакций и возможность образования более сложных ядер.

При термоядерных реакциях энергия выделяется главным образом в виде очень жесткого рентгеновского излучения и рождающихся в ходе реакций элементарных частиц, из которых важнейшими для нас являются нейтрино. Излучение поглощается недрами звезды, а вот нейтрино, свободно проходя через них, уносят с собой около 10% выделившейся энергии.

Однако попытки измерить количество нейтрино, излучаемых Солнцем, принесли неожиданности. Экспериментальным установкам (нейтринным телескопам) пока доступны только самые энергичные нейтрино. И лаже, эти сильные нейтрино удавалось обнаружить не всегда. Возможно, температура в центре Солнца ниже 14 млн. кельвинов? Пока еще трудно установить причину экспериментальных неудач. Может быть, регистрируемые нейтрино составляют еще меньшую долю в общем числе нейтрино, излучаемых Солнцем, чем мы сейчас предполагаем, а может быть, наши представления о структуре центральной области Солнца упрощены.

Современное Солнце состоит на три четверти из водорода, остальное приходится главным образом на гелий. Известная часть гелия образовалась за время существования Солнца в ходе термоядерной реакции. По количеству гелия можно оценить максимальный возраст Солнца. Расчеты дали около 5 млрд. лет. Пройдет еще не меньше времени, прежде чем Солнце исчерпает водородное горючее и перейдет на другой вид топлива — гелий.

Огромная энергия, вырабатываемая в недрах Солнца, должна равномерно выводиться наружу. Как это происходит? В центральных областях энергия находится в двух формах: в виде кинетической энергии движения частиц (тепловая форма) и в виде излучения (световая форма). Соответственно этому передача энергии в наружные слои возможна двумя путями: конвекцией и излучением. При конвекции нагретый газ расширяется, становится легче и всплывает в более высокие и менее плотные слои. При излучении же атом испускает квант (порцию энергии), который поглощается одним из встречных атомов и снова переизлучается в любом направлении. При большой плотности в центральных частях звезды таких поглощений и переизлучений происходит очень много, и квант, родившийся в центре звезды, долго странствует по ее недрам, распадается на кванты меньшей энергии, которые спустя примерно 60 млн. лет просачиваются, наконец, в фотосферу и уходят прочь.

В небольшом ядре радиусом около 35 тыс. км, находящемся в центре Солнца, господствует конвекция. Вне его энергия отводится уже излучением. По мере перехода к наружным слоям, где давление меньше, температура понижается и на глубине от 200000 до 300 км падает с миллиона до нескольких сотен тысяч кельвинов. В этой зоне, называемой зоной ионизации, происходит важный физический процесс: если в глубоких слоях Солнца атомы водорода ионизованы, то здесь они могут стать нейтральными, т. е. приобрести недостающий электрон. Атом водорода то ионизуется, поглощая кванты ультрафиолетового излучения, то становится нейтральным, отдавая энергию. В связи с этим уменьшается роль передачи энергии излучением и возрастает роль конвекции. Зону ионизации энергия проходит всего за 20 суток и вступает в следующую зону, где преобладают уже нейтральные атомы водорода. Ее верхняя граница и есть фотосфера Солнца. В этом слое толщиной около 300 км роль излучения в передаче энергии наружу снова становится главной. Большинство квантов, переизлучившись в фотосфере несколько раз, покидает Солнце. Образованный ими спектр Солнца мы и наблюдаем.

Физика звезд

Кроме Солнца и сходных с ним звезд, существуют звезды более горячие и более холодные, принадлежащие, как и оно, к главной последовательности, а также гиганты , сверхгиганты и белые карлики . Их характеристики показаны на рис. 4. Изучение строения звезд и их изменений со временем (эволюции) показало, что есть две важнейшие характеристики звезды, которые определяют ее судьбу: возраст и срок жизни, температуру и размеры, светимость и даже поколение, к которому она принадлежит. Первая характеристика — масса звезды, от нее зависит большинство физических свойств звезды, другая — ее химический состав, т. е. процентное содержание водорода, гелия и более тяжелых элементов; оно указывает на возраст и поколение звезды и уточняет остальные свойства.

Пока удалось измерить массы только у тех двух сотен двойных звезд, у которых прослежены орбиты спутников относительно главной звезды и точно измерены длины больших полуосей этих орбит. Интересно, что по массам звезды различаются не так сильно, как по светимостям и радиусам. Наиболее массивные звезды главной последовательности лишь в 50-75 раз превосходят по массе Солнце, зато по светимости они больше его в десятки тысяч, а по радиусам — в сотни раз. Слабейшие карлики по светимости слабее Солнца в тысячи раз, по размерам — в сотни раз меньше Солнца, а по массам составляют всего десятую долю массы Солнца. И все таки 750-кратного различия звезд по массам оказывается достаточно, чтобы характеры и судьбы их были удивительно различны.

Уже в звездах главной последовательности различие в массах приводит к существенному различию в структуре звезд и их размерах. Решающее влияние массы связано с условиями механического и теплового равновесия звезды. Чем больше масса, тем большее газовое давление нужно в ее центральной области для уравновешивания тяготения газовых масс к центру и тем выше там температура и больше вырабатывается термоядерной энергии за секунду. Но звезда находится еще и в тепловом равновесии: она должна отдавать во внешнее пространство столько энергии, сколько ее выработалось в центре за равное время. Это тепловое равновесие, как мы уже видели в случае Солнца, поддерживается комбинацией двух способов передачи энергии: излучением и конвекцией.

Чтобы поддерживалась постоянная энергетическая отдача или, другими словами, светимость, в звезде должны отрегулироваться размеры излучательной и конвекционной зон, должен установиться такой радиус, чтобы возникло и механическое, и тепловое равновесие. Если звезда излучает тепла больше, чем вырабатывает, ее радиус уменьшается, а это повышает давление в центре и увеличивает отдачу термоядерной энергии, пока она не устанавливается на уровне, обеспечивающем оба равновесия.

В случае самых массивных звезд классов О и В условия равновесия приводят даже к взаимной перестановке конвективной и излучательной зон: в центре образуется конвективная зона, окруженная протяженной излучательной, переходящей затем в фотосферу (поверхностная температура таких звезд высока, и зоны, где атомы водорода становятся нейтральными, у них нет).

Заметим, что из необходимости соблюдения в звезде как механического, так и теплового равновесия вытекает взаимосвязь масс и светимостей звезд главной последовательности: светимость пропорциональна массе звезды в третьей степени. Такая зависимость сначала была предсказана, а затем и обнаружена по измеренным массам и светимостям звезд.

Белыми карликами были названы звезды, у которых при массах, обычных для большинства звезд (т. е. звезд главной последовательности), радиусы чрезвычайно малы и поэтому чудовищно велики плотности звездного вещества. Вследствие этого расстояния между атомами газа белых карликов в несколько десятков раз меньше, чем в жидких или твердых веществах! Такой необычный газ называется вырожденным газом. Он обладает свойствами, отличающимися от свойств обычного газа. В частности, давление такого газа мало зависит от температуры, но зато сильно зависит от плотности. Вследствие этого для белого карлика тепловое равновесие не играет такой важной роли, как в обычных звездах, но сохранение механического газового равновесия между силой тяготения и давлением имеет важное значение.

У белых карликов нет взаимосвязи между массой и светимостью, которая характерна для звезд главной последовательности, но зато есть соотношение между массой и радиусом: чем больше масса, тем меньше радиус белого карлика. Расчеты показывают, что для масс порядка 1.4 радиус белого карлика уменьшается до нуля. Следовательно, столь массивные белые карлики уже не могут существовать, так как давление вырожденного газа в них не в состоянии уравновесить тяготение массы звезды.

По внутреннему устройству белые карлики просты. У них большое ядро. из вырожденного газа с мало изменяющейся в глубину температурой. Это «изотермическое» ядро снаружи окружено тонким слоем обычного звездного газа. На границе этих двух зон могут быть условия для термоядерных реакций, если в карлике не выгорел весь водород, а температура для этих реакций достаточно высока. Но существуют белые карлики (например, звезда ван Маанена), у которых температура изотермического ядра ниже 6 млн. кельвинов и термоядерные реакции в них не идут. В этом случае белый карлик может долго светиться за счет охлаждения: запас тепловой энергии в нем еще огромен, обычный газовый слой плохо проводит тепло излучением, поэтому потери энергии на свечение сравнительно невелики.

А как устроены красные гиганты? Строение их весьма сложно. По современным представлениям в центре такой звезды находится массивное изотермическое ядро из вырожденного газа, т. е. по существу горячий белый карлик с температурой в несколько десятков миллионов кельвинов. Но в отличие от белого карлика изотермическое ядро гиганта окутано не тонким слоем обычного газа, а обширной разреженной газовой оболочкой. Она имеет несколько зон. Ядро и небольшая внутренняя зона, прилегающая к ядру, имеют температуру, достаточную для протекания в них не только реакций превращения водорода в гелий, но и других реакций ядерного горения вплоть до образования ядер атомов железа. Следующая зона излучательного переноса энергии снижает температуру слоев до 1 млн. кельвинов. За ее пределами располагается разреженная конвективная оболочка — «шуба» красного гиганта, на которую приходится около 90% радиуса звезды, и на ее поверхности температура снижается до нескольких тысяч кельвинов. Этой низкой температуре фотосферы гигант и обязан своим красным цветом.

Рождение и эволюция звезд

О самой начальной стадии звезд мы знаем очень мало. Существуют лишь гипотезы, использующие комплекс сведений о звездах, межзвездной среде и законы физики. Самая разработанная и, по-видимому, близкая к истине — гипотеза образования звезд, из межзвездной среды.

Согласно этой гипотезе, самые старые звезды (звезды «первого поколения») — ровесники нашей Галактики — произошли из сгустков ее газового облака, состоявшего почти целиком из водорода и некоторой примеси гелия. Звезды же последующих поколений, более молодые, формировались из межзвездного газа и пыли, содержащих уже и другие элементы, родившиеся в ходе ядерных реакций и взрывов в звездах, и выброшенных ими в межзвездную среду. Очень вероятно, что и в настоящее время звезды продолжают возникать в холодных областях плотных межзвездных газовых облаков. Возможно, что некоторые- звезды рождаются в плотных сгустках газа и пыли, называемых глобулами, которые наблюдаются на фоне светлых газовых туманностей как круглые темные зерна. Размеры глобул составляют от 0.06 до 8 пс, а массы — от 0.002 до 13

Ранний период развития звезд в общих чертах сходен для всех звезд. Под действием тяготения к центру газового сгустка («протозвезды») потенциальная энергия газовых частиц его внутренних слоев переходит в кинетическую, и протозвезда начинает: светиться за счет энергии гравитационного сжатия. Естественно, что чем массивнее звезда, тем она быстрее сжимается под действием собственного тяготения. Длительность этой стадии выражается формулой
tc = 50 /L млн. лет,

где и L — масса звезды и ее светимость и долях солнечной массы и светимости. Интересно, что у самых малых звезд с массами менее 0.3 длительность стадии сжатия превосходит возраст нашей Галактики, т. е. они еще не закончили своего сжатия, хотя и начали его в числе первых.

Сжатие создает условия для возникновения в центральной части молодой звезды ядерных реакций. Выделяемая в результате «горения» водорода энергия повышает газовое давление в звезде, и сжатие останавливается. Таким образом, гравитационное сжатие, затопив термоядерную печь звезды, сменяется «ядерным веком» — реакциями горения водорода. Скорости течения ядерных реакций очень сильно зависят от температуры, поэтому в массивной звезде, поскольку в ней сжатие и температура в центре выше, водород горит быстрее. На диаграмме Герцшпрунга — Рессела это выражается тем, что звезды с различными массами в момент начала, в них термоядерных реакций имеют различные абсолютные величины и спектральные классы. Вместе все они образуют знакомую нам главную последовательность. Таким образом, стадия главной последовательности — это период жизни звезды за счет горения в ее недрах водородного горючего. «Водородный век» имеет в 200 раз большую длительность, чем стадия протозвезды.

В ходе переработки водорода в гелий в центре звезды накапливаются ядро из гелия, а также некоторое количество азота с примесью углерода и кислорода. Зона ядерной реакции перемещается на периферию ядра. Чтобы температура в этой области была достаточна для поддержания реакции, на время снова подключаются силы гравитационного сжатия. Внутренние слои сжимаются, а наружная оболочка расширяется. Звезда превращается в красный гигант, совершая скачок с главной последовательности вверх — вправо.

Как только истощается водород на периферии звездного ядра, звезда снова начинает сжиматься, пока в ее центре не будет достигнута температура в сотни миллионов кельвинов. При такой температуре начинает идти реакция превращения гелия в углерод и изотопы кислорода, неона и магния. «Гелиевый век» звезды также сравнительно длителен, но примерно в десять раз короче основного, водородного.

Самые массивные звезды — сверхгиганты — имеют еще и последующие стадии: после израсходования гелия ядро звезды сжимается и повышает центральную температуру до миллиарда кельвинов. Тогда горючим для звезды становятся углерод и другие элементы, и в ходе реакций теперь начинают образовываться кремний, сера, аргон и кальций. И еще раз наступает момент, когда в звезде включается механизм сжатия: это когда сгорит углерод и нужно будет поднять температуру в центре звезды до трех миллиардов градусов. В этой стадии горят уже кремний и получившиеся вместе с ним элементы, а образуются элементы группы железа. На этом ядерная эволюция в звезде завершается: ядерные реакции образования более тяжелых, чем железо, элементов энергию уже не выделяют, а поглощают. Наступает финальная стадия звезды, когда сжатие может продолжаться неограниченно. О финальной стадии мы поговорим в конце книги. Длительность углеродной и других стадий коротка по сравнению с водородной и гелиевой. А у обычных звезд, не сверхгигантов, таких стадий даже не бывает, потому что не хватает энергии сжатия для столь высоких температур, какие нужны для «загорания» углерода и более тяжелых элементов.

Обратим внимание на решающую роль величины массы звезды в ее эволюции. Но масса звезды не сохраняется постоянной. Когда массивная звезда переживает «водородный век» и имеет высокую температуру, по силовым линиям с ее поверхности начинает дуть звездный ветер — это тепловая энергия внутренних слоев звезды превращается в механическую энергию корональной оболочки, непрерывно расширяя последнюю.

Во все стороны от звезды оттекает ионизованный газ. Раздутая звездным ветром газовая оболочка может принять гигантские размеры, и в этом случае мы видим «планетарную туманность» — газовый круг, в центре которого находится горячий объект — ядро туманности.

Как видим, массивная звезда таким путем может выбросить значительную часть своего вещества в окружающее пространство. И не всегда это происходит спокойно.

Наша Галактика

Мы уже говорили, что наше Солнце входит в состав большого облака звезд — в Млечный Путь, или Галактику. Поскольку расстояния между соседними звездами, не считая двойных, огромны, в среднем около полутора парсеков, то мы, находясь внутри этой звездной системы, видим на небе невооруженным глазом несколько тысяч звезд, которые вследствие перспективы выглядят хаотически разбросанными по небу. Но более слабые и далекие звезды, доступные только телескопам, распределяются по небу не так беспорядочно: чем ближе участок неба к Млечному Пути, тем он богаче звездами. Млечный Путь как бы рассекает небо на две полусферы, и это сечение представляет собой (грубо приближенно) плоскость симметрии нашей звездной системы (она называется галактической плоскостью), вблизи которой находится и наше Солнце.

Большинство звезд, входящих в Галактику (в том числе и двойные), являются ее самостоятельными членами, но некоторая часть образует коллективы от нескольких десятков до десятков тысяч членов. Эти звездные группы называются звездными скоплениями.

По внешнему виду наблюдаются две разновидности скоплений: рассеянные и шаровые. У рассеянных скоплений видимые очертания нечеткие, они выделяются на фоне остальных звезд Галактики сгущениями самых ярких звезд, а центральная зона между яркими звездами, заселенная карликами, не всегда заметна. У шаровых же скоплений совсем нет ярких горячих голубых звезд, и самые яркие в них красные гиганты. Звезды в шаровых скоплениях расположены густо, и число их возрастает к центру скопления. Разница между рассеянными и шаровыми звездными скоплениями заключается также и в их возрасте.

Теория звездной эволюции показывает, что рассеянные скопления намного моложе шаровых. Около тысячи известных теперь рассеянных скоплений видны на небе в Млечном Пути или вблизи него, а их пространственное размещение в теле Галактики — тонкий слой около галактической плоскости — очерчивает дискообразную форму нашей звездной системы. Шаровые же скопления — почти ровесники Галактики. Они видны на небе не только вблизи Млечного Пути, но и в далеких от него районах неба. Их найдено уже 130. Размещаются они в пространстве сфе

Солнце излучает энергию за счёт 1) падения на поверхность межзвёздной пыли и метеорных частиц 2) химических реакций

Пожалуйста, войдите или зарегистрируйтесь для публикации ответа на этот вопрос.

решение вопроса

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

  • Все категории
  • экономические 43,679
  • гуманитарные 33,657
  • юридические 17,917
  • школьный раздел 612,708
  • разное 16,911

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

  • Обратная связь
  • Правила сайта

Состав и строение Солнца. Астрономия 10 — 11 классы

Нажмите, чтобы узнать подробности

Учебник: Астрономия . Базовый уровень. 11 класс Воронцова – Вельяминова Б.А. и др.

Тема: Состав и строение Солнца

Тип контроля: Текущий, тематический.

Форма: Проверочная работа.

Время выполнения: в пределах 20 минут

Цель: Оценить уровень усвоения материала и предметных компетенций по теме «Строение и состав Солнца»

Содержание контрольно измерительных заданий.

КИМ составлен в 1 варианте. Каждому учащемуся предоставляется распечатка заданий.

В проверочной работе содержится 10 заданий.

Задание 3 с развернутым ответом, оценивается в 1 балл.

Задание 2,6,8 с кратким ответом, оценивается в 1 балл.

Задние 1,4,5,7,8,10 с выбором ответов; здание 1,5-7,10 оценивается в 1 балл.

В заданиях 4 и 8 требуется привести краткие ответы в виде выбора цифр, представляет собой задание на установление соответствия. Если задание выполнено без ошибок, начисляется 2 балла; если допущена одна ошибка – 1 балл; если допущены две ошибки и более – 0 баллов.

Распределение заданий КИМ по уровню сложности

КО – задание с кратким ответом

ВО – задание с выбором ответа

РО – задание с развернутым ответом

Тип задания

Что проверяется

Элемент содержания (*)

Предметные результаты (*)

(*) – ЗНАЧЕНИЕ КОДОВ ПРИВЕДЕНЫ ниже в КОДИФИКАТОРЕ

Система оценивания выполнения отбельных заданий и работы в целом.

Кодификатор

элементов содержания и требований к уровню подготовки обучающихся

  1. Перечень элементов предметного содержания
Код Описания элементов предметного содержания
1.1 История изучения и основные характеристики Солнца. Современные методы изучения Солнца и солнечной активности.
1.2 Энергия и температура Солнца.
1.3 Химический состав Солнца.
1.4 Внутреннее строение Солнца.
1.5 Внешнее строение Солнца и её атмосферы.

2. Перечень требований к уровню подготовки обучающихся.

Код Описание требований к уровню подготовки обучающихся
2.1. Объяснить физические и химические характеристики солнца.
2.2. Объяснить физическую сущность источников энергии Солнца. Описать процессы термоядерных реакций протон — протонного цикла.
2.3. Объяснять процессы переноса энергии в нутрии Солнца
2.4. Описывать строение солнечной атмосферы; пояснять грануляцию на поверхности Солнца; характеризировать свойства солнечной короны.
2.5. Решать задачи различного типа сложности.
2.6. Умение анализировать общие данные, таблицы и рисунки, делать выводы.

Контрольно – измерительные задания. Задание 1 Вопрос: За счёт чего Солнце излучает энергию?
Укажите истинность или ложность вариантов ответа: __ За счёт медленного гравитационного сжатия. __ За счёт горения огненного океана, которым окружено Солнце. __ За счёт термоядерных реакций протон-протонного цикла. __ За счёт термоядерных реакций углеродного цикла.
Задание 2 Вопрос: Объект, на который приходится 99,87 % массы всей Солнечной системы.
Запишите ответ: __________________________________________
Задание 3 Вопрос: Определите температуру фотосферы Солнца, если среднее расстояние от Солнца до Земли равно 149,6 млн км, а светимость Солнца составляет 3,8 · 10 26 Вт. Ответ округлите до целого числа.
Запишите число: Т, К ___________________________

Задание 4 Вопрос: Укажите преобладающие на Солнце химические элементы. Изображение:
Укажите истинность или ложность вариантов ответа: __ Железо __ Гелий __ Натрий __ Водород __ Углерод
Задание 5 Вопрос: Ближайшая к Земле звезда. Выберите несколько из 4 вариантов ответа: 1) Бетельгейзе 2) Альдебаран 3) Солнце 4) Проксима Центавра
Задание 6 Вопрос: Во сколько тысяч раз масса Солнца превышает массу Земли? Запишите число: ___________________________
Задание 7 Вопрос: Гидростатическое равновесие — это Выберите один из 4 вариантов ответа: 1) состояние жидкости, при котором она находится в спокойном состоянии. 2) равновесие в звезде между силой тяготения, направленной внутрь, и силами газового и лучистого давления. 3) среди ответов нет правильного. 4) равновесие в звезде между силой тяготения, направленной наружу, и силами газового и лучистого давления, направленными внутрь.
Задание 8 Вопрос: Сопоставьте. Изображение: Укажите соответствие для всех 3 вариантов ответа: 1) Солнечное ядро 2) Зона лучистого переноса 3) Зона теплового переноса 4) Конвективная зона 5) Зона теплопроводности
__ Область Солнца, в которой происходит перенос энергии с помощью конвекции. __ Центральная часть Солнца с радиусом примерно 150-175 тыс. км (т. е. 20-25 % от радиуса Солнца), в которой идут термоядерные реакции __ Область Солнца, в которой происходит перенос энергии с помощью излучения и поглощения фотонов.
Задание 9 Вопрос: Как называется видимый слой солнечной атмосферы? Изображение:
Запишите ответ: __________________________________________
Задание 10 Вопрос: Полное количество энергии, излучаемое Солнцем по всем направлениям за единицу времени.
Выберите один из 4 вариантов ответа: 1) Светимость 2) Блеск 3) Солнечная постоянная 4) Мощность излучения

Ответы: 1) Верные ответы: Нет; Нет; Да; Нет; 2) Верный ответ: «солнце». 3) Верный ответ: 5745.; 4) Верные ответы: Нет; Да; Нет; Да; Нет; 5) Верные ответы: 3; 6) Верный ответ: 333.; 7) Верные ответы: 2; 8) Верные ответы: 4; 1; 2; 9) Верный ответ: «фотосфера». 10) Верные ответы: 1.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *