Как рассчитать конденсатор в блоке питания
Перейти к содержимому

Как рассчитать конденсатор в блоке питания

  • автор:

Расчёт блока питания с гасящим конденсатором + онлайн-калькулятор

Представленная и описанная в этой статье схема позволяет изготовить малогабаритный блок питания для низкоточных схем, преобразующий переменное сетевое напряжение в постоянное напряжение заданного уровня.

Принцип действия схемы очень простой — последовательно с выпрямительным мостом (с которого снимается рабочее напряжение на сглаживающий конденсатор и нагрузку) включен конденсатор, на котором гасится избыточное напряжение. Собственно, из-за этого гасящего конденсатора схема и получила своё название. Другое название этого конденсатора — балластный, соответственно, другое название схемы — схема с балластным конденсатором.

Добавлю некоторые пояснения касательно предложенной схемы. Почему в качестве балласта используется именно конденсатор, а не резистор? Потому что резистор, при протекании через него электрического тока, очень сильно нагревается, в то время как конденсатор не греется совсем (за исключением небольшого нагрева, обусловленного омическим сопротивлением обкладок и выводов). Почему же тогда всегда вместо резисторов конденсаторами для гашения «лишнего» напряжения не пользуются? Потому что через конденсатор может протекать только переменный ток, а постоянный — никак.

Так же, как и рассмотренный ранее блок питания с конденсаторным делителем, блок питания с гасящим конденсатором относится к бестрансформаторным и не имеет гальванической развязки с сетью 220В, то есть прикосновение к любой его части запрещено и может вызвать поражение электрическим током. Тем не менее, существует масса вариантов, для которых применение такого блока питания вполне оправдано, например, в малогабаритных корпусированных приборах с микроконтроллерным управлением, когда случайное прикосновение к токоведущим частям исключено, большой ток не нужен, а размер критически важен.

Логическое обоснование расчётов и математический вывод формул, позволяющих связать ток нагрузки с ёмкостью гасящего конденсатора, я убрал под спойлер, чтобы не травмировать психику тех, кто не особо силён в физике и математике, а также чтобы не перегружать лишней информацией тех, кому это просто не интересно.

Осторожно, текст под спойлером перегружен физикой!

Итак, процессы в этой схеме будут достаточно нелинейны, поэтому при рассчётах придётся делать различные упрощения и допущения.

Для начала давайте будем считать, что ёмкость конденсатора C2 достаточна для полного сглаживания пульсаций напряжения после моста, то есть напряжение на конденсаторе C2 = const. Далее попробуем нарисовать пару графиков, — напряжение на входе моста (UM) и ток через конденсатор C1 (IC1), опираясь на график сетевого напряжения UС(t). Будем считать, что сетевое напряжение у нас изменяется по синусоидальному закону и имеет амплитуду Uca (вообще-то рисовать мы будем косинусоиду, нам так будет удобнее, но это по сути одно и то же, только косинусоида сдвинута относительно синусоиды на π/2).

Рассуждаем следующим образом: в каждый момент времени полное напряжение и полный ток в этой цепи можно описать следующими уравнениями:

В момент времени t0 уравнение напряжения примет вид: Uca=UC1+UМ. Поскольку Uca — это максимальное значение сетевого напряжения, то UC1 и UМ также в этот момент должны иметь максимальные значения (здесь в логике есть небольшой провал, максимум суммы — это не всегда сумма максимумов, функции могут быть сдвинуты по фазе, но… в общем, мы потом всё экспериментально проверим).

Максимальное значение UМ равно Uвых, поскольку если бы напряжение на мосту поднималось выше, то и конденсатор C2 заряжался бы до большего напряжения (мост бы открылся и к конденсатору C2 потёк бы зарядный ток, увеличивая напряжение на нём).

Токи через конденсатор и мост в момент t0 равны нулю. Про мост я выше уже написал (если бы через него тек ток, то конденсатор C2 заряжался бы дальше), а через C1 ток не течёт, поскольку ток через конденсатор — это первая производная от напряжения, которая в точках экстремума обращается в ноль (значит когда напряжение на конденсаторе максимально — ток равен нулю).

Далее сетевое напряжение (UC) начинает уменьшаться. При этом напряжение на C1 не меняется (тока-то через мост нет, заряд на C1 не меняется), следовательно вместе с падением UC уменьшается напряжение на входе моста.

В момент, когда сетевое напряжение упадёт до значения Uca-2Uвых (момент времени t1) — напряжение на входе моста достигнет значения -Uвых (находим с помощью формулы 1), диоды моста откроются и в первичной цепи (через мост и конденсатор C1) потечёт ток. При этом напряжение на входе моста перестанет меняться (помните, мы договорились, что ёмкость C2 достаточно большая для того, чтобы полностью сгладить пульсации).

Обратите внимание, что напряжение на входе моста в этот момент равно -Uм, так что ток потечёт в обратную сторону от того направления, в котором он тёк до момента времени t0. Этот ток, поскольку он течёт в обратную сторону, начнёт перезаряжать конденсатор C1.

К моменту времени t3 напряжение в сети достигнет максимума, только с противоположной относительно момента t0 полярностью. Соответственно, для этого момента экстремума сетевого напряжения будут справедливы все те же рассуждения касательно напряжений и токов, которые мы использовали для момента t0. То есть, к этому моменту конденсатор C1 полностью перезарядится (напряжение на нём достигнет максимального значения отрицательной полярности), а ток через C1 и мост упадёт до нуля.

Далее, по мере роста сетевого напряжения, напряжение на конденсаторе C1 будет оставаться неизменным, а напряжение на входе моста будет расти.

В момент времени t4, когда сетевое напряжение вырастет до значения -(Uca-2Uвых), напряжение на входе моста достигнет значения Uвых, диоды моста откроются и в первичной цепи (через мост и конденсатор C1) снова потечёт ток. Этот ток снова будет перезаряжать конденсатор C1, но уже напряжением положительной полярности.

В момент t6 напряжение на конденсаторе C1 достигнет максимального значения положительной полярности, а ток через C1 и мост упадёт до нуля.

Далее весь цикл повторится с самого начала.

Теперь давайте вспомним закон сохранения заряда. В соответствии с этим законом за один полный цикл через конденсатор C1, мост и нагрузку должно протекать одинаковое количество заряда. Поскольку ток нагрузки у нас постоянный, то количество заряда, протекающего через нагрузку за один цикл, можно найти по формуле Q=Iн*tцикла=Iн/fc, где fc — частота питающего сетевого напряжения. Количество заряда, протекающего через конденсатор C1, будет равно площади под графиком тока (заштрихованная площадь графика IC1(t)). Остаётся только найти эту площадь, приравнять её к заряду, протекающему за один цикл через нагрузку, и выразить из полученного выражения необходимую ёмкость конденсатора C1 в зависимости от тока нагрузки.

Подробные математические расчёты можно найти под вторым спойлером.

Осторожно, текст под спойлером перегружен математикой!

Итак, для заряда протекающего за один период через конденсатор С1 можно записать:

Косинусы найдём из графика сетевого напряжения, учитывая, что оно у нас на графике изменяется как раз по косинусоидальному закону, а так же учитывая его значения в моменты времени t1 и t3 (об этом мы говорили выше):

Максимальное значение тока через конденсатор C1 можно определить из формулы, связывающей ток, напряжение и реактивное сопротивление конденсатора:

Подставив всё это в выражение для заряда, получаем:

Используя полученное выражение и закон сохранения заряда находим ток через нагрузку:

Если выходное напряжение много меньше сетевого питающего напряжения, то можно считать, что Uca-Uвых≈Uca. Тогда формулу можно переписать в упрощённом виде:

Можно наоборот, выразить ёмкость конденсатора C1 через ток нагрузки:

Упрощённый вариант формулы:

Итак, в результате расчётов мы получили следующие формулы:

Обратите внимание, что в полученных формулах используется амплитудное значение сетевого напряжения, которое в корень из 2 раз больше действующего.

Кроме того, следует обратить внимание, что если ток нагрузки приравнять к нулю, то выходное напряжение схемы станет равно амплитуде сетевого напряжения (так что электролит скорее всего сразу пробьёт).

Ладно, самое главное мы посчитали, но это ещё не всё. Нужно учесть, что ток нагрузки и напряжение сети могут изменяться. Обеспечить работоспособность схемы во всём диапазоне питающих напряжений и рабочих токов — задача для стабилитрона. Рабочий диапазон токов нагрузки находится исходя из следующих соображений:

  • При максимальном токе нагрузки и минимальном напряжении сети через стабилитрон должен протекать ток чуть больше минимального тока стабилизации (иначе выходное напряжение схемы будет меньше заданного)
  • При минимальном токе нагрузки и максимальном питающем напряжении ток через стабилитрон должен быть чуть меньше максимального тока стабилизации (иначе стабилитрон попросту сгорит)

В окончательном, рабочем варианте добавим в схему пару резисторов:

  • резистор с сопротивлением порядка 1 мегаома параллельно конденсатору C1 (через него конденсатор будет разряжаться при выключении схемы из сети)
  • резистор с сопротивлением около сотни Ом, включенный последовательно с конденсатором и мостом (он будет работать как предохранитель и вместо него можно поставить обычный предохранитель)

Расчет емкости кондеров в БП

Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Поделиться

Последние посетители 0 пользователей онлайн

  • Ни одного зарегистрированного пользователя не просматривает данную страницу

Объявления

Сообщения

Есть идеи почему сопротивление разное у этих 2х видов?

He3haika

Я уж было подумал другое.

Только зионы не все инструкции поддерживают, от чего по производительности на уровне и3, а то и ниже.

Инструкции не зря пишут.

Да просто включил в тестере функцию исключения сопротивления щупов а не знал что он в этот момент режим авто вырубает так как не пользовался этой функцией)) вот и получилось что получилось))

сравнил с тем что выкладывали на 3 странице. Вроде бы все сходится

Dr. West

Серверные Хeon под 771 сокет. Путём несложной переделки сокета или самого процессора и модифицированного биоса встают в материнки с 775 сокетом. А по цене заметно дешевле «разрешённых» Квадов. На Али завались.

Простой бестрансформаторный блок питания с балластным
(гасящим) конденсатором

Прежде, чем приступить к расчёту схемы простого бестрансформаторного блока питания с гасящим конденсатором, давайте определимся с ориентацией:
1. Мы не извращенцы, мы нормальные дядьки и приличные барышни! А с теми, звездонутыми током из розетки. которые находят в этом не только минусы, но и плюсы, а также прочими ведьмами и чародеями мы не якшаемся и якшаться не станем.
2. Это не то чтобы мы скупердяи какие-то. Но люди бережливые – жадные с умом и с пользой, а на безвременную кончину электрооборудования, будь то мыслящая машина, или прибор какой измерительный, нам смотреть неприятно и западло.

Ладно, с этим понятно! А какие условия надо выполнить при остром желании совокупить электронное устройство с бестрансформаторным источником питания?

Пожалуйста:
Полная автономность питаемого аппарата, т.е. к нему не должны подключаться никакие внешние устройства ни по входу, ни по выходу, ни по каким-либо другим местам.
Диэлектрический (непроводящий) корпус и такие же ручки управления как у самого блока питания, так и у запитываемого от него устройства.
Сосредоточенный контроль за любым движением шаловливых ручонок в процессе настройки источника. Про измерительные приборы с питанием от сети – забыть. Схема простая, поверьте – заработает и без всяких осциллографов.

В самом распространённом виде схема простого бестрансформаторного блока питания имеет вид, показанный на рис.1.

Рис.1 Схема бестрансформаторного блока питания с балластным
(гасящим) конденсатором

Для ограничения броска тока при подключении блока к сети последовательно с конденсатором С1 и выпрямительным мостом Br1 включён резистор R2, а для разрядки конденсатора после отключения – параллельно ему резистор R1.
Бестрансформаторный источник питания в общем случае представляет собой симбиоз выпрямителя и параметрического стабилизатора. Конденсатор С1 для переменного тока представляет собой ёмкостное (реактивное, т.е. не потребляющее энергию) сопротивление Хс, величина которого определяется по формуле:
,
где F — частота сети (50Гц); С-ёмкость конденсатора С1.

Тогда ток, втекающий в источник, определяется, как:
,
где Uc — напряжение сети (220 В); Uст – выходное напряжение, соответствующее напряжению пробоя стабилитрона.
Номинал резистора R2 выбирается исходя из величины ≈ 0,025Xс.

Нормальным режимом работы приведённого блока питания является режим, при котором стабилитрон находится в режиме обратно-смещённого пробоя (режим стабилизации), благодаря чему напряжение на выходе источника поддерживается с заданной точностью в широком диапазоне выходных токов нагрузки.
Ясен жупел, что для поддержания этого режима необходимо удерживать ток, протекающий через стабилитрон, в диапазоне допустимых для данного полупроводника величин: Iст.min
А поскольку Iвх= Iст+Iн (см. Рис.1), то методом простого дедуктивного электро- анализа делаем глобальный вывод – номинал конденсатора С1 следует выбирать из соображений величины входного тока Iвх= Iн.макс+Iст.мин , где Iн.макс – это максимальный ток на выходе блока питания при заданном выходном напряжении, а Iст.мин – минимальный ток стабилизации стабилитрона, который указывается в характеристиках полупроводника.

Минимальную ёмкость сглаживающего конденсатора С2 в двухполупериодных выпрямителях принято рассчитывать исходя из величины 1 МкФ на каждый миллиампер тока, потребляемого нагрузкой, оптимальное – в 5. 10 раз выше.

Краткий теоретический экскурс проведён, пора переходить к практической стороне вопроса:

Онлайн расчёт элементов бестрансформаторного блока питания

Простой бестрансформаторный блок питания с балластным
(гасящим) конденсатором

Онлайн калькулятор расчёта элементов сетевого понижающего источника питания без гальванической развязки от сети

Прежде, чем приступить к расчёту схемы простого бестрансформаторного блока питания с гасящим конденсатором, давайте определимся с ориентацией:
1. Мы не извращенцы, мы нормальные дядьки и приличные барышни! А с теми, звездонутыми током из розетки. которые находят в этом не только минусы, но и плюсы, а также прочими ведьмами и чародеями мы не якшаемся и якшаться не станем.
2. Это не то чтобы мы скупердяи какие-то. Но люди бережливые – жадные с умом и с пользой, а на безвременную кончину электрооборудования, будь то мыслящая машина, или прибор какой измерительный, нам смотреть неприятно и западло.

Ладно, с этим понятно! А какие условия надо выполнить при остром желании совокупить электронное устройство с бестрансформаторным источником питания?

Пожалуйста:
Полная автономность питаемого аппарата, т.е. к нему не должны подключаться никакие внешние устройства ни по входу, ни по выходу, ни по каким-либо другим местам.
Диэлектрический (непроводящий) корпус и такие же ручки управления как у самого блока питания, так и у запитываемого от него устройства.
Сосредоточенный контроль за любым движением шаловливых ручонок в процессе настройки источника. Про измерительные приборы с питанием от сети – забыть. Схема простая, поверьте – заработает и без всяких осциллографов.

В самом распространённом виде схема простого бестрансформаторного блока питания имеет вид, показанный на рис.1.

Рис.1 Схема бестрансформаторного блока питания с балластным
(гасящим) конденсатором

Для ограничения броска тока при подключении блока к сети последовательно с конденсатором С1 и выпрямительным мостом Br1 включён резистор R2, а для разрядки конденсатора после отключения – параллельно ему резистор R1.
Бестрансформаторный источник питания в общем случае представляет собой симбиоз выпрямителя и параметрического стабилизатора. Конденсатор С1 для переменного тока представляет собой ёмкостное (реактивное, т.е. не потребляющее энергию) сопротивление Хс, величина которого определяется по формуле:
,
где F — частота сети (50Гц); С-ёмкость конденсатора С1.

Тогда ток, втекающий в источник, определяется, как:
,
где Uc — напряжение сети (220 В); Uст – выходное напряжение, соответствующее напряжению пробоя стабилитрона.
Номинал резистора R2 выбирается исходя из величины ≈ 0,025Xс.

Нормальным режимом работы приведённого блока питания является режим, при котором стабилитрон находится в режиме обратно-смещённого пробоя (режим стабилизации), благодаря чему напряжение на выходе источника поддерживается с заданной точностью в широком диапазоне выходных токов нагрузки.
Ясен жупел, что для поддержания этого режима необходимо удерживать ток, протекающий через стабилитрон, в диапазоне допустимых для данного полупроводника величин: Iст.min
А поскольку Iвх= Iст+Iн (см. Рис.1), то методом простого дедуктивного электро- анализа делаем глобальный вывод – номинал конденсатора С1 следует выбирать из соображений величины входного тока Iвх= Iн.макс+Iст.мин , где Iн.макс – это максимальный ток на выходе блока питания при заданном выходном напряжении, а Iст.мин – минимальный ток стабилизации стабилитрона, который указывается в характеристиках полупроводника.

Минимальную ёмкость сглаживающего конденсатора С2 в двухполупериодных выпрямителях принято рассчитывать исходя из величины 1 МкФ на каждый миллиампер тока, потребляемого нагрузкой, оптимальное – в 5. 10 раз выше.

Краткий теоретический экскурс проведён, пора переходить к практической стороне вопроса:

Онлайн расчёт элементов бестрансформаторного блока питания

Приведённая на Рис.1 схема обладает одной интересной особенностью. При увеличении мощности, отдаваемой в нагрузку, пропорционально снижается ток, протекающий через стабилитрон, что приводит к соответствующему росту КПД блока питания. Т.е. при максимальном токе нагрузки собственное потребление схемы будет в основном определяться мощностью, рассеиваемой на защитном резисторе R2.

Конденсатор C1 необходимо применять на напряжение не менее 400 Вольт, диодный мост на такое же напряжение, стабилитрон следует выбирать, исходя из необходимого напряжения стабилизации и максимально допустимого тока, процентов на 20-25 превышающего значение Iст.max, посчитанное таблицей.

А нажав на стрелку «назад» внизу страницы, можно познакомиться и с некоторым количеством иных схемотехнических решений, связанных с реализацией бестрансформаторных источников питания.

Как рассчитать емкость гасящего конденсатора простого блока питания

Актуальные данные о спецоперации на Украине

Блок питания с гасящим конденсатором представляет собой простейший вариант запитать какое нибудь маломощное устройство.

При всей своей простоте он имеет и два минуса:
1. Он гальванически связан с сетью! потому такие БП используются там, где нет вероятности прикосновения к контактам.
2. Такой Бп имеет не очень большой выходной ток. При увеличении выходного тока надо увеличивать емкость гасящего конденсатора и его габариты становятся существенными.

Внимание, будьте очень аккуратны, не прикасайтесь к контактам этого БП когда он включен.

Простейшая схема данного БП выглядит так:

Как можно увидеть из схемы, последовательно с сетью стоит конденсатор. Он то и является балластом,, на котором гасится часть напряжения.
Конденсатор не пропускает постоянный ток, но так как в сети переменный и конденсатор в итоге постоянно перезаряжется, то и получается, что в таком случае ток на выходе есть. Причем сила тока напрямую зависит от емкости конденсатора.

Собственно потому для расчета емкости конденсатора необходимо знать как минимум выходной ток нашего будущего БП, причем надо учесть и потребление стабилизатора, обычно это несколько мА.

И так. Есть две формулы, сложная и простая.
Сложная — подходит для расчета при произвольном выходном напряжении.
Простая — подходит в ситуациях, когда выходное напряжение не более 10% от входного.
I — выходной ток нашего БП
Uвх — напряжение сети, например 220 Вольт
Uвых — напряжение на выходе БП (или до стабилизаторе если такой есть), например 12 Вольт.
С — собственно искомая емкость.

Например я хочу сделать БП с выходным током до 150мА. Пример схемы приведен выше, вариант применения — радиопульт с питанием 5 Вольт + реле на 12 Вольт.
Подставляем наши 0.15 Ампера и получаем емкость 2.18мкФ, можно взять ближайший номинал из стандартных — 2,2мкФ, ну или «по импортному» — 225.

Все как бы вроде хорошо, схема простая, но есть несколько минусов, которые надо исключить:
1. Бросок тока при включении может сжечь диодный мост.
2. При выходе из строя конденсатора может быть КЗ
3. Если оставить как есть, то вполне можно получить разряд от входного конденсатора, так как на нем может долго присутствовать напряжение даже после отключения БП от сети.
4. При снятии нагрузки напряжение на конденсаторе до стабилизатора поднимется до довольно большого значения.

Решения:
1. Резистор R1 последовательно с конденсатором
2. Предохранитель 0.5 Ампера.
3. Резистор R2 параллельно конденсатору.
4. Супрессор на 12 Вольт параллельно конденсатору после диодного моста. Я не рекомендую здесь использовать стабилитроны, супрессоры рассчитаны на большую мощность рассеивания и схема будет работать надежнее.

На схеме красным цветом я выделил новые компоненты, синим — небольшое дополнение в виде светодиода.

Но гасящие конденсаторы используют часто и в дешевых светодиодных лампах. Это плохо, так как у таких ламп меньше надежность и часто высокие пульсации света.
Ниже упрощенный вариант схемы такой лампы.

Попробуем рассчитать емкость для такого применения, но так как напряжение на выходе будет явно больше чем 1/10 от входного, то применим первую формулу.
В качестве выходного напряжения я заложил 48 Вольт, 16 светодиодов по 3 Вольта на каждом. Конечно это все условно, но близко к реальности.
Ток — 20мА, типичный максимальный ток для большинства индикаторных светодиодов.

У меня вышло, что необходим конденсатор емкостью 0.298 мкФ. Ближайший из распространенных номиналов — 0.27 или 0.33мкФ. Первый встречается гораздо реже, а второй уже будет давать превышение тока, потому можно составить конденсатор из двух параллельных, например по 0.15мкФ. При параллельном включении емкость складывается.

С емкостью разобрались, осталось еще пара моментов:
1. Напряжение конденсатора
2. Тип конденсатора.

С напряжением все просто, можно применить конденсатор на 400 Вольт, но надежнее на 630, хоть они и имеют больше размер.

С типом чуть сложнее. Для такого применения лучше использовать конденсаторы, которые изначально предназначены для такого использования, например К73-17, CL21, X2
На фото конденсатор CL21

А это более надежный вариант, не смотрите что на нем указано 280 Вольт, у него это значение переменного действующего напряжения и он будет работать надежнее, чем К73-17 или CL21.

Такие конденсаторы могут выглядеть и так

А вот теперь можно еще раз внимательно посмотреть, что надо для того, чтобы собрать такой «простой» блок питания и решить, нужен ли он.
В некоторых ситуациях да, он поможет, но он имеет кучу минусов, потому на мой взгляд лучше применить просто небольшой импульсный блок питания, который уже имеет стабилизированное выходное напряжение, гальваническую изоляцию и больший выходной ток.
Как пример таких блоков питания я могу дать ссылку на подробный обзор четырех вариантов, с тестами, схемами и осмотров.

Но можно поступить еще лучше. Сейчас получили распространение монолитные блоки питания. По сути кубик, в котором находится миниатюрный БП
Например HLK-PM01 производства Hi-link, стоимостью около двух долларов за штуку.

Или их китайский аналог TSP-05 производства Tenstar robot. Они немного дешевле, 1.93 доллара за штуку.
Практика показала, что качество у них сопоставимое.

Как я писал выше, они представляют из себя импульсный Бп в модульном исполнении. БП в пластмассовом корпусе залитый эпоксидной смолой.
Выпускаются на разные напряжения и способны поддерживать его на довольно стабильном уровне.

Внутренности поближе, на фото вариант от Hi-link

На этом вроде все. Надеюсь, что статья была полезна, постараюсь и в будущем находить интересные темы. Также интересны пожелания, что хотелось бы видеть в рубрике — Начинающим.

Эту страницу нашли, когда искали:
блок питания на гасящем конденсаторе выходное напряжение , расчет емкости шунтирующего конденсатора блока питания , формула подбора конденсатора если нет такого , расчет конденсаторов для заземления в блоке питания , какой ёмкости нужен конденсатор снижения мощности , расчет емкостного блока питания на 10 миллиампер , формула расчёт гасящего конденсатора в цепи переменного тока , гасящий конденсатор для без трансформаторного блока питания , какой емкостью лучше шунтировать выходные конденсаторы 1000 мкф 10в , включение электродвигателя на 110в в сеть 220в расчёт гасящего конденсатора , как подключить нагрузку 7а к 230в через емкость , какой нужен кондер понизить 220 до 150 вольт , как понизить напряжение от 220в до 12 с помощью голосящего конденсатора , какая емкость конденсатора после выпрямительного блока , схемы параметрических блоков питания с ограничительным конденсатором , как влияет ёмкость гасящего конденсатора на выходное напряжения , параллельный конденсатор на входе 220в , как расчитать конденсатор на вход 220 , вычислить гасящий конденсатор для 12 вольт , зависимость тока и напряжения от емкости гасящего конденсатора , если подключить неполярный конденсатор к диодному мосту во вторичной обмотки бп , расчет гачящего конденсатора , емкость,для пониженияпеременного напряжения. , расчет конденсатор.вместо.сопротивления , расчет выходного конденсатора для импульсного блока питания статья

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *