Как проверить резистор мультиметром
При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора. Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального. Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.
Особенности измерения сопротивления резистора мультиметром
Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром. Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления. Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.
Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.

Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.
Как проверить резистор не выпаивая: визуальная проверка
Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.
О неисправностях свидетельствуют:
- Потемнение корпуса. Сгоревший резистор имеет потемневшую поверхность – полностью или частично в виде колечек. Слабое потемнение не свидетельствует о неисправности, а только о перегреве, который не привел к полному выходу детали из строя.
- Появление характерного запаха.
- Стирание маркировки.
- Наличие на плате сгоревших дорожек
Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.
Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.
Подготовка мультиметра к проведению измерений: какие установить настройки
Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.

При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».
Как прозвонить резистор
Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.

Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.
Как определить номинал резистора по маркировке
Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.
Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.
В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.
Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем. Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице. Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.
Таблица кодов для прецизионных резисторов
| Код | Значение | Код | Значение | Код | Значение | Код | Значение | Код | Значение | Код | Значение |
| 01 | 100 | 17 | 147 | 33 | 215 | 49 | 316 | 65 | 464 | 81 | 681 |
| 02 | 102 | 18 | 150 | 34 | 221 | 50 | 324 | 66 | 475 | 82 | 698 |
| 03 | 105 | 19 | 154 | 35 | 226 | 51 | 332 | 67 | 487 | 83 | 715 |
| 04 | 107 | 20 | 158 | 36 | 232 | 52 | 340 | 68 | 499 | 84 | 732 |
| 05 | 110 | 21 | 162 | 37 | 237 | 53 | 348 | 69 | 511 | 85 | 750 |
| 06 | 113 | 22 | 165 | 38 | 243 | 54 | 357 | 70 | 523 | 86 | 768 |
| 07 | 115 | 23 | 169 | 39 | 249 | 55 | 365 | 71 | 536 | 87 | 787 |
| 08 | 118 | 24 | 174 | 40 | 255 | 56 | 374 | 72 | 549 | 88 | 806 |
| 09 | 121 | 25 | 178 | 41 | 261 | 57 | 383 | 73 | 562 | 89 | 825 |
| 10 | 124 | 26 | 182 | 42 | 267 | 58 | 392 | 74 | 576 | 90 | 845 |
| 11 | 127 | 27 | 187 | 43 | 274 | 59 | 402 | 75 | 590 | 91 | 866 |
| 12 | 130 | 28 | 191 | 44 | 280 | 60 | 412 | 76 | 604 | 92 | 887 |
| 13 | 133 | 29 | 196 | 45 | 287 | 61 | 422 | 77 | 619 | 93 | 909 |
| 14 | 137 | 30 | 200 | 46 | 294 | 62 | 432 | 78 | 634 | 94 | 931 |
| 15 | 140 | 31 | 205 | 47 | 301 | 63 | 443 | 79 | 649 | 95 | 953 |
| 16 | 143 | 32 | 210 | 48 | 309 | 64 | 453 | 80 | 665 | 96 | 976 |
Проверка сопротивления постоянного резистора
После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.

При обрыве цепи на экране горит «1».
Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.
Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.
СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.
Проверка переменного резистора
Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.

Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.
Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:
- Мультиметр включают в режим измерения.
- Щупальца подсоединяют к крайним ножкам. Это позволяет определить общее сопротивление. Значение на дисплее не должно отличаться от номинала более чем на положенный допуск. Величина допуска характеризуется последним кольцом в цветовой маркировке. Она выражается в процентах от номинального значения.
- Если общее сопротивление соответствует номинальному, то измеряют сопротивление между средней и крайней ножками. После подсоединения «крокодилов» вращают ручку переменного резистора в одном из направлений. Сопротивление либо плавно возрастает до ранее установленного общего значения, либо снижается до нулевого значения. При самой частой неисправности (пропадании контакта токосъемника) прибор показывает бесконечность.
Измерение сопротивления мультиметром
Как измерить сопротивление мультиметром самостоятельно?
Мультиметр— универсальный прибор, предназначенный для проведения электрических замеров. С его помощью можно определить напряжение и силу тока, установить сопротивление резистора, а также прозвонить цепь и выполнить ряд других операций. Такой измерительный прибор обязан иметь не только каждый электрик, но и любой человек, самостоятельно выполняющий даже незначительные работы с электрооборудованием.
Виды мультиметров
Современные измерительные устройства представлены аналоговыми и цифровыми приборами. Результаты на аналоговом мультиметре устанавливаются по показаниям стрелки. Достоинством такого оборудования является невысокая цена (2-3$), однако существенный недостаток, высокая погрешность, не дает использовать аналоговое устройство для точных замеров.
Сегодня распространенными являются цифровые мультиметры. Результаты в данном случае отображаются на специальном экране (на светодиодах или на жидкокристаллическом дисплее). Такие приборы гораздо проще в использовании, обладают высокой точностью по сравнению с аналоговыми.
Cлучаи, необходимые для замера сопротивление
Ремонт электропроводки и любых радио- и электротехнических изделий заключается в поиске соприкосновения проводников тока между собой в тех местах, где его не должно быть. Такая ситуация возникает при коротком замыкании (сопротивление равно нулю). Не менее распространенной поломкой является нарушение контакта в проводниках. В таких случаях сопротивление, напротив, стремится к бесконечности.
Для установления сопротивления отдельных участков и элементов цепи используется измерительный прибор — омметр. Мультиметр является комбинированным устройством и при определенной настройке также способен выполнять функции омметра.
Предварительная настройка: режим омметра
Прежде чем выполнять замеры, необходимо перевести мультитестер в режим омметра. Сопротивление на приборе обозначается греческой буквой Ω «Омега». Ручной переключатель режимов работы необходимо перевести в данную секцию (в большинстве моделей возможен поворот как по часовой, так и против часовой стрелки).
Следующим шагом станет выбор пределов измерения. У большинства моделей мультиметров имеется от 4 до 7 пределов: 200 (не более 200 Ом), 2К — не более 2 000 Ом, 20К — не более 20 000 Ом и так вплоть до 200М — 200 000 000 Ом.
Например, при наличии резистора, ориентировочное сопротивление которого составляет от 1 до 10 кОм (1 000 — 10 000 Ом) следует выбрать предел 20К — его значение выше наибольшего предполагаемого (10К). В отличие от других величин неверное определение предела не опасно для прибора. В том случае, если сопротивление резистора окажется больше, на цифровом дисплее «моргнет» показание и загорится единица. При этом необходимо перевести переключатель на предел выше и повторить действия.
Ничего страшного, если вы не знаете даже ориентировочных значений сопротивления — методом подбора вы без проблем найдете подходящий интервал. Старайтесь провести замеры на как можно меньшем пределе — это влияет на точность полученных значений.
Предварительная настройка: подключение щупов
При измерении сопротивления черный щуп необходимо вставить в гнездо com, а красный щуп — в гнездо V/Ω. Перед проведением работ следует убедиться в исправности прибора — для этого соедините токоведущие части щупов между собой. Если на дисплее высветятся нули, все в порядке. Мультиметр исправен и готов к работе.
Многие новички совершают одну и ту же ошибку: прикасаются руками к токоведущим частям щупов или выводам резистора. В этом случае оборудование будет производить замер сопротивления не только резистора, но и вашего тела, так что результаты окажутся некорректными. При проведении работ щупы следует держать за изоляцию! Непосредственно в месте соприкосновения токоведущих частей допускается придерживать щуп и один из выводов детали одной рукой. В этом случае замкнутой цепи не образуется, и показания тестера не искажаются.
Проведение работ
Когда все подготовительные работы выполнены, можно приступать непосредственно к измерениям. Ни в коем случае нельзя производить замеры у элемента, находящегося под напряжением! Также следует вынуть из цепи или выпаять элемент (хотя бы одним концом), сопротивление которого мы меряем, и только после этого использовать омметр. Такой подход гарантирует, что другие компоненты схемы не окажут влияния на результат.
Прислоните щупы к выходам или клеммам резистора или любого другого измеряемого прибора (лампочки накаливания, катушки). Подберите требуемый предел (как было указано выше) и снимите показания прибора. В зависимости от полученных данных можно выявить проблему измеряемого устройства (замыкание или, наоборот, плохой контакт). Если проблем на данном элементе не выявлено, переходите к следующему участку цепи и так до тех пор, пока неисправность не будет обнаружена.
Полезные советы
- Следует помнить, что на точность данных может влиять заряд батареи мультиметра. При низком уровне заряда прибор начинает подвирать — выдавать неверные значения. На цифровых устройствах есть индикатор батареи, который сигнализирует, когда источник питания следует заменить или зарядить.
- При работе с аналоговым устройством следует поместить его на ровную горизонтальную поверхность. В противном случае результаты могут быть сильно искажены.
- Не оставляйте устройство включенным, так как это сильно разряжает его батарею. Даже если речь идет об аналоговом мультиметре, не стоит оставлять его в режиме омметра. Лучше переключить на измерение напряжения.
- Для удобства обнаружения коротких замыканий можно использовать режим «прозвонки» (обозначается значком диода), присутствующий на большинстве современных устройств. В этом режиме мультиметр издает звуки при очень низком сопротивлении участка цепи. Таким образом, вам не придется каждый раз смотреть на экран.
![]()
125373, г. Москва,ул. Героев Панфиловцев, д. 37, корп.3
+7 495 642-32-04
+7 925 478-11-37
+7 915 386-86-55
info@encomand.ru

•Москва и Московская область •Санкт-Петербург •Балашиха •Видное •Воронеж •Дзержинский •Долгопрудный •Домодедово •Железнодорожный •Звенигород •Зеленоград •Жуковский •Климовск •Королев •Красногорск •Люберцы •Лыткарино •Мытищи •Одинцово •Подольск •Раменское •Реутов •Раменское •Химки •Электросталь
Как проверить резистор мультиметром?

Резистор , наряду с конденсатором, — простейший двухэлектродный электронный прибор. Главное его предназначение — оказывать активное электрическое сопротивление проходящему току в цепи, в которую он включён. Имея незамысловатую конструкцию, он, тем не менее, получил множество разновидностей, использующихся буквально в любой электроаппаратуре, а также в электроустановках и электротранспорте.
Эта статья расскажет вам, дорогой читатель, как устроен и работает резистор, как отображается на схемах, о разновидностях и материалах, из которых его изготавливают, его базовых характеристиках. В заключении будут показаны варианты маркировки приборов двух типов: выводных и поверхностного монтажа. Практическая часть осветит процесс измерения сопротивления с помощью мультиметра.
![]()
Время чтения: 13 минут

Эксперт — Василий Мокрецов
- Основы функционирования резистора
- Устройство и принцип работы
- Условное графическое изображение
- Разновидности
Резистор? Это очень просто!
Основы функционирования резистора
Устройство и принцип работы
Резистор (от лат. resisto — «сопротивляться») — компонент с постоянным электрическим сопротивлением. Под постоянством здесь понимается линейность вольт-амперной характеристики, то есть отсутствие зависимости от силы тока, частоты, приложенного напряжения (R=const). Но, к слову, некоторые специальные модели, напротив, нелинейны, и их эксплуатационные свойства сильно зависят от подаваемого напряжения, температуры, освещённости (подробнее об этом читайте в разделе «Разновидности»).

На рисунке представлено общее устройство выводных резисторов. Основанием служит трубка из керамики (для SMD-резисторов это будет керамическая пластина) с нанесённым резистивным, то есть обладающим электрическим сопротивлением, материалом, либо навитой проволокой из сплава с высокой резистивностью (манганина, константана, нихрома). Подробно об этом будет далее в разделе «Материалы для изготовления». По краям трубки запрессованы металлические чашки с выводами для подключения в электроцепь.
Принцип его работы до безобразия прост. При прохождении в цепи электротока он показывает сопротивляемость, превращая часть электроэнергии в тепловую. Объёмы генерируемого тепла рассчитывают по формуле:

где Q — количество теплоты, выделяемой в джоулях; I — сила тока в цепи в амперах; R — сопротивление в омах; t — время прохождения тока в секундах.
Падение напряжения на резисторе, то есть разность потенциалов между его выводами, рассчитывается по формуле, являющейся следствием закона Ома:

где U — разность потенциалов между выводами в вольтах; I — сила тока; R — сопротивление.
Как следует из формулы, при R=const падение напряжения прямо пропорционально току. То есть резистор предстаёт перед нами линейным высокоточным преобразователем «ток-напряжение» и «напряжение-ток» и встраивается в цепи измерения электропараметров.
Условное графическое изображение

На электрических принципиальных схемах резистор обозначается в виде трубки с выводами, то есть, как и в случае конденсатора, очень схож со своим исполнением. Так же как и в формулах, сопротивление обозначается литерой R. На рисунке изображены следующие основные резисторы:
- R1 — постоянный;
- R2 — переменный;
- TH — термистор (терморезистор);
- RV — варистор;
- RP — фоторезистор.
Рядом с условным изображением обязательно размещается основная характеристика — электрическое сопротивление:
Наименование дольной /
кратной единицыСтепень Обозначение миллиом 10 -3 Приставка «м» для единицы милли- не обозначается ввиду схожести с приставкой кратной единицы мега- «М».
Сопротивление указывается десятичной дробью, к примеру «0.01».
На американских схемах первый ноль не пишется и одна сотая ома будет записана как «.01»ом 10 0 Ω, Ом, Ohm или без литер, к примеру, «100» килоом 10 3 КΩ, К, кОм, kOhm, к примеру, «10К» мегаом 10 6 МΩ, М, Мом, MOhm, к примеру «1М» Кроме того, на принципиальных схемах возможно также указание максимальной рассеиваемой мощности.
Далее подробнее рассказываем о различных резисторах.
Разновидности
Резисторы постоянного сопротивления
Они самые часто встречающиеся. Производятся в форм-факторе выводных, а также безвыводных SMD-компонентов, встречаются в составе чипов.

Резисторы переменного сопротивления (подстроечные)
Как ясно из названия, их сопротивление изменяют механическим способом, поэтому их применяют в роли разного рода регуляторов. Имеют как углеродистый резистивный слой, так и проволочную конфигурацию.

Варистор
Это полупроводник, параметры которого нелинейно зависят от напряжения: у варистора сопротивление скачкообразно падает до незначительных величин при достижении определенного порога. Его ставят в цепи защиты от перенапряжения.
Термистор (терморезистор)
Это тоже полупроводник, но с нелинейной зависимостью от температуры окружающей среды. Термисторы бывают с отрицательной (NTC-термисторы) и с положительной характеристикой (PTC-термисторы). У NTC-термисторов сопротивление падает с увеличением температуры, а у PTC-термисторов, напротив, поднимается. Применяются в качестве термодатчиков в различной аппаратуре.
Тензорезистор
Сопротивление этих устройств пропорционально степени деформации корпуса, выполняемого, как правило, из гибкого эластичного материала. Применяется в качестве тензодатчика измерителей различных механических величин (давление, ускорение, момент силы).
Фоторезистор
Он представляет собой полупроводник, изменяющий своё сопротивление при воздействии на него света. Увеличение интенсивности светового потока, воздействующего на фоторезистор, приводит к его снижению. Применяется в виде разнообразных датчиков.

Бареттер
Это специализированный прибор с нелинейной вольт-амперной характеристикой, имеющий рабочий участок напряжения, в котором ток, протекающий через бареттер, относительно стабилен. Фактически это нить из тугоплавкого металла (химически чистое железо, вольфрам, платина) помещенная в стеклянный баллон, из которого откачан воздух и/или заполненный инертным газом, к примеру, водородом. Внешне очень напоминает привычную лампу накаливания, которая в свою очередь — примитивный бареттер: сопротивление лампочки значительно возрастает при росте тока, проходящего через неё. То есть она выступает ограничителем тока.
Бареттер в настоящее время почти полностью вышел из употребления и заменён более совершенными и быстродействующими полупроводниковыми стабилизаторами напряжения, например стабилитронами (сведения о них есть в статье «Что такое полупроводник?».), но до недавнего времени использовались во многих видах аппаратуры в качестве стабилизатора и токоограничителя, к примеру, в защитных схемах цепей накала электровакуумных ламп, кинескопов телевизоров, осциллографических трубок и тому подобной технике. Ещё он до сих пор применяется в некоторых дорогостоящих усилителях звуковых частот класса hi-end.
Материалы для изготовления
Углеродистые резисторы
Они появились одними из первых. Резистив образован нанесенным на керамический цилиндр или пластину порошком углерода (графита) со связующим материалом и металлическими добавками. Шириной, толщиной и составом слоя добиваются нужного сопротивления с типовым допуском в пределах ±10%.
Металлоплёночные резисторы
Более прогрессивная модификация, где в резистивом выступает сплав металлов, напылённый на диэлектрическую подложку. Его физико-химический состав и задаёт сопротивление. Технология их производства позволяет делать допуски ±1% и точнее. Мощность рассеивания у них, а также у углеродистых, не превышает 2–3 ватт. Сопротивление — от единиц ом до десятков гигаом.
Полупроводниковые резисторы
Почти все модели, имеющие нелинейную вольт-амперную характеристику, изготавливаются из полупроводниковых материалов (см. «Что такое полупроводник?»). К ним относятся термисторы, варисторы, фоторезисторы, терморезисторы и другие. Резисторы постоянного сопротивления, расположенные внутри интегральных микросхем, также выполняют из ПП-материалов.
Проволочные резисторы
Конструктивно они наиболее просты. Резистивом в них служит проволока из высокорезистивного материала. Ввиду относительной массивности основы они обладают максимальной рассеиваемой мощностью от нескольких ватт у моделей, применяемых в радиоаппаратуре, до десятков киловатт у элементов, используемых в силовой электротехнике. Их номиналы, как правило, не превышают единиц килоом, а преимущественно составляют от долей до нескольких десятков ом.
Основные электрические параметры
В разделе будут описаны основные параметры этих радиокомпонентов.
Номинальное электрическое сопротивление
Данный параметр для резисторов основной, и он определяет степень препятствования прохождению через них электротока, численно равный отношению разности потенциалов на контактах и току в электроцепи. Измеряется в омах (в честь немецкого физика Георга Симона Ома) и указывается литерой R. Рассчитывается по известной всем из школьного курса физики формуле:

где R — сопротивление; U — разность потенциалов; I — сила тока.
При последовательном соединении резисторов их сопротивление складывается:

А при параллельном вычисляется по формуле:

Допуск (отклонение) номинального электрического сопротивления
Он отражает, насколько допустимо несоответствие реального сопротивления информации, написанной на корпусе. При изготовлении добиться строгой точности того или иного параметра чрезвычайно трудно. Это касается и номинальных значений. Да и в большинстве случаев прецизионность и не требуется. По этой причине наибольшее применение находят модели со средним допуском (от ±10% до ±5%). Они наиболее дешевы. Приборы с более строгим допуском (±1% и меньше) стоят дороже и применяются лишь в тех цепях, где их присутствие оправдано.
Максимальная рассеиваемая мощность
Так как резистор преобразует электроэнергию в тепловую, то нетрудно догадаться, что для конкретного прибора существует предел электрической мощности, которую он способен преобразовать в тепло без последствий для себя. Её формула выглядит так:

где P — мощность; U — разность потенциалов; I — сила тока.
Этот показатель является конструктивным параметром резистора, отражающим, сколько энергии он способен превратить в тепло без риска теплового разрушения. Указанный параметр для элементов, применяемых в радиоэлектронной аппаратуре, начинается от 0,01 и заканчивается десятками ватт. Он зависит от типоразмера (чем габаритнее компонент, тем больше площадь излучения, и тем большую мощность он в состоянии рассеять) и от резистивного материала: наибольшие параметры наблюдаются у проволочных резисторов.
Её неверный подбор при конструировании аппаратуры нередко ведёт чрезмерному нагреву элемента, вплоть до воспламенения, а так же нагреванию им близкорасположенных компонентов, что для некоторых из них (к примеру, электролитических конденсаторов) чрезвычайно опасно и в ряде ситуаций провоцирует взрыв.
Температурный коэффициент сопротивления (ТКС)
ТКС — характеристика резистора, показывающая, насколько меняется его сопротивляемость при изменении внешней температуры. Резистив, как и все материалы в мире, демонстрирует некоторую взаимосвязь своей резистивности от температуры. То есть даже типовой постоянный резистор может быть отнесён к группе терморезисторов. Но значение ТКС крайне мало даже для самых распространённых радиокомпонентов. Высокие требования к ТКС предъявляются только при использовании в узкоспециализированной, высокоточной измерительной или аппаратуре, работающей в жестких температурных условиях (авиация, космонавтика и другие).
Маркировка
Цветовая маркировка выводных резисторов
В соответствии с ГОСТ и требованиями IEC (Международной Электротехнической Комиссии) цветовая маркировка наносится в виде четырёх, пяти или шести цветовых колец. Для определения её начальной точки маркировочные кольца должны быть сдвинуты к одному из выводов, либо у первого знака оно должно быть в два раза шире других. Но, к сожалению, это не всегда соблюдается, особенно у китайских производителей недорогих комплектующих для электроники.

Символьная маркировка резисторов поверхностного монтажа (SMD)

К примеру: 2R2 = 2,2 Ом, 100 = 10 Ом, 102 = 1 кОм, 1202 = 12 кОм.
Примечание 1: если в маркировке есть символ разделителя дробной части R, то цифры после него обозначают знаки после запятой, а множитель отсутствует, например 2R55 = 2,55 Ом.
Примечание 2: маркировка 0, 000 или 0000 соответствует нулевому сопротивлению — так маркируются перемычки.
Измерение сопротивления резистора
В этом разделе мы на практике расшифруем цветовую маркировку резистора, измерим реальное сопротивление при помощи мультиметра и перепроверим его показания тестером радиокомпонентов.
В качестве измеряемого образца возьмём самый обыкновенный углеродистый элемент с цветовой маркировкой колец «красное-красное-коричневое-золотое», для удобства смонтированный на макетной плате Breadboard MB-102:

Цветовое обозначение колец расшифровывается так:
- 1-е (красное) — первая цифра 2;
- 2-е (красное) — аналогично, тоже 2;
- 3-е (коричневое) — множитель равен 101;
- 4-е (золотистое) — допуск ±5%.
Таким образом получаем 220 Ом с допуском ±5%, то есть ± 11 Ом. Следовательно, значение должно находиться в диапазоне от 209 до 231 Ом. Проверим, так ли это, с помощью мультиметра.
Для измерений воспользуемся удобным, функциональным, недорогим, но очень точным мультиметром «ANENG M20»:

Включаем на приборе измерение сопротивления и замыкаем накоротко щупы, чтобы определить их погрешность:

У щупов сопротивление равно 0,3 Ом. Его необходимо будет вычесть из получаемых последующих данных для исключения погрешности.

Замеры резистора показали 217,8 Ом. Отнимаем 0,3 Ом, которые дают щупы, и определяем реальное значение в районе 217,5 Ом. Итоговые показатели более чем укладываются в допуск ±5%.
Для проверки проведем повторные исследования с помощью обычного карманного неавтоматического мультиметра DT830D, переключив его в режим измерения сопротивления до 2000 Ом:

У щупов оно равняется 1 Ом.

Сняв показания прибора и убрав погрешность от щупов, определяем значение равным 217 Ом. Это показание очень близко к результатам, которые дал мультиметр ANENG M20.
Так же для контроля замерим сопротивление с помощью многофункционального прибора-измерителя параметров радиокомпонентов LCR-T4:

Прибор подтвердил показания мультиметра ANENG M20, показав 217,5 Ом.
Не приходится сомневаться, что такой несложный прибор как резистор, который лишён истории изобретения и, в общем-то, естественным образом начал участвовать в различных первых электротехнических опытах учёных прошлого, и в настоящее время играет неоценимую роль в современной электронике и приборостроении.
Резисторы есть в каждом устройстве. И будут встречаться и далее, так как альтернативы им нет, и, наряду с конденсаторами они стали столпами электроники — фундаментальными электронными компонентами. В настоящее время они достигли высокой степени миниатюризации и высокой точности своих номинальных характеристик, но, уверен, это далеко не предел.
Как измерить сопротивление мультиметром
У каждого человека хотя бы раз в жизни возникала необходимости провести те или иные измерения электрических величин. Будь то напряжение в розетке или просто проверить зарядку аккумулятора в автомобиле все мы прибегаем к помощи измерительных приборов. Во времена СССР с измерительными приборами было очень туго, достать их было очень трудно, и не все понимали, как ими пользоваться.
На сегодняшний день проблем с приобретением того или иного инструментами нет можно купить что душе угодно хоть лабораторию для измерений, как говорится – «любой каприз за ваши деньги».
Но речь в сегодняшней статье пойдет не о лаборатория для измерений (это уже на профессиональном уровне), а об обычных мультиметрах которыми так часто пользуются электрики включая меня.

Приветствую всех друзья на сайте « Электрик в доме ». Ранее я уже публиковал статьи о том как пользоваться мультиметром при проведении измерений, но ввиду того что мне приходит очень много вопросов и комментариев с просьбой рассказать как можно проверить исправность лампочки или замерить сопротивление резистора, решил опубликовать подробный материал как измерить сопротивление мультиметром.
Метод измерения электрического сопротивления – как работает прибор
Принцип, по которому выполняется измерение электрического сопротивления мультиметром, основан на самом главном законе электротехники — законе Ома. Формула известна нам из школьного курса физики, говорит следующее: сила тока, протекающая по участку цепи прямо пропорциональна напряжению (ЭДС) и обратно пропорциональна сопротивлению на этом участке I (сила тока) = U (напряжение) / R (сопротивление).

Именно по этой связи работает прибор. Зная две из величин, можно легко вычислит третью. В качестве источника напряжения используется встроенный источник (DC) питания прибора, которым является штатная батарейка напряжением 9 В.
По сути измерения выполняются косвенным методом. Если приложить к щупам прибора измеряемое сопротивление, например Rх, ток протекающий в цепи будет зависеть только от него. Зная силу тока и напряжение можно легко вычислить сопротивление.
Настройки прибора перед измерениями
Итак, друзья давайте поближе познакомимся с самим прибором. В моем случает это цифровой мультиметр DT9208A . В стандартном комплекте идет одна пара щупов для силовых измерений и термопара для измерения температуры, которой я еще ни разу не пользовался.
На передней панели имеется круговой переключатель. Именно с помощью этого переключателя выполняется выбор рабочего режима и диапазона измерений. Переключатель работает как «трещетка» и фиксируется в каждом новом положении.

Вся круговая панель разбита не сектора и имеет разноцветную маркировку (это в моем случае). Иногда сектора обводят отдельными линиями, как бы отделяя необходимый параметр.
Сектор измерения сопротивлений расположен вверху и разбит на семь диапазонов: 200, 2k, 20k, 200k, 2M, 20M, 200M. Приставки «k» и «M» означают кило (10 в 3-й степени) и мега (10 в 6-й степени) соответственно.

Для работы необходимо переключатель установить на нужную позицию сектора. Нас интересует сопротивление, соответственно, перед тем как измерить сопротивление мультиметром нужно выставить переключатель в сектор обозначенный значком «Ω».
Для удобства работы с прибором щупы имеют разную расцветку. Разницы нет, куда вставлять какой щуп но общепринятым правилом считается что черный щуп вставляется в клемму обозначенную «com» (сокращенно от common — общий), а красный щуп вставляется в клемму обозначенную «VΩCX+».

Перед выполнением любых измерений необходимо проверить работоспособности самого прибора, так как может оказаться обрыв в измерительной цепи (например, плохой контакт щупов). Для этого концы щупов закорачивают между собой. Если прибор исправен и в цепи нет обрыва, то на дисплее появятся нулевые показания. Возможно, показания будут не нулевыми, а тысячные части Ом. Это связано с сопротивлением проводов измерительных проводов и переходным сопротивлением между щупами и их клеммами.

При разомкнутых щупах на дисплее будет отображаться «1» (единица) с отметкой диапазона измерений.


Такими несложными действиями выполняется подготовка мультиметра для измерения сопротивления.
Некоторые мультиметры оснащаются полезной опцией, называемой «прозвонкой». Если установить переключатель режимов работы на значок диода, при замыкании щупов звучит сигнал (зуммер). Это позволяет проверять исправность цепей и прямые переходы полупроводников сопротивлением до 50 Ом на слух, не отвлекаясь на дисплей.

Как измерить сопротивление резистора мультиметром
С теорией ознакомились и на первый взгляд вроде бы все понятно, однако как показывает практика, именно при практических работах у людей часто возникают вопросы. Поэтому давайте попробуем провести измерения какого-нибудь элемента, например резистора.
Берем вот такой постоянный резистор. Это один из распространенных видов постоянных резисторов. Его сопротивление должно быть 50 кОм, я это точно знаю, так как покупал его в магазине. Проверяем, так ли это? Для этого прикладываем один щуп к одному концу, другой — к другому концу.

Перед тем как измерить сопротивление мультиметром необходимо выставить рабочий переключатель в нужный диапазон. На какую отметку устанавливать ползунок, если не известно номинал резистора?
Необходимо чтобы переключатель всегда находился в ближайшем большем положении измерений. Так как я заведомо знаю, что номинал резистора 50 кОм я выставляю переключатель в ближайшее большее положение , в данном случае это — 200k. Если установить переключатель в положении меньше соответствующему сопротивлению (на отметку 20k) на дисплее НЕ БУДУТ отображаться данные. Сработает внутренняя блокировка.


Это касается не только измерения сопротивлений , но и при измерении таких величин как напряжение и ток. Например если вы хотите измерить напряжение в розетке, а по шкале из рабочих диапазонов положения 200 и 750 В, переключатель необходимо установить в положение 750 В. Если установить переключатель в положение 200 В и сунуть щупы в розетку прибор от этого не повредится так как внутри имеется защитная блокировка на этот счет, но все равно вы ни каких данных не получите.
Еще один из резисторов который у меня оказался под рукой номиналом 10 Ом, давайте замерим его сопротивление.

Выставляем переключатель мультиметра на отметке 200 (это является ближайшее большее положение для данного номинала) и измеряем.
Друзья хочу отметить, что переключатель необходимо выставлять именно на ближайшее большее положение это этого будет зависеть точность измерений . Чем выше предел измерений от номинала измеряемого сопротивления, тем большую погрешность будет давать прибор.
Измеряем сопротивление переменного резистора
Друзья это мы замеряли сопротивление постоянного резистора, электрическое сопротивление которого не изменятся и не может регулироваться. Давайте теперь попробуем выполнить замеры для переменного резистора.

Отличие между ними в том, что сопротивление последнего можно менять вручную переключая ползунок в нужное положение.
У меня имеется переменный резистор на 10 кОм о чем свидетельствует надпись на нем.

Как измерить сопротивление мультиметром в этом случае? Все очень просто значение 10 кОм соответствует между двумя крайними контактами. Контакт который расположен по середине является «плавающим». Если приложить щупы между крайним и средним контактом и регулировать ползунок (крутить по или против часовой стрелки), то можно увидеть, как изменяется сопротивление в зависимости от положений ползунка.


Сопротивление должно равномерно и непрерывно возрастать или уменьшаться от нуля до номинального значения. Самая частая неисправность – исчезновение контакта токосъемника при прокручивании проявится показанием «бесконечности» прибором.
Проверка лампочек накаливания мультиметром
А теперь давайте рассмотрим практическое применение мультиметра в бытовых условиях. Часто дома возникают такие неприятные ситуации как неисправность освещения.
Причем причина может быть самой неординарной от перегорания самой лампочки до неисправности светильника или выключателя освещения либо куда хуже повреждение в распределительной коробке.
Наиболее частые неисправности, конечно же, является перегорание лампочки, поэтому прежде чем ковырять распредкоробку, нужно проверить целостности лампочки. Визуально осмотром целостности нити не всегда удается выявить неисправность. Тем более, не обязательно может произойти перегорание нити. Реже случается короткое замыкание в цоколе и токовых вводах (электродах).
Поэтому с помощью обычного тестера можно легко проверить не только домашнюю лампу накаливания, но и фару автомобиля или мотоцикла.
Как измерить мультиметром сопротивление нити? Нужно установить минимальный предел измерения «Ω». Одним щупом надо прикоснуться к корпусу цоколя, другой кончик прижать к верхнему контакту цоколя.
Как можно видеть сопротивление рабочей лампы накаливания мощностью 100 Вт составляет 36,7 Ом.

Если при измерениях на дисплее мультиметра будет отображаться «1», а для аналоговых (стрелочных) приборов показание «бесконечность» это будет свидетельствовать о внутреннем обрыве/перегорании нити в лампе.
На этом все дорогие друзья, надеюсь, в данной статье был полностью раскрыт вопрос как измерить сопротивление мультиметром. Если остались вопросы задавайте их в комментариях. Если статья была для вас интересной буду признателен за репост в соц.сетях.
Похожие материалы на сайте:
- Типы коронок по бетону для подрозетников
- Чем обжать НШВИ наконечники
- Зачем электрику ступенчатое сверло