Устройства вторичной коммутации что это
Перейти к содержимому

Устройства вторичной коммутации что это

  • автор:

Тяговые и трансформаторные подстанции — Схемы вторичной коммутации

К схемам вторичной коммутации относятся схемы управления, сигнализации, измерений, релейной защиты, автоматики и телемеханики. Их составляют обычно для цепей управления, сигнализации, релейной защиты, измерений и т. п. какого-либо присоединения, что облегчает понимание взаимосвязи работы аппаратов и приборов этих присоединений. Схемы вторичной коммутации отдельных присоединений взаимно увязывают друг с другом. Этими схемами в дальнейшем пользуются при составлении монтажных схем вторичной коммутации.
Принципиальные схемы вторичной коммутации изображают совмещенным и разнесенным способом. При совмещенном способе реле, приборы и другие аппараты показывают в собранном виде. В разнесенных схемах расчленяют обмотки и контакты реле и аппаратов и показывают их там, где через них образуются электрические цепи. При этом составляют отдельно разнесенные схемы для цепей переменного тока и цепей постоянного тока. Таким образом, разнесенная схема состоит из ряда строчек (цепей) переменного и постоянного тока, которые располагают по вертикали сверху вниз или по горизонтали слева направо в порядке последовательности действия схемы. Следовательно, как отдельные строчки, так и всю схему читают или сверху вниз, или слева направо. Разнесенные схемы при соответствующем навыке дают более ясное представление о работе того или иного устройства по сравнению с совмещенными схемами.
Каждый аппарат и контакт разнесенной схемы имеет буквенное. обозначение. В качестве буквенных обозначений принимают начальные буквы, определяющие название прибора или аппарата. Например, трансформатор тока — ТТ, катушка отключения выключателя — КО, катушка включения — КВ, реле токовое — РТ и т. д. Контактам аппарата и реле дают те же буквенные обозначения, что и самим аппаратам или реле. Например, блок-контакт выключателя обозначают буквой В, контакты реле токового — РТ и т. д. Одним и тем же аппаратам, находящимся в разных фазах, присваивают дополнительную букву, обозначающую фазу (ТТА, ТТС и РТ а, РТс), а если их несколько в одной фазе, то перед буквенным обозначением ставят номер позиции, например 1ТТС и 2ТТ. Положение контактов в схемах обозначают соответствующим невозбужденному состоянию реле или невключенному положению аппаратов.

ключ управления

Рис. 83. Общим вид ключа управления (а), таблица замыкания контактов (б) и изображение контактов в схемах (в и г)

Такое состояние принято называть нормальным, а контакты в этом случае называют размыкающими (замкнутые при невозбужденном состоянии реле или отключенном положении аппарата и размыкающиеся при возбужденной обмотке реле или включенном положении аппарата) или замыкающими (разомкнутые при невозбужденном состоянии реле или отключенном аппарате и замыкающиеся при возбужденной обмотке реле или включенном положении аппарата).

Для выполнения операций Включить и Отключить применяют различные кнопки и ключи управления. Ключ управления УП-5114 имеет (рис. 83) положения Включить, Включено, Отключить и Отключено. Операция Включить выполняется поворотом ключа на 45° вправо, а Отключить — на 45° влево. В обоих случаях после выполнения соответствующей операции ключ управления устанавливается в исходное положение под действием своих возвратных пружин. Ключ имеет оперативные и сигнальные контакты. Оперативные контакты 13-14 и 15-16 замыкаются при повороте рукоятки кратковременно при отключении, а контакты 9-10 и 11-12— при включении. После возврата рукоятки в вертикальное положение эти контакты размыкаются. Сигнальными контактами замыкаются цепи сигнализации, указывающие на операцию, выполненную ключом, а также ими замыкаются цепи несоответствия положения ключа и выключателя для аварийной сигнализации. В отличие от оперативных сигнальные контакты после съема команды (снятия руки с рукоятки) остаются замкнутыми или разомкнутыми. Изображение контактов ключей управления в схемах показано на рис. 83, в и г. На рис. 83, в контакт включается при повороте вправо (/) или влево (//) и отключается после возврата переключающего механизма (рукоятки) в нейтральное положение (0); на рис. 83, а контакт включается при повороте вправо (/) и остается включенным после возврата рукоятки в нейтральное положение (0); при повороте влево (//) контакт включается, а после возвращения в нейтральное положение (0) отключается.

Схема управления масляным выключателем.

Включение выключателя осуществляют поворотом рукоятки ключа управления КУ (рис. 84) на включение, при котором кратковременно замыкаются его оперативные контакты 9-10 в цепи 3-4 (в дальнейшем слово «цепь» будет опущено) и возбуждается контактор КВМ при замкнутом блок- контакте выключателя В, что указывает на его отключенное положение, и замкнутом блок-контакте катушки отключения КО, указывающем, что в это время не происходит отключения выключателя от релейной защиты. Контактами КВМ (1-2) замыкается цепь катушки включения КВ и происходит включение выключателя, после чего блок-контакты В в цепи 3-4 размыкаются, а в цепи 5-6 замыкаются. Если же включение выключателя произведено на КЗ и сработала релейная защита, то через замкнувшиеся контакты выходного реле защиты РЗ и блок- контакты В составляется цепь 7-6 на катушку отключения КО, которая отключает выключатель. При возбуждении КО размыкается ее контакт КО в цепи 3-4 и прекращается питание КВМ, а через замкнувшийся контакт КО в перемычке между К У и КО (3-6) поддерживается питание катушки отключения КО.

Рис. 84. Разнесенная схема управления масляным выключателем и аварийной сигнализации

Автоматическое включение производится контактом реле автоматического включения ВА (3-4). После включения выключателя его размыкающим блок-контактом В’ (3-4) прерывается питание КВМ, а замыкающим блок-контактом В (5-6) замыкается цепь последовательно включенных резистора R1, реле-повторителя включенного положения масляного выключателя ПМВ и катушки отключения КО (3-6). Ток, ограниченный в этой цепи резистором R1, недостаточен для срабатывания катушки КО, но достаточен для срабатывания реле ПМВ, которое указывает на включенное положение масляного выключателя. Реле ПМВ своим контактом замыкает цепь красной лампы ЛК (9-8). Светящаяся лампа ЛК указывает на включенное положение выключателя.

Выключатель со щита управления отключают поворотом ключа управления КУ, при этом замыкаются оперативные контакты 13-14 ключа КУ (5-6). Они шунтируют высокоомный резистор R1 и катушку реле ПМВ, подавая полное напряжение оперативного тока на катушку отключения КО. Последняя, возбудившись, отключает выключатель. После отключения выключателя цепь КО размыкается блок-контактом В (5-6). При этом блок-контакт В (3-4) замыкает цепь последовательно включенных резистора R1, реле ПМО и контактора КВМ. При малом токе в этой цепи срабатывает только реле ПМО, указывающее на отключенное положение выключателя. Контактом реле ПМО (11-10) замыкается цепь зеленой лампы ЛЗ, и ее ровный свет указывает на отключенное положение выключателя.
В том случае, когда отключение происходит вследствие срабатывания релейной защиты (через контакты РЗ), контактами ПМО и 1-2 КУ замыкается цепь несоответствия, в которую включено реле аварийного отключения РАО (15-12). Цепью несоответствия называют цепь, которая образуется при несоответствии положения ключа управления действительному состоянию управляемого выключателя (ключ находится в положении Включено, а выключатель отключен релейной защитой). Такая цепь 15-12 для реле РАО образуется через замкнутые контакты 1-2 КУ в его положении Включено и контакты ПМО реле-повторителя отключенного положения выключателя.
Реле аварийного отключения РАО одним замыкающим контактом РАО (15-17) подает питание на шинку аварийной сигнализации ША, а другим замыкающим контактом РАО переключает питание зеленой лампы па шинку мигания ШМ (13-10). При этом размыкается контакт РАО в цепи 11-10, отделяя лампу ЛЗ от шинки управления 111У. Из-за прерывистого питания шинки ШМ зеленая лампа горит мигающим светом, указывающим на аварийное отключение выключателя.
Реле пульс-пары 1РМС и 2РМС (19-14, 21-16), обеспечивающие прерывистое питание шпики ШМ, питаются от шинки аварийной сигнализации ША и поэтому начинают работать после возникновения несоответствия и возбуждения РАО. Реле 2РМС имеет размыкающие контакты с выдержкой времени при замыкании, а реле 1РМС — замыкающие контакты с выдержкой времени при размыкании. При появлении напряжения на шинке ША сначала возбуждается реле 1РМС (19- 14) и одним своим контактом замыкает цепь реле 2РМС (21-16), а другим контактом (23-25) подает на ШМ плюс от ШУ. Затем возбудившееся реле 2РМС размыкает цепь 1РМС, и последнее, обесточившись, своими контактами с некоторой выдержкой времени снимает плюс с ШМ (23-25) и размыкает цепь 21-16 2РМС. Это приводит к замыканию с выдержкой времени контактов реле 2РМС и вновь к возбуждению реле 1РМС и повторению в дальнейшем тех же циклов до тех пор, пока на шинке ША будет напряжение. Для снятия с ША напряжения производят квитирование (поворот) ключа управления в положение Отключено. После квитирования цепь несоответствия размыкается контактами 1-2 ключа КУ (15-12), реле РАО обесточивается и его контактом РАО (15-17) снимается напряженнее шинки ША.

Лампы ЛЗ и ЛК питаются через предохранители 1Пр и 2Пр. От исправности предохранителей, кроме сигнализации, зависит надежное отключение выключателя релейной защиты в случае возникновения КЗ. Если эти предохранители по какой- либо причине перегорят, то возможен отказ от работы защиты. Поэтому лампы ЛЗ и ЛК служат одновременно и для контроля за состоянием предохранителей в цепи защиты, и в случае погасания ламп принимают экстренные меры по восстановлению предохранителей. На подстанциях без дежурного персонала состояние предохранителей контролируют дополнительными сигнальными реле.

Рис. 85. Схема предупредительной сигнализации с реле РИС («) и РИС-32М (б)

Пусконаладочные работы при монтаже электроустановок — Вторичные цепи

§ 8. Вторичные цепи
Общие сведения. Взаимодействие элементов, входящих в состав устройств вторичной коммутации, а значит, и работоспособность этих устройств определяются в значительной степени электрическими соединениями между ними.
В результате электрических соединений образуются электрические цепи, которые называются цепями вторичной коммутации или просто вторичными цепями. Вторичная цепь, как и всякая электрическая цепь, содержит источник электроэнергии, приемник электроэнергии и проводники электрического тока, соединяющие источник с приемником. Это позволяет обеспечить питание элементов вторичных устройств энергией, необходимой для их работы.
Главное же назначение любой вторичной цепи — осуществление определенной части информационных преобразований, необходимых для управления соответствующим первичным оборудованием. Поэтому вторичная цепь должна включать элементы, с помощью которых в нее вводится информация в виде сигналов управления или контроля и выводится из данной вторичной цепи. Первые называют модулирующими элементами, а вторые демодулирующими. Для большинства вторичных цепей (рис. 47) приемником электроэнергии является демодулирующий элемент 3.

Отдельные вторичные цепи, например измерительные с первичными преобразователями в виде измерительных трансформаторов тока или термопар, имеют еще более простую структуру, поскольку трансформатор тока в этой цепи является одновременно и источником электроэнергии, и источником информации.

Рис. 47. Структурная схема вторичной цепи: I — источник питания. 2 — модулирующий элемент, 3 — демодулирующий элемент, 4 — проводники
Источниками энергии во вторичных цепях служат отдельные виды первичных преобразователей, например, измерительные трансформаторы и специальные источники питания: генераторы, аккумуляторы, силовые трансформаторы, называемые источниками оперативного тока. Проводниками электрического тока (по ним же передается и информация) являются медные изолированные провода и контрольные кабели с медными и алюминиевыми жилами. Воспринимающие органы вторичных аппаратов и приборов, а также органы непосредственного управления первичным оборудованием (например, обмотки возбуждения электрических машин, приводы коммутационных аппаратов, управляющие электроды ионных, электронных и полупроводниковых приборов) являются приемниками электроэнергии и демодулирующими элементами. Функции модулирующих элементов выполняют исполнительные органы вторичных аппаратов и приборов, характеризующиеся э. д. е., током или сопротивлением, которые изменяются соответственно с изменениями контролируемой величины. Следует иметь в виду, что первичные преобразователи по своему назначению являются информационными элементами. Они маломощны и имеют низкий к. п. д., а поэтому малопригодны для выполнения энергетических функций в качестве источников питания.

Кроме того, большинство первичных преобразователей должно работать в режиме, близком к холостому ходу, поскольку с увеличением нагрузки значительно ухудшаются их характеристики и особенно точность информации, вводимой ими в соответствующие цепи. Поэтому первичные преобразователи редко применяют в качестве источников питания. Если же это необходимо, то стремятся одни первичные преобразователи использовать только для выполнения энергетических функций в данной вторичной цепи, а другие для осуществления свойственных им информационных функций. Если в распоряжении имеется только один первичный преобразователь, схему вторичной цепи строят так, чтобы разделить во времени энергетическую и информационную функцию этого преобразователя.
Рассмотрим несколько конкретных примеров различного использования первичных преобразователей.

Рис. 49. Схема токовой защиты, показывающая разделение информационных и
энергетических функций между трансформаторами тока:
1, 2 и 3 — трансформаторы тока, 4 и 8 — проводники, 5 — отключающий электромагнит, 6 — замыкающий контакт, 7 — обмотка реле
На рис. 48 показана простая схема включения реле максимального тока, обмотка 2 которого подключена к трансформатору тока 1, а контакты 3 управляют цепью отключающего электромагнита 4 выключателя, питаемой от независимого источника оперативного тока в виде аккумуляторной батареи 5. Очевидно, здесь информационные функции возложены преимущественно на трансформатор тока, являющийся первичным преобразователем, а энергетические функции — на аккумуляторную батарею.

Рис. 51. Схема, показывающая совмещение информационных и энергетических функций у трансформатора тока:
1 и 2 — обмотки, 3 — соединительные провода
Разделение функций между трансформаторами тока видно из схемы максимальной токовой защиты (рис. 49). Здесь вторичная обмотка трансформатора тока 1, обмотка 7 реле и проводники 8 образуют цепь контроля, а вторичная обмотка промежуточного быстронасыщающего трансформатора тока 3, подключенного ко второму трансформатору тока 2, замыкающий контакт 6 реле, обмотка отключающего электромагнита 5 и проводники 4 составляют цепь питания отключающего электромагнита.

Рис. 50. Схема токовой защиты, показывающая разделение во времени информационных и энергетических функций для одного трансформатора тока:
1,3 и б— обмотки, 2 и 5—соединительные провода, 4 и 7 — контакты
На рис. 50 показана вторичная цепь максимальной токовой защиты с реле косвенного действия, где энергетические и информационные функции одного и того же трансформатора тока разделены во времени. Вначале, до срабатывания реле, образуется цепь контроля (вторичная обмотка В простейшей схеме (рис. 51) трансформатор тока выполняет одновременно и энергетические функции, питая обмотку отключающего электромагнита, и информационную функцию, обеспечивая контроль тока во вторичной цепи (вторичная обмотка трансформатора тока 1, обмотка электромагнита 2 и соединительные провода 3).

Классификация вторичных цепей.

Вторичные цепи, входящие в состав вторичных устройств, различают по месту в цепи информационных преобразований, по степени сложности, по характеру выполняемой той или иной цепью функции и по ряду других признаков.
По месту в цепи информационных преобразований вторичные цепи разделяют на измерительные, оперативные, исполнительные и цепи связи (передаточные звенья). В измерительных цепях начинаются информационные преобразования. В них осуществляются отбор информации о состоянии управляемого объекта и ее первичная переработка в сигналы, удобные для дальнейших преобразований и передачи информации. В состав этих цепей входят первичные преобразователи (датчики, измерительные трансформаторы, шунты, добавочные сопротивления, емкостные делители напряжения, выпрямители и др.).
Оперативные цепи составляют наиболее обширную группу вторичных цепей. В них поступает информация от измерительных цепей и осуществляются основные преобразования, определяющие наиболее целесообразные действия (операции) вторичного устройства в соответствии с состоянием управляемого объекта и заданной программой. Электрическую энергию эти цепи, как правило, получают от самостоятельного источника питания.
Назначение исполнительных цепей — обеспечить исполнение команд, поступающих в виде соответствующих сигналов от оперативных цепей, путем непосредственного воздействия на управляемый объект через его элемент управления (включение или отключение выключателя, изменение тока в цепи возбуждения генератора, переключение ответвлений трансформатора и др.).
Для увеличения мощности сигналов, поступающих в исполнительную цепь (за счет энергии источников питания), в ее состав входят усилители мощности. Если для приведения в действие органа непосредственного управления контролируемого объекта используют неэлектрическую энергию, то в исполнительные цепи входят неэлектрические звенья (пневматические, гидравлические, механические).
Только в самых простых вторичных устройствах (см. рис. 51) весь процесс информационных преобразований осуществляется в одной вторичной цепи. Большая же часть вторичных устройств содержит значительное количество взаимосвязанных вторичных цепей.
Если рассматривать любую пару взаимосвязанных вторичных цепей, то каждая предыдущая вторичная цепь является управляющей, а последующая, получающая информацию от предыдущей вторичной цепи, управляемой вторичной цепью. Связь между отдельными вторичными цепями может осуществляться без применения специальных электрических цепей, с помощью преобразующего элемента вторичного аппарата (см. рис. 48), воспринимающий элемент которого находится в управляющей цепи, а исполнительный элемент — в управляемой цепи. Однако во многих случаях такая связь между вторичными цепями выполняется с помощью специальных цепей, называемых цепями связи.
Применение цепей связи позволяет согласовывать между собой соответствующие вторичные цепи и передавать информацию с достаточной точностью при необходимом уровне сигнала.
Наряду с цепями связи, по которым сигналы последовательно передаются от предыдущей вторичной цепи в последующую, широко применяют цепи обратной связи, по которым величина, пропорциональная выходным сигналам, вводится в предыдущие цепи и складывается с входным сигналом, усиливая или ослабляя его. В первом случае обратная связь называется положительной (ПОС), а во втором случае — отрицательной (ООС). Кроме этого, различают жесткую обратную связь (ЖОС), действие которой проявляется непрерывно, и гибкую обратную связь (ГОС), вступающую в работу в динамическом режиме (в момент изменения уровня сигнала).
По степени сложности вторичные цепи можно разделить на две группы: простые и сложные. Отличительным признаком сложной цепи является наличие ответвлений, образующих обходные (побочные) цепи, в которых осуществляются дополнительные функции (например, защита отдельных элементов основной цепи от перенапряжений). Вторичные цепи также классифицируют по характеру возлагаемых на них функций: цепи измерения, управления, сигнализации, защиты, блокировки и т. д.

Рис. 52. Структурная схема вторичного устройства: О — управляемый объект, ПП — первичный преобразователь, IM и 2М — модулирующие элементы, 1Д и 2Д — демодулирующие элементы, Ш и 2П — передаточные звенья. ИО — исполнительный орган, ЭИУ— элемент непосредственного управления, ИоТ — источник оперативного тока. ИП — источник питания
В отдельных случаях принято называть цепи соответственно названию вторичного элемента, относящегося к этой цепи: цепь эмиттера, коллектора, базы (для полупроводниковых приборов); цепь сетки, катода, накала, анода (для электронных ламп); цепи обмоток смещения, обратной связи, управления и рабочих обмоток (магнитного усилителя).

Рис. 53. Различные схемные решения на основе промежуточного реле:
а — нормальное включение, б — преобразование кратковременного импульса в длительный, в — преобразование длительного импульса в кратковременный, г — преобразование постоянного напряжения в пульсирующее, д — повышение термической устойчивости реле, е — размножение управляющих импульсов: / и 2 — контакты
Рассмотрим структурную схему вторичного устройства, в которой достаточно полно отражены различные виды вторичных цепей и их взаимосвязь (рис. 52). Сведения от управляемого объекта О поступают в измерительную цепь через первичный преобразователь Я/7, преобразуются и вводятся в оперативные цепи модулирующим элементом 1М. В оперативных цепях осуществляется обработка полученных сигналов демодулирующими элементами 1Д и 2Д с последовательной передачей от первой до последней (в нашем примере до третьей) цепи при помощи передаточных
звеньев 1П и 2П. Необходимую энергию для питания оперативных цепей получают от источника оперативного тока ИОТ. Сигналы управления от последней оперативной цепи поступают в исполнительный орган ИО, который через элемент непосредственного управления ЭНУ воздействует на управляемый объект. Необходимая энергия в данном случае поступает от источника питания ИП. Источник питания ИП, исполнительный орган ИО и элемент непосредственного управления ЭНУ составляют исполнительную цепь.

устройства вторичной коммутации

3.6.23 устройства вторичной коммутации: Приборы и аппараты управления, измерения, защиты, автоматики и цепи их соединений.

Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .

  • Устройства ввода идентификационных признаков
  • устройства горочной механизации и автоматизации

Смотреть что такое «устройства вторичной коммутации» в других словарях:

  • Присоединение вторичной коммутации — Вторичная цепь управления, сигнализации, трансформаторов напряжения и др., ограниченная одной группой предохранителей или автоматическим выключателем, а также вторичная цепь трансформаторов тока одного назначения (защита, измерение) Источник:… … Словарь-справочник терминов нормативно-технической документации
  • ФЕРп 2001-01: Электротехнические устройства (редакция 2008 г.). Электротехнические устройства. Федеральные единичные расценки на пусконаладочные работы — Терминология ФЕРп 2001 01: Электротехнические устройства (редакция 2008 г.). Электротехнические устройства. Федеральные единичные расценки на пусконаладочные работы: Агрегат Совокупность двух и более механизмов, работающих в комплексе и… … Словарь-справочник терминов нормативно-технической документации
  • ГЭСНп 2001-01: Электротехнические устройства (редакция 2008 г.). Электротехнические устройства. Государственные элементные сметные нормы на пусконаладочные работы — Терминология ГЭСНп 2001 01: Электротехнические устройства (редакция 2008 г.). Электротехнические устройства. Государственные элементные сметные нормы на пусконаладочные работы: Агрегат Совокупность двух и более механизмов, работающих в комплексе… … Словарь-справочник терминов нормативно-технической документации
  • ГЭСНп 81-04-01-2001: Государственные элементные сметные нормы на пусконаладочные работы. Сборник 1. Электротехнические устройства (издание 2008 г. с учетом изменений и дополнений) — Терминология ГЭСНп 81 04 01 2001: Государственные элементные сметные нормы на пусконаладочные работы. Сборник 1. Электротехнические устройства (издание 2008 г. с учетом изменений и дополнений): Агрегат Совокупность двух и более механизмов,… … Словарь-справочник терминов нормативно-технической документации
  • ТЕРп Калининградской области 2001-01: Электротехнические устройства. Территориальные единичные расценки на пусконаладочные работы в Калининградской области — Терминология ТЕРп Калининградской области 2001 01: Электротехнические устройства. Территориальные единичные расценки на пусконаладочные работы в Калининградской области: Агрегат Совокупность двух и более механизмов, работающих в комплексе и… … Словарь-справочник терминов нормативно-технической документации
  • Ценник 1: Электротехнические устройства — Терминология Ценник 1: Электротехнические устройства: Агрегат Совокупность нескольких механизмов, работающих в комплексе и обеспечивающих заданный технологический процесс производства Определения термина из разных документов: Агрегат Аппарат… … Словарь-справочник терминов нормативно-технической документации
  • ТСН 2001.5-1: Территориальные сметные нормативы для Москвы. Глава 5. Пусконаладочные работы. Сборник 1. Электротехнические устройства — Терминология ТСН 2001.5 1: Территориальные сметные нормативы для Москвы. Глава 5. Пусконаладочные работы. Сборник 1. Электротехнические устройства: Агрегат Совокупность нескольких механизмов (не менее двух, работающих в комплексе и обеспечивающих … Словарь-справочник терминов нормативно-технической документации
  • распределенная система управления вторичной сетью связи — распределенная система управления Система управления вторичной сетью связи, в которой управляющее устройство сети связи анализирует состояние участка сети связи и вырабатывает решения о перераспределении потоков информации, об ограничении и… … Справочник технического переводчика
  • ГОСТ 21835-84: Устройства коммутационной техники связи управляющие. Термины и определения — Терминология ГОСТ 21835 84: Устройства коммутационной техники связи управляющие. Термины и определения оригинал документа: 31. Асинхронный режим работы программного управляющего устройства коммутационной техники связи Режим работы программного… … Словарь-справочник терминов нормативно-технической документации
  • Распределенная система управления вторичной сетью связи — 14. Распределенная система управления вторичной сетью связи Система управления вторичной сетью связи, в которой управляющее устройство сети связи анализирует состояние участка сети связи и вырабатывает решения о перераспределении потоков… … Словарь-справочник терминов нормативно-технической документации

Обслуживание вторичных цепей постоянного и переменного тока

Вторичные цепи — электрические цепи, по которым происходят управление первичными цепями (силовыми, то есть цепями основных потребителей электроэнергии) и контроль за их работой. К вторичным цепям относятся цепи управления, в том числе и автоматического, цепи сигнализации, измерения.

Обслуживание вторичных цепей постоянного и переменного тока

Вторичные цепи постоянного и переменного тока напряжением до 1000 В служат для питания и соединения между собой аппаратов и приборов управления, защиты, сигнализации, блокировки, измерения. Различают следующие основные виды вторичных цепей:

  • токовые цепи и цепи напряжения, в которых устанавливаются измерительные приборы, измеряющие электрические параметры (ток, напряжение, мощность и др.), а также реле и другие аппараты;
  • оперативные цепи, служащие для подачи постоянного или переменного оперативного тока к исполнительным органам. К ним относятся установленные во вторичных цепях переключающие и коммутирующие устройства (электромагниты, контакторы, автоматические выключатели, рубильники, переключатели, предохранители, испытательные блоки, ключи и кнопки и т. д.).

Токовые цепи, идущие от измерительных ТТ, используются в основном для питания:

  • измерительных приборов (показывающих и регистрирующих): амперметров, ваттметров и варметров, счетчиков активной и реактивной энергии, телеизмерительных устройств, осциллографов и др.;
  • релейной защиты: токовых органов максимальной, дифференциальной, дистанционной, защиты от замыкания на землю, устройств резервирования отказа выключателей (УРОВ) и др.;
  • автоматических устройств АПВ, АРВ синхронных компенсаторов, приборов регулирования перетоков мощности, противоаварийной автоматики и т.д.;
  • некоторых устройств блокировки, сигнализации и др.

Кроме того, токовые цепи используются для питания устройств преобразования переменного тока в постоянный, применяемых в качестве источников оперативного тока.

При построении токовых цепей следует выполнять определенные правила.

Все устройства токовых цепей в зависимости от их количества, протяженности, потребляемой ими мощности и требуемой точности могут подключаться к одному или нескольким источникам тока.

В многообмоточных трансформаторах тока каждая вторичная обмотка рассматривается как независимый источник тока.

Вторичные устройства, присоединяемые к ТТ одной фазы, подключаются к его вторичной обмотке последовательно и должны составлять с соединительными цепями замкнутый контур. Размыкание цепи вторичной обмотки ТТ при наличии тока в его первичной цепи недопустимо, в связи с этим во вторичных токовых цепях нельзя ставить автоматические выключатели, рубильники и предохранители.

Для защиты персонала в случае повреждений ТТ (при перекрытии изоляции между первичной и вторичной обмотками) должно предусматриваться защитное заземление во вторичных цепях ТТ в одной точке: на ближайшей от ТТ сборке зажимов или на зажимах ТТ.

Для защит, объединяющих несколько комплектов ТТ, заземление цепей производится также в одной точке; в этом случае допускается заземление через предохранитель-разрядник с пробивным напряжением не выше 1000 В и шунтирующий резистор 100 Ом для снятия статического заряда.

На рис. 1 показано подключение токовых цепей к измерительным приборам и устройствам защиты и автоматики и их распределение по ТТ для схемы с тремя выключателями на два присоединения. Учитывается особенность первичной схемы, которая состоит в возможности питания каждой из двух линий от обеих систем шин. Поэтому вторичные токи от ТТ (например, ТТ5, ТТ6 и т. д.), подводимые к реле и приборам одного первичного присоединения, суммируются (за исключением дифференциальной защиты шин и УРОВ).

Необходимо иметь в виду, что упрощенно показанные на рисунках устройства защиты, ОАПВ и т. д. состоят в действительности из нескольких реле и аппаратов, связанных между собою электрическими цепями. Например, на линии, показанной на рис. 2, где перетоки мощности могут менять свое направление, подключены два счетчика со стопорами для измерения активной энергии, один из которых Wh1 учитывает передаваемую энергию только в одном направлении, а другой Wh2 — в обратном. Затем вторичные токовые цепи проходят через три амперметра, токовые обмотки ваттметpa W и варметра Var, приборы противоаварийной автоматики 1, осциллограф и аппаратуру телеизмерения 2.

В нулевой провод включается фиксирующий амперметр ФА, с помощью которого определяется место повреждения на линии. На рис.3 показаны токовые цепи дифференциальной защиты шин. От ТТ линий Л1, ЛЗ и Л5, отходящие от I системы шин, или Л2, Л4 и Л6, отходящих от II системы шин (системы шин на рисунке не показаны) и от автотрансформатора T1 (или Т2), вторичные токовые цепи проходят через свои испытательные блоки, после чего суммарный ток всех присоединений I или II систем шин (при нормальном режиме сумма вторичных токов равна нулю) через испытательный блок БИ1 поступает в комплект реле дифференциальной защиты.

В случае, когда какие-либо присоединения не находятся в работе (в ремонте и т.д.), с соответствующих испытательных блоков снимаются рабочие крышки, в результате чего вторичные цепи ТТ замыкаются накоротко и заземляются, а цепи, идущие к реле защиты, разрываются.

Схема распределения защит, автоматики и измерительных приборов по сердечникам ТТ для двух линий 330 или 500 кВ на подстанции с «полуторной» схемой соединений

Рис. 1. Схема распределения защит, автоматики и измерительных приборов по сердечникам ТТ для двух линий 330 или 500 кВ на подстанции с «полуторной» схемой соединений: 1—устройство резервирования отказа выключателей и противоаварийной автоматики линий; 2 — дифференциальная защита шин; 3 — счетчики; 4 — измерительные приборы (амперметры, ваттметры, варметры); 5 — противоаварийная автоматика; 6 — телеизмерение; 7 — резервные защиты и противоаварийная автоматика; 8 — основная защита ВЛ; 9 —однофазное АПВ (ОАПВ)

Что касается испытательного блока ВИ1, то в случае вывода из работы дифференциальной защиты шин — при снятии рабочей крышки— замыкаются все токовые цепи, подключенные к данной системе шин, и одновременно от защиты отсоединяются цепи оперативного постоянного тока (на схеме последние не показаны).

Схема токовых цепей для линии 330 500 кВ, питаемой от двух систем шин

Рис. 2. Схема токовых цепей для линии 330 500 кВ, питаемой от двух систем шин: 1 — осциллограф; 2 — аппаратура телеизмерения

Схема токовых цепей дифференциальной защиты шин 330 или 500 кВ

Рис. 3. Схема токовых цепей дифференциальной защиты шин 330 или 500 кВ

В схеме дифференциальной защиты предусмотрен миллиамперметр mA, включенный в нулевой провод ТТ, с помощью которого при нажатии кнопки К оперативный персонал периодически проверяет ток небаланса защиты, что очень важно для предупреждения ее ложного срабатывания.

Организация вторичных цепей напряжения в ОРУ 330 или 500 кВ, выполненных по полуторной схеме

Рис. 4. Организация вторичных цепей напряжения в ОРУ 330 или 500 кВ, выполненных по полуторной схеме: 1 — к защите, измерительным приборам и другим устройствам автотрансформатора; 2 — к защите, измерительным приборам и другим устройствам линии Л2; 3 — к защите, измерительным приборам и другим устройствам II системы шин; 4 — к РУ 110 или 220 кВ; 5 — к резервному трансформатору с. н. 6 или 10 кВ; ПР1, ПР2 — переключатели цепей напряжения; 6 — шинки напряжения II системы шин

Цепи напряжения, идущие от измерительных трансформаторов напряжения (ТН), используются в основном для питания:

  • измерительных приборов (указывающих и регистрирующих) — вольтметров, частотомеров, ваттметров, варметров,
  • счетчиков активной и реактивной энергии, осциллографов, телеизмерительных устройств и др.
  • релейной защиты — дистанционной, направленной, от повышения или понижения напряжения и др.;
  • автоматических устройств — АПВ, АВР, АРВ, противоаварийной автоматики, автоматической частотной разгрузки (АЧР), приборов регулирования частоты, перетоков мощности, блокировочных устройств и др.;
  • органов контроля наличия напряжения. Кроме того, они используются для питания выпрямительных устройств, применяемых в качестве источников постоянного оперативного тока.

Чтобы получить представление о том, как формируются вторичные цепи напряжения, обратимся к рис. 4. На рисунке показаны две цепи полуторной схемы электрических соединений РУ 500 кВ: к одной присоединены два автотрансформатора Т связи с РУ 500 кВ, к другой — две воздушные линии Л1 и Л2 500 кВ. Из рисунка видно, что в полуторной схеме ТН установлены на всех присоединениях — на линиях и автотрансформаторах и на обеих системах шин. У каждого из ТН имеются две вторичные обмотки — основная и дополнительная. Они имеют разные схемы соединений.

Основные обмотки соединяются звездой и используются для питания цепей защиты и измерений. Дополнительные обмотки соединены по схеме разомкнутого треугольника. Они используются в основном для питания цепей защиты от замыкания на землю (благодаря наличию па выводах обмотки напряжения нулевой последовательности 3U0).

Цепи от вторичных обмоток ТН выводятся также на сборные шинки напряжения, к которым подключаются цепи обмоток ТН, а также цепи напряжения различных вторичных устройств.

Наиболее разветвленные шинки и вторичные цепи напряжения создаются у ТН сборных шин 500 кВ. От этих шинок 6 подается с помощью переключателей ПР1 и ПР2 резервное питание цепей защиты (при выходе из строя линейного ТН), измерительных приборов и расчетных счетчиков, установленных на этих линиях (в последнем случае с помощью реле фиксации РФ).

Питание расчетных счетчиков на линиях для соблюдения точности их показаний осуществляется своими контрольными кабелями, специально рассчитанными для этой цели. К выводам н и bи вторичной обмотки разомкнутого треугольника подключено устройство РКН для контроля целости цепи нулевой последовательности 3U0. В нормальных условиях персонал, пользуясь кнопкой К, периодически проверяет по миллиамперметру тА наличие напряжения небаланса и исправность обмотки разомкнутого треугольника ТН и его цепей.

Контроль напряжения в цепях основных обмоток осуществляется также при помощи реле РКН (на рис. 4 оно подключено к цепям а и с ТН5). Выполнение цепей напряжения имеет некоторые общие правила. Например, ТН должны защищаться от всех видов КЗ во вторичных цепях автоматическими выключателями, имеющими вспомогательные контакты для сигнализации неисправности. Если вторичные цепи разветвлены незначительно и вероятность повреждений в них мала, автоматические выключатели допускается не устанавливать, например, в цепи 3U0 на ТН шин РУ с. н. 6—10 кВ и ГРУ 6—10 кВ.

В сетях с большим током замыкания на землю во вторичных цепях обмоток ТН, соединенных в разомкнутый треугольник, автоматические выключатели также не предусматриваются. При возникновении повреждений в таких сетях поврежденные участки быстро отключаются соответствующими защитами сети и соответственно быстро снижается напряжение 3U0. Поэтому в цепях, идущих, например, от выводов н и bн ТН линии и шин 500 кВ, автоматических выключателей нет. В сетях с малым током замыкания на землю у ТН между выводами н и bп может длительно существовать 3U0 при КЗ во вторичных цепях ТН может повредиться. Поэтому здесь необходимо устанавливать автоматические выключатели.

Для защиты цепей напряжения, прокладываемых от неразомкнутых вершин треугольника (и, ф), предусматриваются отдельные автоматические выключатели. Кроме того, во всех вторичных цепях ТН предусматривается установка рубильников для создания в них видимого разрыва, что необходимо для обеспечения безопасного ведения ремонтных работ на ТН (исключается подача напряжения на вторичные обмотки ТН от постороннего источника). В комплектном распределительном устройстве в схеме ТН на шинах РУ с. н. 6—10 кВ разъединители не устанавливаются, так как видимый разрыв обеспечивается при выкатывании тележки с ТН из шкафа КРУ.

Вторичные обмотки и вторичные цепи ТН должны иметь защитное заземление. Оно выполняется путем соединения с заземляющим устройством одного из фазных проводов или нулевой точки вторичных обмоток. Заземление вторичных обмоток ТН выполняется на ближайшей от ТН сборке зажимов или у выводов самого ТН.

В проводах заземленной фазы между вторичной обмоткой ТН и местом заземления рубильника, переключатели, автоматические выключатели и другие аппараты не устанавливаются. Заземленные выводы обмоток ТН не объединяются, а присоединенные к ним жилы контрольного кабеля прокладываются до места своего назначения, например до своих шинок. Не объединяются заземленные выводы разных ТН.

В эксплуатации возможны случаи повреждения или вывода в ремонт ТН, вторичные цепи которых подключены к устройствам защиты, измерения, автоматики, учета и др. Чтобы не допустить нарушения их работы, применяется резервирование.

Схема ручного переключения вторичных цепей ТН в ОРУ, выполненном по полуторной схеме

Рис. 5. Схема ручного переключения вторичных цепей ТН в ОРУ, выполненном по полуторной схеме: 1 — питание шинок напряжения от ТН линии (например, Л1); 2 — к реле контроля напряжения; 3 — цепи защиты, АПВ и противоаварийной автоматики; 4 — аппаратура телеизмерения; 5 — осциллограф; 6 — к шинкам напряжения I системы шин; 7 — к шинкам напряжения II системы шин

В полуторной схеме (рис. 5) в случае вывода ТН линий резервирование осуществляется от ТН, установленных на шинах, с помощью переключателя ПР1 для цепей, идущих от основной обмотки, соединенной в звезду, и переключателя ПР2 для цепей разомкнутого треугольника. С помощью переключателей ПР1 и ПР2 вторичные шинки напряжения линии подключаются к своему ТН (рабочая схема) или к ТН первой или второй систем шин (резервная схема). В последнем случае это переключение осуществляется переключателями ПРЗ и ПР4.

Способ резервирования питания цепей напряжения одной линии, например Л1 на рис. 4 (при выводе ее ТН в ремонт), от другой линии, например Л2, не следует применять, так как при КЗ и отключении линии Л2 цепи напряжения защиты линии Л1 лишаются питания.

Схема ручного переключения вторичных цепей ТН в распредустройстве с двумя системами шин

Рис. 6. Схема ручного переключения вторичных цепей ТН в распредустройстве с двумя системами шин: 1 — к измерительным приборам и другим устройствам I системы шин на ГЩУ; 2 —к измерительным приборам и другим устройствам II системы шин на ГЩУ

В схемах с двойной системой сборных шин трансформаторы напряжения должны взаимно друг друга резервировать (при выводе из работы одного из ТН) с помощью переключателей ПР1—ПР4 (рис. 6). Для этого при переключении шиносоединительный выключатель ШСВ должен быть включен. В схемах с двумя системами сборных шин при переключении присоединений с одной системы шин на другую предусматривается соответствующее автоматическое переключение цепей напряжения.

Схема автоматического переключения с помощью вспомогательных контактов разъединителей вторичных цепей шинных ТН в ЗРУ 6—10 кВ

Рис. 7. Схема автоматического переключения с помощью вспомогательных контактов разъединителей вторичных цепей шинных ТН в ЗРУ 6—10 кВ

В ЗРУ 6—10 кВ переключения производятся вспомогательными контактами шинных разъединителей (рис. 7). Например, при включенном разъединителе Р2 линии Л1 цепи напряжения через вспомогательные контакты этого разъединителя подключены с одной стороны к шинкам напряжения II системы шин, а с другой стороны — к защите и приборам этой линии.

При переводе линии Л1 на I систему шин включается разъединитель Р1, а разъединитель Р2 отключается. Цепи напряжения линии Л1 переводятся с помощью вспомогательных контактов на питание от THI системы шин. Таким образом, не прерывается питание цепей напряжения при переключении линии Л1 с одной системы шин на другую. Тот же принцип соблюдается при оперативных переключениях линии Л2 и других присоединений.

На линиях 35 кВ и выше, подключенных к двойной системе сборных шин, переключение цепей напряжения производится с помощью контактов реле-повторителей положения шинных разъединителей. При переводе первичных присоединений на другую систему сборных шин переключаются все цепи напряжения, в том числе и заземленные цепи основных и дополнительных обмоток.

При этом исключается возможность объединения заземленных цепей двух ТН. Это обстоятельство является важным. Как показал опыт эксплуатации, объединение заземленных точек разных ТН может привести к нарушению нормальной работы релейной защиты и устройств автоматики и поэтому недопустимо.

Цепи напряжения шкафа ТН КРУ 6 кВ

Рис. 8. Цепи напряжения шкафа ТН КРУ 6 кВ: 1 — цепи напряжения, защиты и других устройств резервного трансформатора с. н. 6 кВ; 2 — цепь сигнала «Отключение автоматического выключателя ТН»; 3 — шкаф трансформатора напряжения КРУ

На рис. 8 показаны цепи напряжения в шкафу ТН КРУ 6 кВ с. н. Здесь обмотки двух однофазных ТН соединены в открытый треугольник. Трансформатор напряжения со стороны высшего напряжения подключается только через разъемные контакты, а со стороны низшего через разъемные контакты и автоматический выключатель, от вспомогательных контактов которого предусматривается передача на щит управления сигнала об отключении автоматического выключателя АВ.

В эксплуатации очень важно осуществлять тщательный контроль за надежным состоянием разъемных контактов в шкафах КРУ и КРУН и отходящих от них вторичных цепей напряжения, оперативного тока и т. д.

Цепи оперативного тока. Широкое распространение в электроустановках получил оперативный ток.

Выполнение цепей оперативного тока также должно предусматривать их защиту от токов КЗ. Для этого питание оперативным током вторичных цепей каждого присоединения производится через отдельные предохранители или автоматические выключатели с вспомогательными контактами для сигнализации их отключения. Применение автоматических выключателей предпочтительнее, чем применение предохранителей.

Питание оперативным током цепей релейной защиты и управления выключателями выполняется, как правило и через отдельные автоматические выключатели (раздельно от цепей сигнализации и блокировки).

Для ответственных присоединений (линии электропередачи, ТН 220 кВ и выше и СК) отдельные автоматические выключатели устанавливаются также для основных и резервных защит.

Цепи оперативного постоянного тока должны иметь устройства контроля изоляции, обеспечивающие подачу предупреждающего сигнала при снижении сопротивления изоляции ниже установленного значения. Для цепей постоянного тока предусматриваются измерения сопротивления изоляции на каждом полюсе.

Для надежной работы энергообъектов и их защиты необходимо контролировать наличие питания цепей оперативного тока каждого присоединения. Предпочтительнее осуществлять контроль с помощью реле, которые позволяют подать предупреждающий сигнал при исчезновении напряжения оперативного тока.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *