К какой категории антенн относится патч антенна
Перейти к содержимому

К какой категории антенн относится патч антенна

  • автор:

Патч-антенна

Патч-антенна — тип узкополосной СВЧ антенны, состоящей из плоского металлического лепестка, закрепленного на некотором расстоянии параллельно пластине земли. Обычно, эту конструкцию заключают в пластиковый радиопрозрачный кожух, как для защиты от механических повреждений, так и из эстетических соображений. Такие антенны просты в изготовлении и легко могут быть модифицированы под определенные технические условия. Патч-антенна может использоваться как отдельное устройство, так и в качестве облучателя для построения более эффективных систем на основе параболлических отражателей. Патч-антенны очень похожи на микрополосковые антенны, которые есть ни что иное, как патч-антенны, размещенные на диэлектрической подложке.

Конструкция антенны

Простейшая патч-антенна представляет собой квадратный лепесток со стороной равной половине длины волны, расположенный над большей по размеру пластине земли. Чем больше пластина земли, тем лучше направленность антенны и больше ее габариты. Нередко пластину земли делают лишь немногим больше лепестка. Ток протекает в том же направлении, что и фидер, так, что векторный потенциал и, соответственно, электрическое поле следуют за током, как обозначено на рисунке стрелкой E. Простая патч-антенна излучает линейно поляризованную волну. Ее излучение может быть рассмотрено как излучение двух щелей по краям антенны или, эквивалентно, как результат протекание тока в лепестке и пластине земли.

Коэффициент усиления

Коэффициент усиления прямоугольной микрополосковой патч-антенны с воздушным диэлектриком может быть грубо оценен следующим образом. Поскольку длина лепестка равна половине длины волны, лепесток можно предствать как полуволновой диполь, что дает около 2 дБ усиления в вертикальной оси лепестка. Если лепесток квадратный, его можно рассматривать как два полуволновых диполя, разнесенных на четверть длины волны, что дает ещё 2-3 дБ усиления. Пластина земли экранирует излучение с обратной стороны антенны и сокращает среднюю по объему излучаемую мощность вдвое, что дает еще 2-3 дБ. Сложив все вместе, получим коэффициент усиления патч-антенны равный 7-9 дБ, что неплохо согласуется с более строгими оценками.

Диаграмма направленности

Типичная диаграмма направленности линейно-поляризованной патч-антенны на 900 МГц показана ниже. На рисунке показано сечение в горизонтальной плоскости. Диаграмма направленности в вертикальной плоскости похожа, но не идентична. Масштаб графика логарифмический, так что, например, мощность, излучаемая в направлении 180° (90° влево от вертикальной оси) на 15 дБ меньше мощности основного лепестка. Ширина основного лепестка около 65°, коэффициент услиения в направлении луча 9 dBi. Бесконечно большая пластина земли полностью экранирует заднюю полусферу (от 180° до 360°), однако, пластина земли реальной антенны имеет конечные размеры. Поэтому мощность излучения в обратном направлении (задний лепесток диаграммы направленности) меньше мощности излучения основного лепестка всего лишь примерно на 20 дБ.

Полоса пропускания

Ширина полосы пропускания патч-антенны сильно зависит от расстояния между лепестком и землей. Чем ближе лепесток к земле, тем меньше энергии излучается и больше запасается в емкости и индуктивности и тем выше добротность антенны. Грубо, полосу пропускания антенны можно оценить по формуле:

\frac<<\delta f></p>
<p>> >> = \frac> >>\frac» width=»» height=»» />,</p>
<p>где <img decoding=— расстояние от лепестка до земли, W— ширина лепестка (обычно половина длины волны), Zo— импеданс воздушного промежутка между лепестком и землей, а Rrad— сопротивление излучения антенны. Относительная полоса пропускания антенны линейно зависит от ее толщины. Характерное значение импеданса воздушного промежутка 377 Ом, а сопротивления излучения 150 Ом, что позволяет упростить формулу:

\frac<<\delta f></p>
<p>> >> = 1,2\left( > \right)» width=»» height=»» /></p><div class='code-block code-block-2' style='margin: 8px 0; clear: both;'>
<!-- 2paikmaster -->
<script src=

W

Для квадратного лепестка на 900 МГц, будет приблизительно 16 см. Толщина антенны в 1,6 см даст относительную ширину полосы пропускания в 1,2(1,6/16) ≈ 12 %, или 120 МГц.

Патч-антенны легко изготавливать печатным способом. В этом случе они получаются немного компактнее, но, поскольку их толщина меньше, полоса пропускания также уменьшаестся из-за увеличения добротности.Таким образом, полоса пропускания антенны обратно пропорциональна квадратному корню из эффективной диэлектрической проницаемости подложки. Также очевидно, что полоса пропускания расширяется с увеличением толщины подложки. Характерная ширина полосы пропускания печатной патч-антенны составляет единицы процентов. Часто, пластина земли реальных патч-антенн лишь немного больше лепестка, что также уменьшает эффективность. Способ возбуждения антенны также влияет на ее полосу пропускания.

Прямоугольные (не квадратные) антенны могут быть использованы для получения веерной диаграммы направленности, у которой ширина вертикального и горизонтального лепестков существенно различаются. Кроме квадратных, могут также использоваться круглые или многоугольные лепестки. Расчет излучающих характеристик таких антенн значительно сложнее.

Круговая поляризация

Возможно изготовить патч-антенну с круговой поляризацией. Один из способов, питать обычный квадратный лепесток из двух точек, отстающих по фазе на 90°. В этом случае, когда, скажем, вертикальный ток максимален, горизонтальный ток равен 0. Четверть цикла спустя, ситуация становится обратной и поле становится горизонтальным. Излучаемое поле будет вращаться во времени, таким образом его поляризация будет круговой. Меняя величину фазового сдвига между двумя точками питания, можно добиться любой поляризации, от линейной до круговой. Другой способ добиться круговой поляризации, это питать квадратный лепесток из одной точки, но прорезать в нем асимметричную щель или отверстие иной формы для того чтобы сместить направление тока. Стоит отметить, что хотя дисковые лепестки и могут использоваться для такой техники они не обязательно имеют круговую поляризацию. Например, симметричный дисковый лепесток, питаемый в одной точке, излучает линейно поляризованные волны. Наконец, если почти квадратный лепесток, у которого длина немногим больше, а ширина немногим меньше половины длины волны питать в точке угла, то поляризация его излучения будет круговой.

Литература

  • Antenna Theory (3rd Edition), C. Balanis, Wiley 2005
  • Antenna Engineering Handbook, ed. R. Johnson, McGraw-Hill 1993
  • Микрополосковые антенны, Б. А. Панченко, Е. И. Нефёдов, М., Радио и Связь 1986)
  • Викифицировать статью.
  • Исправить статью согласно стилистическим правилам Википедии.

Патч-антенна

Патч-антенна (от англ. patch — заплатка, в русскоязычной литературе используется термин полосковая антенна) — тип слабонаправленной антенны диапазонов УВЧ и СВЧ. Патч-антенна состоит из тонкой плоской металлической пластины («пятачка»), расположенной на малом (0.01…0.1λ) расстоянии параллельно плоскому металлическому экрану. Зазор между пятачком и экраном может быть заполнен слоем диэлектрика (ε = 2.5…10, tgδ = 10-3…10-2), а сама антенна изготавливаться по технологии печатных плат (микрополосковая или печатная патч-антенна). Как правило, пятачок имеет прямоугольную форму, причем расстояние между излучающими сторонами прямоугольника (т. е. длина неизлучающих сторон) близка к половине рабочей длины волны (с учётом ε).

Питание осуществляется штырем, проходящим сквозь экран (например, являющимся продолжением сигнального проводника коаксиальной линии) и смещенным от центра прямоугольника в сторону одной из его излучающих сторон, либо микрополосковой линией, сигнальный проводник которой расположен в плоскости пятачка и подходит к одной из его излучающих сторон. В обоих случаях возбуждающие проводники электрически соединяются с пятачком. Известен также электродинамический способ возбуждения пятачка через щель в экране. Поляризация излучаемой электромагнитной волны в направлении нормали к пятачку близка к линейной, известные технические решения позволяют формировать волну и с круговой поляризацией. Патч-антенна простейшей конструкции узкополосна (

Связанные понятия

Облучатель − сосредоточенный элемент параболической антенны, находящийся в её фокусе (фазовом центре) или фокальной плоскости, формирующий диаграмму направленности и поляризацию антенны.

Спира́льная антенна — диапазонная антенна бегущей волны, основным элементом которой является проводник в форме винтовой линии или спирали. Характерной особенностью спиральных антенн является их высокое входное сопротивление, позволяющее в ряде случаев без использования дополнительных согласующих трансформаторов привести его к 50 Ом для передачи по обычному коаксиальному кабелю. Применяется, как правило, для приёма и передачи на высоких частотах.

Щелевая антенна — антенна, выполненная в виде металлического радиоволновода, жёсткой коаксиальной линии, объёмного резонатора или плоского металлического листа (экрана), в проводящей поверхности которых прорезаны отверстия (щели), служащие для излучения (или приёма) радиоволн. Излучение происходит в результате возбуждения щелей: в волноводах, резонаторах и коаксиальных линиях — внутренним электромагнитным полем, в плоских экранах — с помощью радиочастотного кабеля, подключённого непосредственно к.

Рупорная антенна — металлическая конструкция, состоящая из волновода переменного (расширяющегося) сечения с открытым излучающим концом. Как правило, рупорную антенну возбуждают волноводом, присоединённым к узкому концу рупора. По форме рупора различают E-секториальные, H-секториальные, пирамидальные и конические рупорные антенны.

Антенна бегущей волны (сокр. АБВ) — направленная антенна, по геометрической оси которой распространяется бегущая волна электромагнитных колебаний.

Зерка́льная анте́нна — антенна, у которой электромагнитное поле в раскрыве образуется за счёт отражения электромагнитной волны от металлической поверхности специального зеркала (рефлектора). В качестве источника волны обычно выступает небольшой излучатель, располагаемый в фокусе зеркала. В его роли может быть любая другая антенна с фазовым центром, излучающая сферическую волну. Основная цель зеркальных антенн сводится к преобразованию сферического или цилиндрического фронта волны в плоский фронт.

Диаграмма направленности (антенны) — графическое представление зависимости коэффициента усиления антенны или коэффициента направленного действия антенны от направления антенны в заданной плоскости. Также термин «диаграмма направленности» применим к другим устройствам, излучающим сигнал различной природы, например акустическим системам.

Акустооптический модулятор (АОМ) — устройство для изменения интенсивности пропускаемого света, вследствие его дифракции на решётке, образуемой в стекле в результате пространственной модуляции показателя преломления акустической волной.

Облучатель Робинсона (англ. Robinson feed horn) — тип рупорного облучателя, применяемый в сканирующих радарах. Благодаря специальной конструкции, облучатель позволяет осуществлять качание луча путём вращательного движения облучающей головки вместо технически более сложно реализуемого возвратно-поступательного движения, необходимого в облучателях традиционной конструкции. До появления фазированных антенных решёток широко применялся в трёхкоординатных радарах с качанием луча в вертикальной плоскости.

Антенная решётка (АР) — сложная антенна, состоящая из совокупности отдельных антенн (излучающих элементов), расположенных в пространстве особым образом. Антенные решётки применяются для повышения коэффициента направленного действия антенны как системы излучающих элементов по сравнению с одиночным элементом и для получения возможности управления формой диаграммы направленности (в том числе, ориентации в пространстве) с помощью электрических сигналов (электрическое сканирование луча в противовес механическому.

Моноимпульсная радиолокация — метод измерения радиолокационной станцией (РЛС) угловых координат объекта, основанный на определении угловой ошибки положения луча антенны, направленного на объект, по принятому одиночному (отражённому или переизлучённому объектом) импульсному сигналу. Основное преимущество этого метода перед другими радиолокационными методами, основанными на обработке непрерывных или нескольких последовательно принимаемых импульсных сигналов заключается в более высокой точности измерений.

Индикаторная электронно-лучевая трубка (англ. radar display — радарный дисплей) — электронно-лучевой прибор, предназначенный для отображения знакографической, телевизионной и радиолокационной информации в различных устройствах и приборах. В индикаторных электронно-лучевых трубках (ЭЛТ) применяется электромагнитное отклонение электронного луча.

Форма волны — наглядное представление формы сигнала, такого как волна, распространяющегося в физической среде, или его абстрактное представление.

Миллиметро́вые во́лны (ММВ) — диапазон радиоволн с длиной волны от 10 мм до 1 мм, что соответствует частоте от 30 ГГц до 300 ГГц (крайне высокие частоты, КВЧ, англ. Extremely high frequency, EHF).

Кольцево́й резона́тор — оптический резонатор, в котором свет распространяется по замкнутой траектории в одном направлении. Объемные кольцевые резонаторы состоят из трёх или более зеркал, ориентированных так, что свет последовательно отражается от каждого из них совершая полный оборот. Кольцевые резонаторы находят широкое применение в лазерных гироскопах и лазерах. В волоконных лазерах применяют специальные конструкции волоконных кольцевых резонаторов, обычно имеющих вид замкнутого в кольцо оптического.

Ли́ния переда́чи — устройство, ограничивающее область распространения электромагнитных колебаний и направляющее поток радиочастотной электромагнитной энергии в заданном направлении.

Фазочувствительный оптический рефлектометр (англ. ϕ-OTDR, Phase-sensitive Optical Time Domain Reflectometer) — прибор для виброакустического контроля протяжённых объектов. Данный прибор в научно-технической литературе также называют когерентным рефлектометром или датчиком распределенного акустического воздействия .

Телецентрический объектив — сложный объектив, у которого главные лучи всех неосевых световых пучков параллельны оптической оси в пространстве предметов или в пространстве изображений. Такой ход света возможен в случае, когда входной или выходной зрачки соответственно, находятся в «бесконечности». Известны конструкции бителецентрических объективов, в которых главные лучи неосевых пучков параллельны оптической оси как в пространстве предметов, так и в пространстве изображений. Параллельность оптической.

Балансное подключение (аудио) — метод соединения аудиооборудования с помощью балансной линии. Этот тип соединения часто используется как в студиях звукозаписи, так и на концертных площадках, потому что позволяет использовать длинные кабели, успешно противостоящие внешним помехам.

Многолучево́е распростране́ние — это эффект, наблюдаемый при распространении сигналов. Возникает при условии существования в точке приема радиосигнала не только прямого, но и ещё одного или целого ряда отражённых или\и преломлённых лучей. Другими словами, на антенну приёмника приходят не только прямые лучи (непосредственно от самого источника), но и отражённые (от земной поверхности, зданий, строений и прочих объектов).

Оптический резонатор — совокупность нескольких отражающих элементов, образующих открытый резонатор (в отличие от закрытых объёмных резонаторов, применяемых в диапазоне СВЧ), формирующих стоячую световую волну. Оптические резонаторы являются одним из основных элементов лазеров, обеспечивая положительную обратную связь для обеспечения многократного прохождения лазерного излучения через активную среду, что приводит к усилению светового потока.

Австралийский синхротрон (ASP, Australian Synchrotron Project) — ускоритель электронов на энергию 3 ГэВ, специализированный источник синхротронного излучения рентгеновского диапазона, критическая энергия фотонов 7.8 КэВ (длина волны 0.16 нм). Построен в Мельбурне, открытие состоялось 31 июля 2007 года. Синхротрон расположен в Клейтоне, пригороде Мельбурна на месте кинотеатра на колёсах, рядом с научно-исследовательскими лабораториями компании «Telstra» и через дорогу от клейтонского кампуса университета.

Электронная пушка, электронный прожектор — устройство, с помощью которого получают пучок электронов с заданной кинетической энергией и заданной конфигурации. Чаще всего используется в кинескопах и других электронно-лучевых трубках, СВЧ-приборах (например в лампах бегущей волны), а также в различных приборах таких как электронные микроскопы и ускорители заряженных частиц.

Фи́дер (англ. feeder от feed — питать) — электрическая цепь (линия передачи) и вспомогательные устройства, с помощью которых энергия радиочастотного сигнала подводится от радиопередатчика к антенне или от антенны к радиоприёмнику. Под вспомогательными устройствами понимают соединители, вентили, фазовращатели и т. д.

Датчик угла поворота (сокр. ДУП) — устройство, предназначенное для преобразования угла поворота вращающегося объекта (вала) в цифровые или аналоговые сигналы, позволяющие определить угол его поворота.

Несу́щий сигна́л — сигнал, один или несколько параметров которого изменяются в процессе модуляции. Количественное изменение параметра (параметров) определяется мгновенным текущим значением информационного (модулирующего) сигнала.

Стержнева́я радиола́мпа — электронная лампа с электродами, выполненными в виде системы тонких сплошных стержней, расположенных параллельно катоду.

Коэффициент стоячей волны (КСВ, от англ. standing wave ratio, SWR) — отношение наибольшего значения амплитуды напряжённости электрического или магнитного поля стоячей волны в линии передачи к наименьшему.

Демодуляция (Детектирование сигнала) — процесс, обратный модуляции колебаний, выделение информационного (модулирующего) сигнала из модулированного колебания высокой (несущей) частоты.

Следящий генератор (СГ, tracking generator) в измерительной технике — генератор гармонических сигналов высокой или сверхвысокой частоты, управляемый анализатором спектра. Мгновенная частота колебаний на выходе СГ точно равна частоте, на которую в данный момент времени настроен полосовой фильтр анализатора спектра. Конструктивно, СГ представляет собой двух- или трёхступенчатый синтезатор частоты. В нём реализуется функция преобразования частоты, обратная функции преобразования частоты в анализаторе.

Ли́ния заде́ржки — устройство, предназначенное для задержки электрических и электромагнитных сигналов на заданный промежуток времени (фиксированный, переключаемый или с плавной регулировкой). Линии задержки (ЛЗ) широко применяются в радиоэлектронике — в радиолокации и радионавигации, в цветных телевизоров стандарта PAL и SECAM, измерительной технике, вычислительной технике и автоматике, электроакустике (ревербераторы), технике связи, в научных исследованиях.

Антенно-фидерное устройство (АФУ) — совокупность антенны и фидерного тракта, входящая в качестве составной части в радиоэлектронное изделие, образец, комплекс.

Эллипсометрия — высокочувствительный и точный поляризационно-оптический метод исследования поверхностей и границ раздела различных сред (твердых, жидких, газообразных), основанный на изучении изменения состояния поляризации света после взаимодействия его с поверхностью границ раздела этих сред.

Бесконтактный датчик, также сенсорный выключатель (англ. proximity sensor) — позиционный выключатель, срабатывающий без механического соприкосновения с подвижной частью (машины). Позиционный выключатель — автоматический выключатель цепей управления, механизм управления которого приводится в действие при достижении подвижной частью машины заданного положения.Отсутствие механического контакта между воздействующим объектом и чувствительным элементом обеспечивает ряд специфических свойств устройства.

Преобразователь частоты — электрическая цепь, осуществляющая преобразование частоты и включающая гетеродин, смеситель и полосовой фильтр (в отдельных случаях полосовой фильтр может отсутствовать).

Сверхширокополосные (СШП) сигналы — радиосигналы (СВЧ-сигналы) со «сверхбольшой» шириной полосы частот. Применяются для сверхширокополосной радиолокации и беспроводной сверхширокополосной радиосвязи.

Пилот-сигнал (пилот-тон) — сигнал с априорно известными на приёмной стороне параметрами (например, определённой частоты).

Резона́тор Фабри́ — Перо́ — является основным видом оптического резонатора и представляет собой два соосных, параллельно расположенных и обращенных друг к другу зеркала, между которыми может формироваться резонансная стоячая оптическая волна. В лазерах одно из зеркал делается обычно более пропускающим для преимущественного вывода излучения в этом направлении.

Волоко́нно-опти́ческое измере́ние температу́ры (английский вариант DTS = Distributed Temperature Sensing) — применение оптоэлектронных приборов для измерения температуры, в котором стеклянные волокна используются в качестве линейных датчиков.

Антенна «волновой канал», известная также как антенна Яги-Уда, или антенна Яги (англ. Yagi antenna), — антенна, состоящая из расположенных вдоль линии излучения параллельно друг другу активного и нескольких пассивных вибраторов. Волновой канал относится к классу антенн бегущей волны. В советской литературе применялось название «волновой канал», которое и осталось распространённым в русскоязычной литературе; в англоязычной литературе используют названия по именам изобретателей.

Частотоме́р — радиоизмерительный прибор для определения частоты периодического процесса или частот гармонических составляющих спектра сигнала.

Ваттметр (ватт + др.-греч. μετρεω — «измеряю») — измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала.

Гамма — монофоническая лампово-полупроводниковая радиола со встроенной цветомузыкальной установкой производства Муромского завода радиоизмерительных приборов.

Са́зер (англ. saser, сокр. от Sound Amplification by Stimulated Emission of Radiation, также называется звуковым, фононным или акустическим лазером) — генератор когерентных звуковых волн определённой частоты. Обычно частота излучения сазера лежит в области от нескольких МГц до 1 ТГц.

Фа́зовый дете́ктор, фазовый компара́тор (ФД) — электронное устройство, сравнивающее фазы двух входных сигналов равных или близких частот.

Фурье-спектрометр — оптический прибор, используемый для количественного и качественного анализа содержания веществ в газовой пробе.

Стереодеко́дер (от др.-греч. στερεός — твёрдый, объёмный и «декодер») — узел радиоприемника или телевизора, предназначенный для выделения сигналов левого и правого канала звуковых частот из комплексного стереосигнала (КСС).

Объёмный резона́тор — устройство, основанное на явлении резонанса, в котором вследствие граничных условий возможно существование на определённых длинах волн добротных колебаний в виде бегущей или стоячей волны.

Сканирующая лазерная поляриметрия — метод измерения толщины слоя нервных волокон сетчатки при тестировании глаукомы. При реализации метода используется эффект поляризованного света.

Окно́ прозра́чности (англ. Transmission Window, Telecom Window) — диапазон длин волн оптического излучения, в котором имеет место меньшее, по сравнению с другими диапазонами, затухание излучения в среде, в частности — в оптическом волокне. Стандартное ступенчатое оптическое волокно (SMF) имеет три окна прозрачности: 850 нм, 1310 нм и 1550 нм. К настоящему времени разработаны четвёртое (1580 нм) и пятое (1400 нм) окна прозрачности, а также оптические волокна, имеющие относительно хорошую прозрачность.

Основы радиолокации

Микрополосковая антенна (печатная антенна, патч-антенна, англ. Patch-antenna ) представляет собой узкополосную антенну с широким лучом. Физически такая антенна имеет двумерную геометрию. Основным элементом патч-антенны является плоская металлическая пластина («пятачок», от англ. patch – заплатка). В простейшей микрополосковой антенне используются пластины полуволновой длины, так что металлическая поверхность этих пластин действует как резонатор подобно полуволновому диполю. Микрополосковая антенна обычно изготавливается путем помещения металлической пластины заданной формы на изолирующем слое диэлектрика, подобно тому, как делают печатные платы, с той разницей, что на противоположной от пластины стороне диэлектрика устанавливается сплошная металлическая подложка, которая образует заземляющую поверхность. Такая конструкция проста в разработке и недорога в изготовлении. В некоторых патч-антеннах не используется сплошной слой диэлектрика, взамен чего металлические пластины устанавливаются над металлической подложкой на диэлектрических прокладках. Получающаяся структура является менее прочной, но имеет более широкую рабочую полосу частот. Микрополосковые антенны разрабатываются для частот от УВЧ-диапазона до 100 GHz.

В патч-антеннах в основном используются пластины квадратной, прямоугольной, круговой или эллиптической формы. Однако, возможно использование и любых других сплошных (непрерывных) форм. Патч-антенны характеризуются механической прочностью и могут иметь форму, соответствующую изогнутой поверхности транспортного средства. Такие антенны устанавливаются на внешних поверхностях самолетов или космических аппаратов, а также встраиваются в мобильные устройства радиосвязи. Они обладают высокой поляризационной избирательностью и могут использоваться для нескольких точек питания.

Рисунок 2. Микрополосковая антенная решетка морского навигационного FMCW-радиолокатора X-диапазона

Достоинства
  • Высокая точность изготовления за счет использования технологии фотопечати.
  • Легкость интеграции с другими устройствами.
  • Малые размера антенны подходят для портативных переносных устройств.
  • Возможно получение высокого коэффициента направленного действия за счет применения микрополосковых решеток.
  • Решетка патч-антенн может использоваться для получения диаграммы направленности, которую трудно сформировать с использованием одноэлементной антенны.
  • В комбинации с фазовращателями и переключателями на pin-диодах могут использоваться для разработки интеллектуальных антенн (смарт-антенн).

Рисунок 2. Микрополосковая антенная решетка морского навигационного FMCW-радиолокатора X-диапазона

Рисунок 2. Микрополосковая антенная решетка морского навигационного FMCW-радиолокатора X-диапазона

Недостатки
  • Узкая рабочая полоса частот (1%), в то время как для мобильных устройств требуется 8%.
  • Невысокая эффективность, в особенности, для короткозамкнутых микрополосковых антенн.
  • Сложность реализации некоторых способов питания (апертурный, бесконтактный).
  • Для решеток необходима сеть питающих линий, влияние которых снижает эффективность антенны, поскольку питающие линии находятся на том же уровне, что и антенные элементы.

Микрополосковые антенны появились в 1980-х годах. Изначально это была военная разработка, поэтому стоимость не имела решающего значения. В 1990-х эта технология была также адаптирована для устройств связи как низкозатратная технология. Однако эффективность микрополосковых решеток оставалась ниже, чем рефлекторных антенн. Далее приводится сравнение основных свойств антенн этих двух типов.

Микрополосковые антенны
  • предпочтительны для задач, где не требуется высокая направленность;
  • имеет меньшую эффективность;
  • одним из факторов снижения эффективности является наличие сети линий питания;
  • подходят для смарт-антенн; в комбинации с фазовращателями обеспечивают электронное сканирования;
  • большая точность в изготовлении за счет использования фотопечати;
  • питание осуществляется при помощи двухпроводных или коаксиальных линий.
Рефлекторные антенны
  • предпочтительны для задач, где требуется высокая направленность;
  • меют высокую эффективность;
  • лементы крепления облучателя снижают эффективность антенны;
  • используется механическое сканирование;
  • меньшая точность изготовления; иногда поверхность отражателя имеет неровности;
  • требуют использования других антенн (дипольных, вибраторных, апертурных и т.д.) в качестве облучателя.

Издатель: Кристиан Вольф, Автор: Андрій Музиченко
Текст доступен на условиях лицензий: GNU Free Documentation License
а также Creative Commons Attribution-Share Alike 3.0 Unported License,
могут применяться дополнительные условия.
(Онлайн с ноября 1998 года)

Рупор и патч-антенна

Комбо устройства (гибриды, комбо, радар-детекторы, антирадар) построены на основе антенн двух типов: рупорные и патч-антенны (фазированные решетки). О плюсах и минусах этих двух систем ниже.

Рупор (рупорная антенна) — как исходит из названия это металлический рупор который улавливает радиосигналы от радаров и передаёт их на процессор для последующей идентификации и обработки.

Производители (в данном случае мы говори о TrendVision) для большей эффективности не только изготавливают рупоры с использованием высокоточных форм, но и так же тчательно полируют поверхность рупора для увеличения ТТХ. Так же для увеличения производительности добавляется к схеме и уселители сигналов которые увеличивают дальность обнаружения.
Главным преимуществом рупорной антенны является дальность работы.
Помимо рупора в гибрид нужно уместить ещё GPS-модуль, экран, камеру и т.д. и всё это нужно разместить в одном компактном корпусе.

Исходя из больших размеров рупора мы проектируем устройство и компактным оно точно не получится. Вот как раз габариты и являются существенным недостатком данного типа радарных модулей.

Но прогресс не стоит на месте и на смену рупору пришли современные и тонкие патч-антенны (TrendVision Hybrid Signature) .

Патч-антенна или фазированная решётка — это количество антенн размещённые на плате, которые работают совместно, чтобы улавливать радиосигналы от радаров.

Часто при проектировании используются группы элементов для работы с разными диапазонами. Для российских дорог это не слишком принципиально потому, что как правило нам нужно детектирование К диапазона.

В отличии от рупора патч-антенну возможно разместит в горизонтальной плоскости (параллельно дисплею) что придаст большую компактность гибрид (радар-детктору). Устройство построенное на такой базе будет более компактнее и эстетичнее выглядеть.

Существует на просторах интернета миф (созданный производителями устройств только на рупорах) о том что патч-антенны работают с меньшей дистанцией детектирования и с меньшей точностью. Но это далеко не так.
Современные методы производства компонентов и тщательно проработанное ПО делают работу рупоров и патч-антенн почти одинаковой.

Подведя итоги мы приходим к выводу что водителю сейчас остаётся только решить для себя хочет он загромождать лобовое стекло устройством с устройством на рупорной антенне или же эффективно использовать пространство и использовать комбо-устройство с патч-антенной.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *