Как правильно измерить сопротивление изоляции
Измерители сопротивления изоляции — ряд приборов, предназначенных для испытания и проверки кабельных линий, обмоток трансформаторов, электродвигателей и прочего оборудования. Контроль сопротивления изоляции объектов мегаомметром, а также прочие испытания проводятся для оценки безопасности и работоспособности электросети.
Как пользоваться мегаомметром при проверке кабеля и проводов
При измерении сопротивления изоляции кабеля мегаомметром необходимо учитывать количество жил. Также следует обратить внимание на напряжение кабельной линии: провода до 1кВ должны иметь показатель сопротивления изоляции от 0,5 МОм.
Если напряжение кабельной продукции превышает 1кВ, то определенного норматива нет. Для каждого вида кабеля и измерительного прибора такие нормы указываются производителем и нормативными документами (ГОСТ, ПУЭ, утвержденные методики и пр.) При этом измерение сопротивления изоляции кабельных линий мегаомметром нужно проводить до и после тестирования повышенным напряжением.
Методика испытаний подбирается в зависимости от типа продукции, оборудования, величины рабочего напряжения, вида кабельной изоляции, характеристик объекта и пр. Однако независимо от этого существуют шаги, общие для всех методов испытаний:
- Отключить кабель от источника питания, а также от подключенного к нему оборудования:
- Очистить изоляцию, если на ней есть грязь и пыль;
- Настроить мегаомметр, выбрав показатель испытательного напряжения и длительность измерения;
- Подсоединить клеммы прибора к соответствующим жилам и заземлителю.
Важно, чтобы замеры проводились при нормальных условиях, без влияния внешних факторов. В противном случае результаты могут получиться не соответствующими реальности.
Измерение сопротивления обмоток трансформатора
Испытания трансформаторного оборудования проводятся для определения как состояния обмоток, так и для общей диагностики. Особенность тестирования заключается в том, что оно проводится в 2 этапа:
- Проверка изоляции относительно земли;
- Испытание сопротивления изоляции между корпусом трансформатора и обмотками.
При этом важно учитывать напряжение трансформаторной установки, так как от этого зависит выбор средства измерения для работы: до 600 В подходят измерительные приборы на 1000 В, более 600 В — нужны измерители параметров электроизоляции на 2500 В.
Как правильно использовать мегаомметр для работы с трансформатором:
- Снять напряжение с вторичных обмоток;
- Произвести заземление корпуса трансформатора;
- Подключить измерительный прибор к зажимам первичной обмотки;
- Подать напряжение на вторичную обмотку;
- Привести показатели в норму;
- Снять напряжение со всех трансформаторных обмоток;
- Провести испытания обмотки с помощью высоковольтного мегаомметра;
- Сравнить показания, полученные в результате проверки обмоток обоих типов.
Почему нужно проводить испытания
Измерение сопротивления изоляции проводится для обеспечения нормальной работы электрооборудования, на состояние которого могут влиять разные факторы:
- Электрические и механические нагрузки;
- Температура и влажность;
- Химические воздействия;
- Загрязнения и плесень.
Чтобы избежать ухудшения качества изоляции, необходимо периодически проводить ее проверку.
Не следует забывать о нормах безопасности при проведении работ. Важно, чтобы измерения проводил квалифицированный и инструктированный специалист, имеющий соответствующую группу доступа. Также необходимо использовать только сертифицированные средства измерения, занесенные в Госреестр СИ РФ.
Все измерители сопротивления изоляции, представленные в каталоге СОЮЗ-ПРИБОР, поставляются от официальных производителей и имеют весь необходимый комплект документации. Если возникли вопросы, или необходима консультация в выборе прибора, вы можете связаться с менеджерами компании по указанным телефонам, электронной почте или через форму обратной связи.
Методика измерения сопротивления изоляции силовых кабелей
Целью настоящей методики является обеспечение качественного и безопасного проведения работ при производстве электролабораторией (далее ЭЛ) испытаний (измерений).
Настоящая методика составлена на основании:
— ГОСТ Р 8.563-96 «Методики выполнения измерений».
— Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок. ПОТ Р М-016-2001.
— Документации заводов-изготовителей приборов, используемых в проведении работ.
2. Назначение.
Назначение настоящей методики — описание процедур по организации, выполнению и оформлению проводимых ЭЛ работ по измерению сопротивления изоляции.
3. Наименование и характеристика измеряемой величины.
Измеряемая величина — сопротивление изоляции. Сопротивление изоляции постоянному току является основным показателем состояния изоляции и его измерение является неотъемлемой частью испытаний всех видов электрооборудования и электроцепей.
4. Состав используемых при измерении приборов.
Сопротивление изоляции измеряется мегомметром. В настоящее время наиболее распространены мегомметры типа М-4100, ЭСО202/2Г, MIC-1000, MIC-2500.
5. Описание мегомметров.
Мегомметр — прибор состоящий из источника напряжения (постоянного или переменного генератора с выпрямителем тока) и измерительного механизма.
Мегомметры подразделяются по номинальному рабочему напряжению до 1000 В и до 2500 В.
Мегомметры комплектуются гибкими медными проводами длиной до 2 — 3 м с сопротивлением изоляции не менее 100 МОм. Концы проводов присоединяемые к мегомметру должны иметь оконцеватели, а противоположные — зажимы типа «крокодил» с изолированными ручками.
6. Порядок проведения измерений.
6.1. Порядок проведения измерений мегомметрами типа М-4100 и ЭСО202/2Г.
Перед началом проведения измерений необходимо:
1) Перед началом проведения измерения мегомметр должен быть подвергнут контрольной проверке, которая заключается в проверке показаний прибора при разомкнутых проводах (стрелка прибора должна находиться у отметки бесконечность — ¥) и замкнутых проводах (стрелка прибора должна находиться на отметке — 0).
2) Убедиться, что на испытуемом кабеле нет напряжения (проверять отсутствие напряжения необходимо испытанным указателем напряжения, исправность которого должна быть проверена на заведомо находящихся под напряжением частях электроустановки — п. 3.3.1 «Межотраслевых правил по охране труда» ПОТ Р М-016-2001).
2) Заземлить токоведущие жилы испытываемого кабеля (заземление с токоведущих частей можно снимать только после подключения мегомметра).
Подключаемые провода мегомметров должны иметь зажимы с изолированными ручками, в электроустановках выше 1000 В, кроме того, следует пользоваться диэлектрическими перчатками.
При работе с мегомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается.
Схемы подключения мегомметра для измерения сопротивления изоляции кабеля приведены на рис. 1.
Как правило, измеряют сопротивление изоляции каждой фазы кабеля относительно остальных заземленных фаз (см. рис. 1 а). Если измерения по этому сокращенному варианту дадут неудовлетворительный результат, то необходимо измерить сопротивление изоляции между каждыми двумя фазами и каждой фазой относительно земли.
При измерениях на кабелях выше 1000 В (когда результаты измерений могут быть искажены точками утечек по поверхности изоляции) на изоляцию объекта измерения (концевую воронку и т.д.) накладывают электрод (экранные кольца), присоединенный к зажиму «Э» (экран).
При измерениях сопротивления изоляции кабелей на напряжение до 1000 В с нулевыми жилами необходимо помнить следующее:
— нулевые рабочие и защитные проводники должны иметь изоляцию, равную изоляции фазных проводников;
— как со стороны источника питания, так и со стороны приемника нулевые проводники должны быть отсоединены от заземленных частей.
Измерение (снятие показаний) следует производить при устойчивом положении стрелки прибора. Для этого нужно вращать ручку прибора со скоростью 120 об./мин.
Сопротивление изоляции определяется показанием стрелки прибора через 15 сек. и 60 сек после начала вращения. Если определения коэффициента абсорбции кабеля не требуется, отсчет показаний производится после успокоения стрелки, но не ранее 60 сек от начала вращения.
При неправильно выбранном пределе измерений, необходимо:
— снять заряд с испытуемой фазы, наложив заземление;
— переключить предел и повторить измерение на новом пределе.
При наложении и снятии заземления необходимо пользоваться диэлектрическими перчатками
По окончании измерений, прежде чем отсоединять концы прибора, необходимо снять накопленный заряд путем наложения заземления.
Измерение сопротивления изоляции сетей освещения проводится мегомметром на напряжение 1000 В и включает в себя:
а) Измерение сопротивления изоляции магистральных линий — от сборок 0,4кВ (ГРЩ, ВРУ) до автоматических выключателей распределительных щитов (ЩЭ) или групповых (в зависимости от схемы);
б) Измерение сопротивления изоляции от распределительных (этажных) щитов до групповых щитков местного управления (квартирных).
в) Измерение сопротивления изоляции сети освещения от автоматических выключателей (предохранителей) местных, групповых щитков управлени(ЩК) до светильников (включая изоляцию самого светильника). При этом в сетях освещения в светильниках с лампами накаливания измерение сопротивления изоляции производится
при снятом напряжении, включенных выключателях, снятых предохранителях (или отключенных выключателях), отсоединенных нулевых рабочих и защитныхпроводах,отключенныхэлектроприемниках и вывернутых электролампах. В сетях освещения с газоразрядными лампами производить измерение можно как с установленными лампами, так и без них, но со снятыми стартерами.
г) Величина сопротивления изоляции на каждом участке сети освещения,начиная от автомата (предохранителя) щита и включая проводку светильника должна быть не менее 0,5 МОм.
7. Обработка и оформление результатов измерений.
Данные по использованным в процессе измерительных работ приборам, а также результаты измерений заносятся в протоколы. Формы протоколов прилагаются к настоящей методике.
8. Требования к безопасному проведению работ.
В соответствии с главой 12 «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок. ПОТ Р М-016-2001» работники ЭЛ (как работники организациий, направляемые для выполнения работ в действующих, строящихся, технически перевооружаемых, реконструируемых электроустановках и не состоящие в штате организаций — владельцев электроустановки) относятся к командированнному персоналу.
Командируемые работники должны иметь удостоверения установленной формы о проверке знаний норм и правил работы в электроустановках с отметкой о группе, присвоенной комиссией командирующей организации. Командирующая организация несет ответственность за соответствие присвоенных командированным работникам групп, а также за соблюдением персоналом нормативных документов по безопасному выполнению работ.
Организация работ командировочного персонала предусматривает прохождение следующих процедур выполняемых до начала работ:
— извещение организации-владельца электроустановки письмом о цели командировки, а также составе и квалификации командировочного персонала ЭЛ;
— определение и предоставление организацией-владельцем командированным работникам права работы в действующих электроустановках (в качестве выдающих наряд, ответственных руководителей и производителей работ, членов бригады);
— проведение с командированным персоналом по его прибытии вводного и первичного инструктажей по электробезопасности;
— ознакомление командированного персонала с электрической схемой и особенностями электроустановки, в которой ему предстоит работать (причем работник которому предоставляется право исполнять обязанности производителя работ должен пройти инструктаж по схеме электроснабжения электроустановки);
— проведение работниками организации-владельца подготовки рабочего места и допуск командированного персонала к работам.
Организация, в электроустановках которой производятся работы командированным персоналом, несет ответственность за выполнение предусмотренных мер безопасности и допуск к работам.
Работы выполняются на основании наряда-допуска, распоряжения или в порядке текущей эксплуатации в соответствии с требованиями главы 5 «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок. ПОТ Р М-016-2001». Кроме того при проведении испытаний и измерений следует :
1. Руководствоваться указаниями паспортов (инструкций по эксплуатации) используемых приборов и инструкций по технике безопасности (действующими на предприятии, где выполняются измерения), а также дополнительными требованиями по безопасности, определенными в нарядах-допусках, распоряжениях, инструктажах.
2. Проверять отсутствие напряжения (проверять отсутствие напряжения необходимо испытанным указателем напряжения, исправность которого должна быть проверена на заведомо находящихся под напряжением частях электроустановки — п. 3.3.1 «Межотраслевых правил по охране труда» ПОТ Р М-016-2001). Отсутствие напряжения следует проверять как между всеми фазами, так и между фазой и землей. Причем, в электроустановках с системой TN-C следует сделать не менее шести замеров, а в электроустановках с системой TN-S -десяти замеров.
3. Производить подключение и отключение всех измерительных приборов при снятом напряжении.
4. Обеспечивать применение защитных средств и инструмента с изолирующими рукоятками, испытанных согласно «Инструкции по применению и испытанию средств защиты, используемых в электроустановках», утвержденной приказом Минэнерго России от 30.06.2003 г. за № 261.
Производящая работы бригада должна состоять не менее чем из двух человек, в том числе производитель работ с группой по электробезопасности не ниже IV и член бригады с группой по электробезопасности не ниже Ш. При проведении измерений запрещается приближаться к токоведущим частям на расстояния менее указанных в таблице 1.
Допустимые расстояния до токоведущих частей,
находящихся под напряжением.
Расстояние от людей и применяемых ими инструментов и приспособлений, от временных ограждений, м
Расстояние от механизмов и грузоподъемных машин в рабочем и транспортном положении, от стропов, грузозахватных приспособлений грузов, м
Измерения сопротивления изоляции проводов, кабелей, силового электрооборудования и аппаратов.
1. Цель проведения измерений.
Измерение проводятся с целью проверки соответствия сопротивления изоляции установленным нормам.
2. Меры безопасности.
2.1. Организационные мероприятия.
Измерения сопротивления изоляции мегаомметром разрешается выполнять в электроустановках напряжением выше 1000 В по наряду, бригадой не менее двух человек, один из которых должен иметь группу по электробезопасности не ниже IV.
В электроустановках напряжением до 1000 В измерения выполняются по распоряжению двумя работниками, один из которых должен иметь группу по электробезопасности не ниже III.
В электроустановках до 1000 В, расположенных в помещениях, кроме особо опасных в отношении поражения электрическим током, работник, имеющий группу III и право быть производителем работ, может проводить измерения единолично.
Измерения сопротивления изоляции ротора работающего генератора разрешается выполнять по распоряжению двумя работниками, имеющими IV и III группу по электробезопасности.
2.2. Технические мероприятия.
Перечень необходимых технических мероприятий определяет лицо, выдающее наряд или распоряжение в соответствии с разделом 3 и главой 5.4. Межотраслевых правил по охране труда при эксплуатации электроустановок (МПБЭЭ). Измерения сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.
3. Нормируемые величины.
Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормах испытаний электрооборудования и аппаратов Правил устройства электроустановок (ПУЭ), Правил технической эксплуатации электроустановок потребителей (ПТЭЭП). В соответствии с ГОСТ Р 50571.16-99 нормируемые величины сопротивления изоляции электроустановок зданий приведены в таблице 1.
Таблица 1.
Номинальное напряжение цепи, В | Испытательное напряжение постоянного тока, В | Сопротивление изоляции, МОм |
---|---|---|
Системы безопасного сверхнизкого напряжения (БССН) и функционального сверхнизкого напряжения (ФССН) | 250 | 0,25 |
До 500 включительно, кроме систем БССН и ФССН | 500 | 0,5* |
Выше 500 | 1000 | 1,0 |
*Сопротивление стационарных бытовых электрических плит должно быть не менее 1 МОм.
В соответствии с гл. 1.8 ПУЭ для электроустановок, напряжением до 1000 В допустимые значения сопротивления изоляции представлены в таблице 2.
Таблица 2.
Испытуемый элемент | Напряжение мегаомметра, В | Наименьшее допустимое значение сопротивления изоляции, МОм |
---|---|---|
1. Шины постоянного тока на щитах управления и в распределительных устройствах (при отсоединенных цепях) | 500-1000 | 10 |
2. Вторичные цепи каждого присоединения и цепи питания приводов выключателей и разъединителей * | 500-1000 | 1 |
3. Цепи управления, защиты, автоматики и измерений, а так же цепи возбуждения машин постоянного тока, присоединенные к силовым цепям | 500-1000 | 1 |
4. Вторичные цепи и элементы при питании от отдельного источника или через разделительный трансформатор, рассчитанные на рабочее напряжение 60 В и ниже ** | 500 | 0,5 |
5. Электропроводки, в том числе осветительные сети *** | 1000 | 0,5 |
6. Распределительные устройства **** , щиты и токопроводы (шинопроводы) | 500-1000 | 0,5 |
* Измерение производится со всеми присоединенными аппаратами (катушки, провода, контакторы, пускатели, автоматические выключатели, реле, приборы, вторичные обмотки трансформаторов тока и напряжения и т.п.).
** Должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых элементов.
*** Сопротивление изоляции измеряется между каждым проводом и землей, а так же между каждыми двумя проводами.
**** Измеряется сопротивление изоляции каждой секции распределительного устройства.
Анализ этих требований показывает противоречия в части тестирующего напряжения и сопротивления изоляции для вторичных цепей напряжением до 60 В (ПУЭ, гл. 1.8) и систем БССН и ФССН, входящих в этот диапазон (50 В и ниже), согласно ГОСТ 50571.16-99.
Кроме того, сопротивление внутренних цепей вводно-распределительных устройств, этажных и квартирных щитков жилых и общественных зданий в холодном состоянии в соответствии с требованиями ГОСТ 51732-2001 и ГОСТ 51628-2000 должно быть не менее 10 МОм (по ПУЭ, гл. 1.8 — не менее 0,5 МОм).
4. Применяемые приборы.
Для измерения сопротивления изоляции применяются мегаомметры генераторного типа или цифровые измерители с преобразователем напряжения. Контроль точности результатов измерений обеспечивается ежегодной поверкой приборов в органах Госстандарта РФ. Приборы должны иметь действующие свидетельства о госповерке. Выполнение измерений прибором с просроченным сроком поверки не допускается.
5. Измерение сопротивления изоляции электрооборудования.
5.1. Измерение сопротивления изоляции силовых кабелей и электропроводок.
При измерении сопротивления изоляции необходимо учитывать следующее: измерение сопротивления изоляции кабелей (за исключением кабелей бронированных) сечением до 16 мм² производится мегомметром на 1000 В, а выше 16 мм² и бронированных — мегаомметром на 2500 В; измерение сопротивления изоляции проводов всех сечений производится мегаомметром на 1000 В.
Если электропроводки, находящиеся в эксплуатации, имеют сопротивление изоляции менее 1 МОм, то заключение об их непригодности делается после испытания их переменным током промышленной частоты напряжением 1 кВ.
5.2. Измерение сопротивления изоляции силового оборудования.
Значение сопротивления изоляции электрических машин и аппаратов в большей степени зависит от температуры. Замеры следует производить при температуре изоляции не ниже +5°С кроме случаев, оговоренных специальными инструкциями. При более низких температурах, результаты измерения из-за нестабильного состояния влаги не отражают истинной характеристики изоляции. При существенных различиях между результатами измерений на месте монтажа и данным завода-изготовителя, обусловленных разностью температур, при которых проводились измерения, следует откорректировать эти результаты по указаниям изготовителя.
Степень увлажненности изоляции характеризуется коэффициентом абсорбции, равным отношению измеренного сопротивления изоляции через 60 секунд после приложения напряжения мегаомметра (R60) к измеренному сопротивлению изоляции через 15 секунд (R15), при этом:
Kабс=R60/R15
При измерении сопротивления изоляции силовых трансформаторов используются мегаомметры с выходным напряжением 2500 В. Измерения проводятся между каждой обмоткой и корпусом и между обмотками трансформатора. При этом R60 должно быть приведено к результатам заводских испытаний в зависимости от разности температур, при которых проводились испытания. Значение коэффициента абсорбции должно отличаться (в сторону уменьшения) от заводских данных не более, чем на 20%, а его величина должна быть не ниже 1,3 при температуре 10-30°С. При невыполнении этих условий трансформатор подлежит сушке.
Сопротивление изоляции автоматических выключателей и УЗО производятся:
1. Между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО;
2. Между каждым разноименным полюсом и соединенными между собой оставшимися полюсами при замкнутом состоянии выключателя или УЗО;
3. Между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой.
При этом для автоматических выключателей бытового или аналогичного назначения (ГОСТ Р 50345-99) и УЗО при измерениях по пп. 1, 2 сопротивление изоляции должно быть не менее 2 МОм, по 3 — не менее 5 МОм.
Для остальных автоматических выключателей (ГОСТ Р 50030.2-99) во всех случаях сопротивление изоляции должно быть не менее 0,5 МОм.
5.3. Порядок проведения измерений.
При измерении сопротивления изоляции следует учитывать, что для присоединения мегаомметра к испытываемому объекту необходимо пользоваться гибкими проводами с изолирующими рукоятками на концах и ограничительными кольцами перед контактными щупами. Длина соединительных проводов должна быть минимальной исходя из условий проведения измерений, а сопротивление их изоляции не менее 10 МОм.
Измерения мегаомметрами проводятся в следующей последовательности:
— проверить отсутствие напряжения на испытываемом объекте;
— очистить изоляцию от пыли и грязи вблизи присоединения мегаомметра к испытываемому объекту;
— присоединить испытываемый объект к гнездам;
— выбрать выходное напряжение, соответствующее испытываемому объекту;
— для проведения измерений вращать рукоятку генератора со скоростью 120-140 оборотов в минуту (мегаомметра генераторного типа) или нажать кнопку пуска измерения (цифрового измерителя);
— снять показания мегаомметра.
Внимание! После каждого измерения необходимо снимать емкостной заряд путем кратковременного заземления частей испытываемого объекта, на которые подавалось выходное напряжение мегаомметра.
Результаты измерений оформляются протоколами.
«Организационные и методические рекомендации по проведению испытаний электрооборудования и аппаратов электроустановок потребителей», автор к. т. н. Сакара А. В. под редакцией к. т. н. Титова В. Л.
Сопротивление изоляции
Надежность электрооборудования в значительной степени определяется качеством их изоляционных конструкций, которые часто работают в весьма неблагоприятных условиях. В процессе эксплуатации изоляция подвергается одновременному воздействию сильных электрических полей, нагреву, влаге, механическим воздействиям, действию окружающей среды и т. д. Под действием этих факторов электрические свойства диэлектриков изменяются, в связи с чем изменяются и технические характеристики изоляционных конструкций.
Изменения свойств изоляции могут быть обратимыми и необратимыми. Необратимые изменения связаны с изменением физических свойств и химической структуры материала в связи с длительной эксплуатацией электроустановок. Необратимое ухудшение свойств диэлектриков во времени получило название старения, а сам процесс ухудшения этих свойств в результате старения — износа.
Важнейшими задачами эксплуатационного персонала является определение интенсивности старения изоляционных конструкций и своевременное принятие мер по поддержанию свойств изоляционных материалов на установленном уровне.
Сопротивление изоляции постоянному току Rиз является основным показателем состояния изоляции. Наличие грубых внутренних и внешних дефектов (повреждение, увлажнение, поверхностное загрязнение) снижает сопротивление изоляции. Определение Rиз (Ом) производится методом измерения тока утечки Iут, проходящего через изоляцию, при приложении к ней выпрямленного напряжения:
В связи с явлением поляризации, результатом перемещения заряженных частиц и диполей в диэлектрике под действием электрического поля, определяемое сопротивление Rиз зависит от времени, прошедшего с момента приложения напряжения. Достоверный результат может дать измерение тока утечки по истечению 60 секунд после приложения, т.е. в момент, к которому ток абсорбции в изоляции в основном затухает.
Вторым показателем состояния изоляции машин и трансформаторов является коэффициент абсорбции. Коэффициент абсорбции Кабс лучше всего определяет увлажнение изоляции. Коэффициент абсорбции Кабс — это отношение Rиз, измеренного мегаомметром через 60 секунд с момента приложения напряжения, к Rиз, измеренного через 15 секунд после начала приложения испытательного напряжения от мегаомметра:
Если изоляция сухая, то коэффициент абсорбции значительно превышает единицу, в то время как у влажной изоляции коэффициент абсорбции близок к единице. Объясняется это временем заряда абсорбционной емкости у сухой и влажной изоляции. В первом случае (сухая изоляция) время велико, ток заряда изменяется медленно значения Rиз, соответствующие 15 и 60 секундам после начала измерения, сильно различаются. Во втором случае (влажная изоляция) время мало — ток заряда изменяется быстро и уже к 15 секундам после начала измерения достигает установившегося значения, поэтому Rиз, соответствующие 15 и 60 секундам после начала измерения, почти не различаются.
Третьим показателем состояния электроизоляции является коэффициент поляризации Кпол (индекс поляризации IP), который указывает способность заряженных частиц и диполей в диэлектрике перемещаться под действием электрического поля, что определяет степень старения изоляции. Коэффициент поляризации также должен значительно превышать единицу. Коэффициент поляризации Кпол — это отношение Rиз, измеренного мегаомметром через 600 секунд с момента приложения напряжения, к Rиз, измеренного через 60 секунд после начала приложения испытательного напряжения от мегаомметра:
Измерение параметров электроизоляции производится специализированными измерительными приборами — мегаомметрами (мегомметрами).
Мегомметр или мегаомметр (от мега…, ом и …метр) — прибор для измерения очень больших (свыше 105 Ом) электрических сопротивлений. Мегаомметр применяется для измерения сопротивления изоляции электрической проводов, кабелей, разъёмов, трансформаторов, обмоток электрических машин и других устройств, а также для измерения поверхностных и объёмных сопротивлений изоляционных материалов.