2. Использование таблицы приемов разрешения технических противоречий
Статистический анализ технических задач позволил выявить типичные технические противоречия и приемы их устранения. В результате анализа более 40 тыс. изобретений Г. С. Альтшуллер выявил 40 основных (наиболее сильных) приемов, отобрал 39 универсальных параметров системы, которые можно изменять, и составил таблицу их применения. В английской литературе эту таблицу называют «Матрица Альтшуллера» (Altshuller’s Matrix или Altshuller’s Contradiction Matrix), а универсальные параметры – «Универсальные параметры Альтшуллера» (Altshuller’s Papametrs).
Фрагмент таблицы приемов разрешения технических противоречий
В таблице3 по вертикали и горизонтали расположены универсальные параметры, а на их пересечении указаны номера приемов.
Опишем универсальные параметры:
1. Вес подвижного объекта
2. Вес неподвижного объекта
3. Длина подвижного объекта
4. Длина неподвижного объекта
5. Площадь подвижного объекта
6. Площадь неподвижного объекта
7. Объем подвижного объекта
8. Объем неподвижного объекта
11. Напряжение, давление
13. Устойчивость состава объекта
15. Продолжительность действия подвижного объекта
16. Продолжительность действия неподвижного объекта
19. Энергия, расходуемая подвижным объектом
21. Энергия, расходуемая неподвижным объектом
22. Потери энергии
23. Потери вещества
24. Потери информации
25. Потери времени
26. Количество вещества
28. Точность измерения
29. Точность изготовления
30. Вредные факторы, действующие на объект извне
31. Вредные факторы, генерируемые самим объектом
32. Удобство изготовления
33. Удобство эксплуатации
34. Удобство ремонта
35. Адаптация, универсальность
36. Сложность устройства
37. Сложность контроля и измерения
38. Степень автоматизации
Прежде чем использовать таблицу, необходимо выявить техническое противоречие, присущее данной задаче. Это можно сделать несколькими путями.
1. Сформулировать техническое противоречие, а затем привести его в соответствие с универсальными параметрами.
2. Использовать сразу таблицу в следующей последовательности:
2.1. Выбрать по таблице в вертикальной колонке параметр, который нужно изменить (увеличить, уменьшить, улучшить) по условиям задачи. Например, выбрали строчку 9. Скорость.
2.2. В горизонтальной строке выбрать параметр, который недопустимо ухудшается. Например, на рис. 5 выбрали столбец 10. Сила.
2.3. На пересечении их в клеточке указаны номера приемов, которые рекомендовано использовать.
Например, это приемы 13, 28, 15, 19.
3. Использовать более сложную последовательность:
3.1. Выбрать по таблице в вертикальной колонке, параметр, который нужно изменить по условиям задачи.
3.2. Найти известный путь, как можно улучшить выбранный показатель, не считаясь с проигрышем (ухудшениями).
3.3. Какой параметр недопустимо ухудшается, если использовать найденный путь, выбрать его в горизонтальной строке таблице.
3.4. На пересечении выбранных показателей в клеточке указаны номера приемов, которые рекомендовано использовать.
Задача 2. Робин Гуд
Условия задачи
Во время съемки фильма «Стрелы Робин Гуда» необходимо было отснять эпизод полета стрелы, выпущенной из лука до момента попадания ее в жертву. Режиссер настаивал на том, чтобы это была реальная съемка, а не комбинированная.
Решили под одежду актера, игравшего эту жертву, положить деревянную дощечку и пригласили лучших лучников страны. Тем не менее, была опасность, что даже лучший лучник может промахнуться и травмировать актера.
Как сделать так, чтобы стрела однозначно попала бы только в деревянную плиту?
Съемка фильма «Стрелы Робин Гуда»
Разбор задачи
ТП между точностью попадания и возможностью нанесения травмы.
Это противоречие соответствует универсальным параметрам:
29. Точность изготовления – 30. Вредные факторы, действующие на объект извне.
Такое противоречие разрешается приемами 26, 28, 10, 36:
26. Принцип копирования.
28. Замена механической схемы.
10. Принцип предварительного исполнения.
36. Использование явлений на границе фазовых переходов.
Воспользуемся этими приемами для разрешения, описанного технического противоречия.
Решение 1.
Принцип копирования подсказывает, что процесс должен быть нереальный, раньше это могли быть, например, комбинированные съемки, но против этого был режиссер. Сегодня это можно сделать с помощью компьютерной анимации.
Решение 2.
Использование приема «замена механической схемы» может быть, например, таким. Стрела делается с тупым ферримагнитным наконечником, а на место попадания стрелы устанавливают мощный магнит, который притягивает стрелу. Такой способ тоже не дает 100% гарантии.
Решение 3.
Принцип предварительного исполнения наводит на мысль, что необходимо что-то сделать заранее, чтобы стрела двигалась по точно заданной траектории и попала бы только в заданное место. Это возможно, если эта траектория будет заранее проложена, например, между луком и целью натянуть нить, по которой должна двигаться стрела. Чтобы нить не было видно в кадре, ее сделали из прозрачной лески. Это решение и было использовано при съемке.
Задача 3. Защита общедоступной программы
Условия задачи
Достаточно сложная и уникальная программа была выложена для хранения в виде исполняемого файла в машинных кодах, к которому мог быть доступ и других сотрудников института. Были опубликованы также результаты работы этой программы: исходные данные, результаты расчетов.
Запрашивать пароль нельзя во избежание попыток его раскрытия.
Как сделать так, чтобы доступной всем программой мог пользоваться только сам автор этой программы?
Разбор задачи
ТП между защитой информации, путем введения пароля, и несанкционированным проникновением в случае раскрытия пароля.
Это противоречие соответствует универсальным параметрам:
24. Потери информации – 30. Вредные факторы, действующие на объект извне.
Такое противоречие разрешается приемами 22, 10, 1:
Можно подобрать и другие универсальные параметры:
24. Потери информации – 32. Удобство изготовления (приемы разрешения: 27, 22).
30. Вредные факторы, действующие на объект извне – 32. Удобство изготовления (приемы: 24, 2).
Таблица предложила следующие приемы:
1. Принцип дробления.
2. Принцип вынесения.
10. Принцип предварительного исполнения.
22. Принцип «обратить вред в пользу».
24. Принцип посредника.
27. Дешевая недолговечность взамен дорогой долговечности.
Решения
Решение 1.
Прием 1. Принцип дробления. Разделим файл на части.
Прием 2. Принцип вынесения. Разделим файл на неравные (разные) части.
Прием 24. Принцип посредника. Программа не будет работать по отдельности, вынесенная часть будет играть роль посредника, только с его помощью можно будет пользоваться программой.
Вынесенная часть программы находится только у автора. Автор присоединяет эту часть, когда ему нужно работать с программой. Без этой части программа не работает. Например, бинарный файл вызывает вынесенную скриптовую часть, без которой работа программы невозможна.
Недостаток этого решения в том, что эту часть нужно приносить.
Данное противоречие разрешается в пространстве, используя принцип вынесения. Эта часть программы выносится в облако. По мере необходимости она «вынимается» оттуда.
Решение 2.
Прием 22. Принцип «обратить вред в пользу». Добавляется вредный фактор – особенный формат входных данных. Он дает требуемый положительный эффект – программа доступна только для автора.
Программа работает только с определенным форматом входных данных, который знает только автор.
Задача 4. Игольное ушко
Условия задачи
Вдевать нитку в иголку – кропотливое занятие. Удобно вдевать нитку в большое игольное ушко, но большое игольное ушко делает большую дырку в ткани, портя ее. Как быть?
ТП1: Ткань не портится, но неудобно вдевать нитку в маленькое игольное ушко.
ТП2: Удобно вдевать нитку в игольное ушко, но портится ткань.
Разбор задачи
Ранее мы сформулировали ТП. Для удобства вдевания нитки игольное ушко необходимо сделать большим, но большое ушко делает большое отверстие в ткани, что портит ее.
ТП между удобством и порчей. Это противоречие соответствует универсальным параметрам:
33. Удобством эксплуатации – 30. Вредные факторы, действующие на объект извне. Приемы: 2, 25, 28, 39. Или 33. Удобством эксплуатации – 12. Форма. Приемы: 15, 34, 29, 28.
Или 33. Удобством эксплуатации – 35. Адаптация. Приемы: 15, 34, 1, 16.
Можно сформулировать и другое ТП.
ТП: Удобство вдевания нитки в игольное ушко противоречит с производительностью.
В данной задаче можно сформулировать разные технические противоречия.
33. Удобством эксплуатации – 39. Производительность. Приемы: 15, 1, 28.
Представим список приемов:
1. Принцип дробления.
2. Принцип вынесения.
15. Принцип динамичности.
16. Принцип частичного или избыточного решения.
25. Принцип самообслуживания.
28. Замена механической схемы.
29. Использование пневмо- и гидроконструкций.
34. Принцип отброса и регенерации.
39. Применение инертной среды.
Прием 15. Принцип динамичности.
Решение 1. Одно из возможных решений – сделать ушко динамичным – гибким. Такое решение было предложено в патенте США 3 987 839.
Гибкое ушко иголки. Патенту США 3 987 839
10 – игла, образованная двумя проволоками; 11, 12 – проволока; 13 – серебряный или твердый припой; 15 – тупой конец иглы; 16 – острый конец иглы; 17 – игольное ушко.
Игла 10 сделана из двух соединенных проволок 11 и 12. Проволоки закручивают на один оборот и запаивают на концах. Острый конец иглы затачивают. При нажатии на иглу появляется ушко.
В 21 веке дизайнер Woo Moon-Hyung воплотил подобное решение
Гибкое ушко иголки дизайнера Woo Moon-Hyung
Прием 2. Принцип вынесения
Решение 2. Нитковдеватель.
Принцип работы нитковдевателя
Это же решение можно рассматривать и как использование приема 1. Принцип дробление. Иглу разделили – «ушко» отделили от иглы.
Прием 16. Принцип частичного или избыточного решения и прием 25. Принцип самообслуживания.
Решение 3. Кончик нитки делается в виде иглы. Такие нитки используются в хирургии для зашивания швов.
Прием 28. Замена механической схемы.
Решение 4. Вместо сшивания – склеивание или сваривание.
Прием 29. Использование пневмо- и гидроконструкций.
Решение 5. Дырочка делается тонкой струей воздуха и воздухом тянется нитка. Это может быть и вакуум.
Прием 34. Принцип отброса и регенерации.
Решение 6. Использование эластичных тканей, которые возвращаются к прежней форме и заделывают большое отверстие, проделанное иглой.
Задача 5. Ветровые стекла автомобилей
Условие задачи
На складе запасных частей французской автомобильной компании «Рено» возникла проблема: около 3% ветровых стекол доходило до авторемонтных станций разбитыми. Даже несмотря на достаточно надежную упаковку – картонные коробки с прокладками из пористого полиуретана.
Как сократить бой стекла?
Разбор задачи
ТП: Хрупкость товара и его транспортировкой.
14. Прочность – 33. Удобство эксплуатации (32, 40, 25, 2).
13. Устойчивость состава объекта – 14. Прочность (17, 9, 15).
13. Устойчивость состава объекта – 15. Продолжительность действия подвижного объекта (13, 27, 10, 35).
13. Устойчивость состава объекта – 23. Потери вещества (2, 14, 30, 40).
13. Устойчивость состава объекта – 30. Вредные факторы, действующие на объект извне (35, 24, 30, 18).
2. Принцип вынесения (упоминается 2 раза).
9. Принцип предварительного антидействия.
10. Принцип предварительного исполнения.
13. Принцип «наоборот».
14. Принцип сфероидальности.
15. Принцип динамичности.
17. Принцип перехода в другое измерение.
18. Использование механических колебаний.
24. Принцип «посредника».
25. Принцип самообслуживания.
27. Дешевая недолговечность взамен дорогой долговечности.
30. Использование гибких оболочек и тонких пленок (упоминается 2 раза).
32. Принцип изменения окраски.
35. Изменение агрегатного состояния объекта (упоминается 2 раза).
40. Применение композиционных материалов (упоминается 2 раза).
Таблица подсказала, что какие-то приемы предлагаются чаще для решения данной задачи, видимо, именно их и нужно первыми использовать. Хотя это необязательное требование. Тем не менее желательно попробовать использовать каждый из приемов и их сочетание.
Прием 2. Принцип вынесения. Он подсказывает, что стекло нужно «вынести из коробки (упаковки)». Если рабочий будет нести стекло непосредственно в руках, то будет с ним бережнее обращаться. Однако тогда стекло будет пачкаться. Это прием 9. Принцип предварительного антидействия и прием 13. Принцип «наоборот». Не прячем, а открываем стекло.
Воспользуемся приемом 30. Использование гибких оболочек и тонких пленок. Стекло обернуть пленкой, но тогда не будет видно, что это стекло.
Воспользуемся приемом 32. Принцип изменения окраски. Пленку нужно сделать прозрачную, чтобы хорошо было видно стекло.
Значит нужно заранее обернуть стекло тонкой прозрачной пленкой (прием 10. Принцип предварительного исполнения).
Замена упаковки на пленку – это также применение приема
27. Дешевая недолговечность взамен дорогой долговечности. Пленка как бы подсказывает рабочему «будь осторожнее» (прием 24. Принцип «посредника»), да и рабочий сам будет осторожнее (прием
25. Принцип самообслуживания).
Решение
Выяснилось, что хотя на картоне и сделаны надписи, предупреждающие о хрупкости содержимого, грузчики обращались с картонками недостаточно аккуратно. Картон заменили прозрачной пластиковой пленкой, позволяющей видеть стекло, и бой сократился в четыре раза.
Воспользуемся другими приемами. Остались приемы:
14. Принцип сфероидальности.
15. Принцип динамичности.
17. Принцип перехода в другое измерение.
18. Использование механических колебаний.
35. Изменение агрегатного состояния объекта.
40. Применение композиционных материалов.
Начнем с приема 17. Нужно перейти в другое измерение, т. е. стекло помещается на стекло (пачка стекол). Чтобы стекла представляли собой монолит (очень толстое стекло, которое невозможно разбить), то между ними не должно быть пространства, даже минимального. Значит это пространство должно быть заполнено, лучше всего жидкостью или гелем. Их можно заменить микросферами (прием 14. Принцип сфероидальности). Пакет оборачивается тонкой прозрачной пленкой.
Если из такого пакета выкачать воздух, то микросферы примут точную форму стекла, станут единым твердым соединением и пакет сделают очень прочным (прием 35. Изменение агрегатного состояния объекта).
Стекло может быть защищено композиционным материалом с применением нанотехнологий, который будет защищать стекло от повреждения (прием 40. Применение композиционных материалов).
Данный текст является ознакомительным фрагментом.
40 приемов устранения технических противоречий
Рассмотрим 40 основных приемов устранения технических противоречий.
1. Принцип дробления
а. Разделить объект на независимые части.
б. Выполнить объект разборным.
в. Увеличить степень дробления объекта.
Пример. Грузовое судно разделено на однотипные секции. При необходимости корабль можно делать длиннее или короче.
2. Принцип вынесения
Отделить от объекта «мешающую» часть («мешающее» свойство) или, наоборот, выделить единственно нужную часть или нужное свойство.
В отличие от предыдущего приема, в котором речь шла о делении объекта на одинаковые части, здесь предлагается делить объект на разные части.
Пример. Обычно на малых прогулочных судах и катерах электроэнергия для освещения и других нужд вырабатывается генератором, работающим от гребного двигателя. Для получения электроэнергии на стоянке приходится устанавливать вспомогательный электрогенератор с приводом от двигателя внутреннего сгорания. Двигатель, естественно, создает ШУМ и вибрацию. Предложено разместить двигатель и генератор в отдельной капсуле, расположенной на некотором расстоянии от катера и соединенной с ним кабелем.
3. Принцип местного качества
а. Перейти от однородной структуры объекта или внешней среды (внешнего воздействия) к неоднородной.
б. Разные части объекта должны выполнять различные функции.
в. Каждая часть объекта должна находиться в условиях, наиболее благоприятных для ее работы.
Пример. Для борьбы с пылью в горных выработках на инструменты (рабочие органы буровых и погрузочных машин) подают воду в виде конуса мелких капель. Чем мельче капли, тем лучше идет борьба с пылью, но мелкие капли легко образуют туман, это затрудняет работу. Решение: вокруг конуса мелких капель создают слой из крупных капель.
4. Принцип асимметрии
а. Перейти от симметричной формы объекта к асимметричной.
б. Если объект уже асимметричен, увеличить степень асимметрии.
Пример. Противоударная автомобильная шина имеет одну боковину повышенной прочности — для лучшего сопротивления ударам о бордюрный камень тротуара.
5. Принцип объединения
а. Соединить однородные или предназначенные для смежных операций объекты.
б. Объединить во времени однородные или смежные операции.
Пример. Сдвоенный микроскоп-тандем. Работу с манипулятором ведет один человек, а наблюдением и записью целиком занят второй.
6. Принцип универсальности
Объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах.
Пример. Ручка для портфеля одновременно служит эспандером (а. с. № 187 964).
7. Принцип «матрешки»
а. Один объект размещен внутри другого, который, в свою очередь, находится внутри третьего и т. д.
б. Один объект проходит сквозь полость в другом объекте.
Пример. «Ультразвуковой концентратор упругих колебаний, состоящий из скрепленных между собой полуволновых отрезков, отличающийся тем, что с целью уменьшения длины концентратора и увеличения его устойчивости полуволновые отрезки выполнены в виде полых конусов, вставленных один в другой» (а. с. № 186 781). В а. с. № 462 315 абсолютно такое же решение использовано для уменьшения габаритов выходной секции трансформаторного пьезоэлемента. В устройстве для волочения металла по а. с. № 304 027 «матрешка» составлена из конусных волок.
8. Принцип антивеса
а. Компенсировать вес объекта соединением с другим объектом, обладающим подъемной силой.
б. Компенсировать вес объекта взаимодействием со средой (преимущественно за счет аэро- и гидродинамических сил). Приме р. «Центробежный тормозного типа регулятор числа оборотов роторного ветродвигателя, установленный на вертикальной оси ротора, отличающийся тем, что с целью поддержания скорости вращения ротора в малом интервале числа оборотов при сильном увеличении мощности грузы регулятора выполнены в виде лопастей, обеспечивающих аэродинамическое торможение» (а. с. № 167 784).
Интересно отметить, что в формуле изобретения четко отражено противоречие, преодолеваемое изобретением. При заданной силе ветра и заданной массе грузов получается определенное число оборотов. Чтобы его уменьшить (при возрастании силы ветра). нужно увеличить массу грузов. Но грузы вращаются, к ним трудно подобраться. И вот противоречие устранено тем, что грузам. придана форма, создающая аэродинамическое торможение, т. е. грузы выполнены в виде крыла с отрицательным углом атаки.
Общая идея очевидна: если нужно менять массу движущегося тела, а массу менять нельзя по определенным соображениям, то телу надо придать форму крыла и, меняя наклон крыла к направлению движения, получать дополнительную силу, направленную в нужную сторону.
9. Принцип предварительного антидействия
Если по условиям задачи необходимо совершить какое-то действие, надо заранее совершить антидействне.
Пример. «Способ резания чашечным резцом, вращающимся вокруг своей геометрической оси в процессе резания, отличающийся тем, что с целью предотвращения возникновения вибрации чашечный резец предварительно нагружают усилиями, близкими по величине и направленными противоположно усилиям, возникающим в процессе резания» (а. с. № 536866).
10. Принцип предварительного действия
а. Заранее выполнить требуемое действие (полностью или хотя бы частично).
б. Заранее расставить объекты так, чтобы они могли вступить в действие без затрат времени на доставку и с наиболее удобного места.
11. Принцип «заранее подложенной подушки»
Компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами.
Пример. «Способ обработки неорганических материалов, например стекловолокон, путем воздействия плазменного луча, отличающийся тем, что с целью повышения механической прочности на неорганические материалы предварительно наносят раствор или расплав солей щелочных или щелочно-земельных металлов» (а. с. № 522 150). Заранее наносят вещества, «залечивающие» микротрещины. Есть а. с. № 456 594, по которому на ветвь дерева (до спиливания) ставят кольцо, сжимающее ветвь. Дерево, чувствуя «боль», направляет к этому месту питательные и лечащие вещества. Таким образом, эти вещества накапливаются до спиливания ветки, что способствует быстрому заживлению после спиливания.
12. Принцип эквипотенциальности
Изменить условия работы так, чтобы не приходилось поднимать или опускать объект.
Пример. Предложено устройство, исключающее необходимость поднимать и опускать тяжелые пресс-формы. Устройство выполнено в виде прикрепленной к столу пресса приставки с рольгангом (а. с. № 264679).
13. Принцип «наоборот»
а. Вместо действия, диктуемого условиями задачи, осуществить обратное действие.
б. Сделать движущуюся часть объекта или внешней среды неподвижной, а неподвижную — движущейся. в. Перевернуть объект «вверх ногами», вывернуть его.
Пример. Рассматривая задачу 9 (о фильтре для улавливания пыли), мы познакомились с а. с. № 156 133: фильтр сделан из магнитов, между которыми расположен ферромагнитный порошок Через семь лет появилось а. с. № 319 325, в котором фильтр вывернут- «Электромагнитный фильтр для механической очистки жидкостей и газов, содержащий источник магнитного поля и фильтрующий элемент из зернистого магнитного материала, oтличающийся тем, что с целью снижения удельного расхода электроэнергии и увеличения производительности фильтрующий элемент размещен вокруг источника магнитного поля и образует внешний замкнутый магнитный контур».
14. Принцип сфероидальносги
а. Перейти от прямолинейных частей к криволинейным, от плоских поверхностей к сферическим, от частей, выполненных в виде куба или параллелепипеда, к шаровым конструкциям.
б. Использовать ролики, шарики, спирали.
в. Перейти от прямолинейного движения к вращательному, использовать центробежную силу.
Пример. Устройство для вварки труб в трубную решетку имеет электроды в виде катящихся шариков.
15. Принцип динамичности
а. Характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы.
б. Разделить объект на части, способные перемещаться относительно друг друга.
в. Если объект, в целом неподвижен, сделать его подвижным, перемещающимся.
Пример. «Способ автоматической дуговой сварки ленточным электродом, отличающийся тем, что с целью широкого регулирования формы и размеров сварочной ванны электрод изгибают вдоль его образующей, придавая ему криволинейную форму, которую изменяют в процессе сварки» (а. с. № 258 490).
16. Принцип частичного или избыточного действия
Если трудно получить 100% требуемого эффекта, надо получить «чуть меньше» или «чуть больше» — задача при этом может существенно упроститься.
Прием уже знаком по задаче, в которой цилиндры окрашивают с избытком, который затем удаляют.
17. Принцип перехода в другое измерение
а. Трудности, связанные с движением (или размещением) объекта по линии, устраняются, если объект приобретает возможность перемещаться в двух измерениях (т. е. на плоскости). Соответственно задачи, связанные с движением (или размещением) объектов в одной плоскости, устраняются при переходе к пространству трех измерений.
б. Использовать многоэтажную компоновку объектов вместо одноэтажной.
в. Наклонить объект или положить его «набок».
г. Использовать обратную .сторону данной площади.
д. Использовать оптические потоки, падающие на соседнюю площадь или на обратную сторону имеющейся площади.
Прием 17а можно объединить с приемами 7 и 15в. Получается цепь, характеризующая общую тенденцию развития технических систем: от точки к линии, затем к плоскости, потом к объему и, наконец, к совмещению многих объемов.
Пример. «Способ хранения зимнего запаса бревен на воде путем установки их на экватории рейда, отличающийся тем,, что с целью увеличения удельной емкости экватории и уменьшения объема промороженной древесины бревна формируют в пучки:, шириной и высотой в поперечном сечении превышающими длину бревен, после чего сформированные пучки устанавливают в вертикальном положении» (а. с. № 236 318).
18. Использование механических колебаний
а. Привести объект в колебательное движение.
б. Если такое движение уже совершается, увеличить его частоту (вплоть до ультразвуковой).
в. Использовать резонансную частоту.
г. Применить вместо механических вибраторов пьезовибраторы.
д. Использовать ультразвуковые колебания в сочетании с электромагнитными полями.
Пример. «Способ безопилочного резания древесины, отличающийся тем, что с целью снижения усилия внедрения инструмента в древесину резание осуществляют инструментом, частота пульсация которого близка к собственной частоте колебаний перерезаемой древесины» (а. с. № 307986).
19. Принцип периодического действия
а. Перейти от непрерывного действия к периодическому (импульсному) .
б. Если действие уже осуществляется периодически, изменить периодичность.
в. Использовать .паузы между импульсами для другого действия.
Пример. «Способ автоматического управления термическим циклом контактной точечной сварки, преимущественно деталей малых толщин, основанный на измерении термо-э.д.с., отличающийся тем, что с целью повышения точности управления при сварке импульсами повышенной частоты измеряют термо-э.д.с. в паузах между импульсами сварочного тока» (а. с. № 336 120).
20. Принцип непрерывности полезного действия
а. Вести работу непрерывно (все части объекта должны все время работать с полной нагрузкой).
б. Устранить холостые и промежуточные ходы.
Пример. «Способ обработки отверстий в виде двух пересекающихся цилиндров, например гнезд сепараторов подшипников, отличающийся тем, что с целью повышения производительности обработки ее осуществляют сверлом (зенкером), режущие кромки которого позволяют производить резание как при прямом, так и при обратном ходе инструмента» (а. с. № 262 582).
21. Принцип проскока
Вести процесс или отдельные его этапы (например, вредные или опасные) на большой скорости.
Пример. «Способ обработки древесины при производстве шпона путем прогрева, отличающийся тем, что с целью сохранения природной древесины прогрев ее осуществляют кратковременным воздействием факела пламени газа с температурой 300-600°С непосредственно в процессе изготовления шпона» (а. с. № 338 371).
22. Принцип «обратить вред в пользу»
а. Использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта.
б. Устранить вредный фактор за счет сложения с другими вредными факторами.
в. Усилить вредный фактор до такой степени, чтобы он перестал быть вредным.
Пример. «Способ восстановления сыпучести смерзшихся насыпных материалов, отличающийся тем, что с целью ускорения процесса восстановления сыпучести материалов и снижения трудоемкости смерзшийся материал подвергают воздействию сверхнизких температур» (а. с. № 409 938).
23. Принцип обратной связи
а. Ввести обратную связь.
б. Если обратная связь есть, изменить ее.
Пример. «Способ автоматического регулирования температурного режима обжига сульфидных материалов в кипящем слое путем изменения потока нагружаемого материала в функции температуры, отличающийся тем, что с целью повышения динамической точности поддержания заданного значения температуры подачу материала меняют в зависимости от изменения содержания сернистого газа в отходящих газах» (а. с. .№ 302 382).
24. Принцип «посредника»
а. Использовать промежуточный объект, переносящий или передающий действие.
б. На время присоединить к объекту другой (легкоудаляемый) объект.
Пример. «Способ тарировки приборов для измерения динамических напряжений в плотных средах при статическом нагружении образца среды с заложенными внутри него прибором, отличающийся тем, что с целью повышения точности тарировки нагружение образца с заложенным внутри него прибором ведут через хрупкий промежуточный элемент» (а. с. № 354 135).
25. Принцип самообслуживания
а. Объект должен сам себя обслуживать, выполняя вспомогательные и ремонтные операции.
б. Использовать отходы (энергии, вещества).
Пример. В электросварочном пистолете сварочную проволоку обычно подает специальное устройство. Предложено использовать для подачи проволоки соленоид, работающий от сварочного тока.
26. Принцип копирования
а. Вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии.
б. Заменить объект или систему объектов их оптическими копиями (изображениями). Использовать при этом изменение масштаба (увеличить или уменьшить копии).
в. Если используются видимые оптические копии, перейти к копиям инфракрасным или ультрафиолетовым. Пример. «Наглядное учебное пособие по геодезии, выполненное в виде написанного на плоскости художественного панно, отличающеееся тем, что с целью последующей геодезической съемки с панно изображения местности оно выполнено по данным тахеометрической съемки и в характерных точках местности снабжено миниатюрными геодезическими рейками» (а. с. № 86560).
27. Дешевая недолговечность взамен дорогой долговечности
Заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).
Пример. Мышеловка одноразового действия: пластмассовая трубка с приманкой; мышь входит в ловушку через конусообразное отверстие; стенки отверстия разгибаются и не дают ей выйти обратно.
28. Замена механической схемы
а. Заменить механическую схему оптической, акустической или «запаховой».
б. Использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом.
в. Перейти от неподвижных полей к движущимся, от фиксированных к меняющимся во времени, от неструктурных к имеющим определенную структуру.
г. Использовать поля в сочетании с ферромагнитными частицами.
Пример. «Способ нанесения металлических покрытий на термопластичные материалы путем контакта с порошком металла, нагретым до температуры, превышающей температуру плавления термопласта, отличающийся тем, что с целью повышения прочности сцепления покрытия с основой и его плотности процесс осуществляют в электромагнитном поле» (а. с. № 445 712).
29. Использование пневмо- и гидроконструкций
Вместо твердых частей объекта использовать газообразные и жидкие: надувные и гидронаполяемые, воздушную подушку, гидростатические и гидрореактивные.
Пример. Для соединения гребного вала судна со ступицей винта в вале сделан паз, в котором размещена эластичная полая емкость (узкий «воздушный мешок»). Если в эту емкость подать сжатый воздух, она раздуется и прижмет ступицу к валу (а. с. ЛЬ 313 741). Обычно в таких случаях использовали металлический соединительный элемент, но соединение с «воздушным мешком» проще изготовить: не нужна точная подгонка сопрягаемых поверхностей. Кроме того, такое соединение сглаживает ударные нагрузки. Интересно сравнить это изобретение с опубликованным позже изобретением по а. с. № 445 611 на контейнер для транспортирования хрупких изделий (например, дренажных труб): в контейнере имеется надувная оболочка, которая прижимает изделия и не дает им биться при перевозке. Разные области техники, но задачи и решения абсолютно идентичны. В a. c. № 249583 надувной элемент работает в захвате подъемного крана. В а. с. № 409 875 — прижимает хрупкие изделия в устройстве для распиловки. Таких изобретений великое множество. Видимо, просто, поpa прекратить патентовать такие предложения, а в учебники конструирования ввести простое правило: если надо на время деликатно прижать один предмет к другому, используйте «воздушный мешок». Это, конечно, не значит, что весь прием 29 перестанет быть изобретательским.
«Воздушный мешок», прижимающий одну деталь к другой, — типичный веполь, в котором «мешок» играет роль механического поля. В соответствии с общим правилом развития вепольных систем следовало ожидать перехода к фепольной системе. Такой переход действительно произошел: в а. с. № 534 351 предложено внутрь «воздушного мешка» ввести ферромагнитный порошок, а для. усиления прижима использовать магнитное поле. И снова несовершенство формы патентования привело к тому, что запатентована не универсальная идея управления «воздушным мешком», а частное усовершенствование шлифовального «воздушного мешка».
30. Использование гибких оболочек и тонких пленок
а. Вместо обычных конструкций использовать гибкие оболочки и тонкие пленки.
б. Изолировать объект от внешней среды с помощью гибких оболочек и тонких пленок.
Пример. «Способ формирования газобетонных изделий путем заливки сырьевой массы в форму и последующей выдержки, отличающийся тем, что с целью повышения степени вспучивания на залитую в форму сырьевую массу укладывают газонепроницаемую пленку» (а. с. № 339 406).
31. Применение пористых материалов
а. Выполнить объект пористым или использовать дополнительные пористые элементы (вставки, покрытия и т. д.).
б. Если объект уже выполнен пористым, предварительно заполнить поры каким-то веществом.
Пример. «Система испарительного охлаждения электрических машин, отличающаяся тем, что с целью исключения необходимости подвода охлаждающего агента к машине активные части и отдельные конструктивные элементы выполнены из пористых материалов, например пористых порошковых сталей, пропитанных жидким охлаждающим агентом, который при работе машины испаряется и таким образом обеспечивает кратковременное, интенсивное и равномерное ее охлаждение» (а. с. № 187 135).
32. Принцип изменения окраски
а. Изменить окраску объекта или внешней среды.
б. Изменить степень прозрачности объекта или внешней среды.
в. Для наблюдения за плохо видимыми объектами или процессами использовать красящие добавки.
г. Если такие добавки уже применяются, использовать люминофоры.
Пример. Патент США № 3 425 412: прозрачная повязка, позволяющая наблюдать рану, не снимая повязки.
33. Принцип однородности
Объекты, взаимодействующие с данным объектом, должны быть сделаны из того же материала (или близкого ему по свойствам).
Пример. «Способ получения постоянной литейной формы путем образования в ней рабочей полости по эталону методом литья, отличающийся тем, что с целью компенсации усадки изделия, полученного в этой форме, эталон и форму выполняют из материала, одинакового с изделием» (а. с. № 456 679).
34. Принцип отброса и регенерация частей
а. Выполнившая свое назначение или ставшая ненужной часть объекта должна быть отброшена (растворена, испарена и т. п.) или видоизменена непосредственно в ходе работы.
б. Расходуемые части объекта должны быть восстановлены непосредственно в ходе работы.
Пример. «Способ исследования высокотемпературных зон, преимущественно сварочных процессов, при котором в исследуемую зону вводят зонд-световод, отличающийся тем, что с целью улучшения возможности исследования высокотемпературных зон при дуговой и электрошлаковой сварке используют плавящийся зонд-световод, который непрерывно подают в исследуемую зону со скоростью не менее скорости его плавления» (а. с. № 433 397).
35. Изменение агрегатного состояния объекта
Сюда входят не только простые переходы, например от твердого состояния к жидкому, но и переходы к «псевдосостояниям» («псевдожидкость») и промежуточным состояниям, например использование эластичных твердых тел.
Пример. Патент ФРГ № 1 291 210: участок торможения для посадочной полосы выполнен в виде «ванны», заполненной вязкой жидкостью, на которой расположен толстый слой эластичного материала.
36. Применение фазовых переходов
Использовать явления, возникающие при фазовых переходах, например изменение объема, выделение или поглощение тепла и т. д.
Пример. «Заглушка для герметизации трубопроводов и горловин с различной формой сечения, отличающаяся тем, что с целью унификации и упрощения конструкции она выполнена в виде стакана, в который заливается легкоплавкий металлический сплав, расширяющийся при затвердевании и обеспечивающий герметичность соединения» (а. с. № 319 806).
37. Применение теплового расширения
а. Использовать тепловое расширение (или сжатие) материалов.
б. Использовать несколько материалов с разными коэффициентами теплового расширения.
Пример. В а. с. No 463423 предложено крышу парников делать из шарнирно-закрепленных пустотелых труб, внутри которых .находится легкорасширяющаяся жидкость. При изменении температуры меняется центр тяжести труб, поэтому трубы сами поднимаются и опускаются. Кстати, это ответ на задачу 30. Разумеется, можно использовать и биметаллические пластины, укрепленные .на крыше парника.
38. Применение сильных окислителей
а. Заменить обычный воздух обогащенным.
б. Заменить обогащенный воздух кислородом.
в. Воздействовать на воздух или кислород, ионизирующими излучениями.
г. Использовать озонированный кислород.
д. Заменить озонированный (или ионизированный) кислород озоном.
Пример. «Способ получения пленок феррита путем химических газотранспортных реакций в окислительной среде, отличающий с я тем, что с целью интенсификации окисления и увеличения однородности пленок процесс осуществляют в среде озона» (а. с. №261 859).
39. Применение инертной среды
а. Заменить обычную среду инертной.
б. Вести процесс в вакууме. Этот прием можно считать антиподом предыдущего.
Пример. Способ предотвращения загорания хлопка в хранилище, отличающийся тем, что с целью повышения надежности хранения хлопок подвергают обработке инертным газом в процессе его транспортировки к месту хранения» (а. с. № 270 171).
40. Применение композиционных материалов перейти от однородных материалов к композиционным
Пример. «Среда для охлаждения металла при термической обработке. отличающаяся тем, что с целью обеспечения заданной скорости охлаждения она состоит из взвеси газа в жидкости» (а. с. № 187060).
Все расположенные на сервере материалы являются собственностью их авторов. Любое воспроизведение, копирование с целью коммерческого использования этих материалов должно согласовываться с авторами материалов.
Принцип замены механической схемы означает что необходимо
В предлагаемой вниманию читателей работе А.С. Токарева показано, как одна и та же задача могла бы решаться с помощью каждого из сорока приемов, предложенных Г.С. Альтшуллером. Эти примеры конечно же не претендуют на то, чтобы закрыть реальную проблему защиты крыш от снега, о которой идет речь в работе. Это, в первую очередь, любопытные иллюстрации к приемам, позволяющие рассмотреть и сопоставить механизмы их действия. За многие годы, прошедшие после публикации Г.С. Альтшуллером списка из 40 приемов, накоплен определенный опыт практического использования этого инструмента. В то же время, при изучении приемов они как правило иллюстрируются довольно ограниченным набором технических решений, взятых из различных областей техники. В подавляющем своем большинстве эти решения — иллюстрации были получены их авторами без применения приемов. Эти два фактора (ограниченное число иллюстраций и крайне ограниченное количество примеров реального использования приемов) затрудняют представление совокупности приемов именно как целостного и работающего инструмента. Предлагаемая работа призвана частично устранить этот недостаток. Она может быть полезна преподавателям, позволяя строить объяснение работы всей совокупности методов вокруг одной задачи.
Редактор
Примеры применения приемов
устранения технических противоречий
Токарев А.С.
Московский общественный институт технического творчества
2005/2006
Выпускная работа Часть 2
Разбор задачи с применением инструментов ТРИЗ
Одну из значимых частей ТРИЗ составляют приемы устранения технических противоречий (предложены Г.С.Альтшуллером. Подробнее смотри в http://www.altshuller.ru/triz/tools.asp ) Приемы были получены путем обобщения решений большого количества задач в технике. Сегодня их применяют не только в технике, но и в бизнесе, рекламе.
Рассмотрим использование этого инструмента при решении следующей проблемы.
Проблема: снег, падающий зимой на автостоянку, затрудняет передвижение автомобилей и пешеходов.
Прежде чем применять какие-либо методы решения, следует проблему свести к задаче, так как аналитически решать можно только задачу. Проблема, представляет собой негативное ощущение человека, поставившего ее. Задача же содержит исходные условия и характер результата, который должен быть получен. Поэтому, сначала следует хотя бы в общих чертах определить возможные направления решения проблемы, чтобы впоследствии конкретизировать их вплоть до формулировки задач. В нашем случае возможны следующие направления решения проблемы:
1. Совершенствовать средства передвижения пешеходов и автомобилей. Сейчас есть для пешеходов — лыжи, снегоступы, коньки, снегоходы с мотором; для автотранспорта — зимняя резина, цепи, гусеничный ход. Можно заняться их модернизацией.
2. Убирать или уничтожать упавший снег. Этим сейчас и занимаются дорожные службы в городах. В арсенале — дорожные машины, снегоуборщики, самосвалы, снегоплавильные станции, реагенты. Можно сконцентрировать усилия на их совершенствование.
3. Не допускать падения снега на поверхность дороги или тротуара. Из имеющихся средств — навесы.
Улучшению этой, последней, технической системы (ТС) и будет посвящен дальнейший разбор.
Навесы используются для защиты поверхности от падения снега очень давно, но в условиях рыночной экономики к ним предъявляется дополнительное требование — иметь низкую себестоимость. Отсюда можно сформулировать новую, более узкую проблему: при защите автопарковки от падающего снега при использовании навеса приходится тратить деньги на его строительство. Мы получили административное противоречие: требуется снизить себестоимость навеса, но неизвестно, как это сделать. Это еще не задача — нет ни исходных данных, ни характера результата. Для того, чтобы привести это противоречие к технической задаче необходимо конкретизировать условия. Для этого следует описать техническую систему, с которой, или на основе которой, будет вестись разработка решений. Сразу нужно отметить, что получаемые решения не обязательно должны быть похожи на исходную ТС, ведь главной побуждающей силой является решение проблемы, а не модернизация имеющейся ТС.
Будем считать, что исходная ТС — навес — представляет собой крышу, установленную на опоры.
Для того, чтобы выйти на техническое противоречие, для устранения которого можно будет применить приемы, необходимо предъявить к нашей ТС такие технические требования, которые требовали бы существования ТС в противоположных состояниях одновременно. Одно требование вытекает из главной функции ТС — не пропускать снег на автостоянку. Второе требование — «низкая себестоимость» не является техническим, так как напрямую не относится к технической стороне навеса. Значит надо найти технический эквивалент себестоимости и формулировать противоречие относительно него. В нашем случае возможно несколько вариантов таких эквивалентов. Рассмотрим некоторые из них.
Себестоимость навеса в основном складывается из стоимости материалов и стоимости работ по его постройке. Для обычных конструкций стоимость работ пропорциональна стоимости материалов, к тому же стоимость работ также не является технической характеристикой навеса и формулирование противоречия на ее основе не даст продвижения вперед. Стоимость материалов пропорциональна размеру защищаемой площади автостоянки, которая определяется заказчиком. Обратим внимание на конструкцию, которая состоит из крыши и опор. Площадь крыши также определяется размерами автостоянки. Из оставшихся технических характеристик можно выделить: толщину крыши, количество и расположение опор, площадь сечения опор.
Здесь следует особо подчеркнуть, что выбранная характеристика (например, толщина крыши) будет являться «наживкой», на которую мы будем «ловить» новые идеи, и выбор ее не имеет определяющего значения для решения задачи. В зависимости от выбранной характеристики и предъявленным к ней требованиям решение задачи может пойти по разным путям, но все они должны привести к решениям. Если вдруг выяснится, что в конкретных условиях на выбранную «наживку» реальные идеи «не ловятся», тогда можно выбрать другую (скажем, количество опор на единицу площади навеса), третью и так до полной победы. Более того, как будет показано ниже, получаемые решения часто будут иметь мало общего, как с исходно выбранной характеристикой, так и со структурой исходной ТС вообще.
В нашем случае выберем толщину крыши. Для того, чтобы стоимость материалов крыши была минимальной при определенной площади, ее толщина должна быть минимальна. Таким образом мы заменяем экономический критерий «низкая себестоимость» на техническую характеристику «минимальная толщина крыши».
Теперь можно сформулировать техническое противоречие: если толщину крыши сделать большой, то крыша удержит вес снега, но получится очень дорогой; если толщину крыши сделать маленькой, то она будет дешевой, но не сможет удержать вес снега и разрушится.
Итак, у нас образовалась конфликтующая пара в виде крыши и снега. Поскольку в ТС входит только крыша, то основные изменения будем осуществлять с ней. (В некоторых случаях, снег тоже может стать объектом применения приемов, то есть служить ресурсом для достижения нашей цели — борьбы с вредным давлением толщи снега).
Внимательный читатель заметит в приведенных выкладках еще одну пару противоположностей, касающуюся главной полезной функции крыши, а именно — не пропускать снег и удерживать вес снега. При кажущейся эквивалентности этих понятий существует следующая разница. Запись «удерживать вес снега» предполагает, что снег будет скапливаться и находиться на крыше все время. Запись «не пропускать снег» более общая, так как заранее не предполагает никакого конкретного «поведения» снега, кроме того, она точнее отражает функцию навеса — защита автостоянки, а не удержание снега. Ввиду того, что своей толщиной крыша обязана именно весу снега, который она должна удерживать в рамках традиционного решения, противоречие записано именно с термином «удержать вес снега». В противном случае не будет понятно, зачем нужна толщина, которая обеспечивает крыше прочность.
Далее будут предложены примеры использования каждого приема для решения поставленной задачи.
Изложение организовано по следующей схеме: название приема, краткое его содержание, привязка или адаптация содержания приема к рассматриваемой задаче и решение, которое из этого вытекает. Название приемов и их краткое содержание цитируется по работе Г.С. Альтшуллера http://www.altshuller.ru/triz/technique1.asp. Процедура адапации не входит в число рекомендованных Г.С. Альтшуллером и почерпнута из иных методов работы с приемами (метод записной книжки Хефеле). Идеи решений носят оригинальный характер, они были получены автором настоящей работы. Следует отметить, что предлагаемые варианты адаптации и тем более полученные идеи решений не являются единственно возможными, а только одними из вариантов. В реальной практике, мысли, образующиеся в результате применения приемов, будут зависеть от опыта, эрудиции, фантазии, особенностей видения ресурсов и иных особенностей ситуации и многих других процессов, происходящих в психике решателя.
Прием 1. Принцип дробления. а) Разделить объект на независимые части;
б) Выполнить объект разборным;
в) Увеличить степень дробления объекта.
Адаптация: разделить крышу на много маленьких крыш, стоящих на своих опорах. Тогда основную нагрузку веса снега будут нести опоры и крышу можно делать тонкой.
Решение: сделать крышу в виде множества маленьких крыш на своих опорах. Представленное решение промежуточное, так как сразу возникает проблема большого количества опор.
Прием 2. Принцип вынесения. Отделить от объекта «мешающую» часть («мешающее» свойство) или, наоборот, выделить единственно нужную часть (нужное свойство).
Адаптация: Мешающей частью является толщина крыши. Она появляется в основном из-за того, что нагрузка на крышу получается изгибающая и напряжения в материале весьма велики. Вот если бы удалось сделать нагрузку только растягивающую, то это значительно снизило бы напряжения.
Решение: Подвесить крышу на многочисленных тонких тросах, закрепленных на зданиях или высоких опорах.
Прием 3. Принцип местного качества.
а) Перейти от одной структуры объекта (или внешней среды, внешнего воздействия) к неоднородной.
б) Разные части объекта должны иметь (выполнять) различные функции.
в) Каждая часть объекта должна находиться в условиях, наиболее благоприятных для ее работы.
Адаптация: поскольку у крыши две функции — не пропускать снег и удерживать его вес, следует разделить ее на элементы, специализирующиеся на этих функциях.
Решение: Сделать крышу из двух слоев — один будет снегонепроницаемым, второй силовым, удерживающим весовую нагрузку.
Прием 4. Принцип ассиметрии.
а) Перейти от симметричной формы объекта к асимметричной.
б) Если объект асимметричен, увеличить степень асимметрии.
Адаптация: Исходная ТС представлена как плоскость, лежащая на опорах. Придать ей ассиметричную форму можно наклонив эту плоскость.
Решение: Сделать крышу наклонной, уменьшив тем самым нагрузку на единицу площади крыши, а также с наклонной крыши снег будет скатываться и не будет накапливаться на ней, что тоже уменьшит нагрузку.
Прием 5. Принцип объединения.
а) Соединить однородные или предназначенные для смежных операций объекты.
б) Объединить во времени однородные или смежные операции.
Адаптация: следует соединить все соседние крыши между собой, уменьшив таким образом количество опор и увеличив надежность.
Решение: Делать крыши единым навесом используя в качестве опор все годные для этого сооружения (здания, столбы, киоски и пр.)
Прием 6. Принцип универсальности. Объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах.
Адаптация: Следует добавить крыше выполнение других функций, например быть полом.
Решение: Надстроить над автостоянкой один этаж, который использовать под офис или склад.
Прием 7. Принцип «матрешки».
а) Один объект размещен внутри другого объекта, который, в свою очередь, находится внутри третьего и т. д.;
б) Один объект проходит сквозь полость в другом объекте.
Адаптация: Разместить крышу внутри другой крыши.
Решение: Организовать автостоянку под имеющимися сооружениями — эстакадами, мостами, перекрытиями или заглубить автостоянку под землю.
Прием 8. Принцип антивеса.
а) Компенсировать вес объекта соединением с другими объектами, обладающими подъемной силой.
б) Компенсировать вес объекта взаимодействием со средой (за счет аэро-, гидродинамических и других сил).
Адаптация: Следует компенсировать вес снега соединением его или крыши с объектом, обладающим подъемной силой.
Решение: Прикрепить к крыше воздушный шар или дирижабль, который будет удерживать вес снега.
Прием 9. Принцип предварительного антидействия.
а) Заранее придать объекту напряжения, противоположные недопустимым или нежелательным рабочим напряжениям.
б) Если по условиям задачи необходимо совершить какое-то действие, надо заранее совершить антидействие.)
Адаптация: Нужно создать в крыше напряжения, противоположные рабочим.
Решение: Крышу изготавливать из двух или более листов, создав в этом пакете предварительные напряжения и установить ее так, чтобы эти напряжения были противоположны рабочим напряжениям, образующимся под действием веса снега.
Адаптация: Создать в крыше предварительные напряжения, которые использовать для сброса снега с крыши.
Решение: Сделать крышу в виде полотна закрепленного по периметру на пружинах (как в раскладной кровати или батуте). Перед падением снега прогнуть крышу вниз и закрепить. Когда накопится снег, крышу отпустить и тогда, под действием пружин, крыша взлетит вверх и сбросит снег с себя.
Прием 10. Принцип предварительного действия.
а) Заранее выполнить требуемое изменение объекта (полностью или хотя бы частично).
б) Заранее расставить объекты так, чтобы они могли вступить в действие с наиболее удобного места и без затрат времени на доставку.
Адаптация: Заранее уменьшить количество снега, падающего на крышу.
Решение: Сдувать падающий снег в сторону от крыши с помощью больших вентиляторов.
Прием 11. Принцип «заранее подложенной подушки». Компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами.
Адаптация: Невысокая надежность крыши может привести к ее обрушению. Следует позаботиться о предотвращении разрушительных последствий.
Решение: Крыша рассчитывается на средние нагрузки и при этом делается еще один уровень под ней на случай обрушения.
Прием 12. Принцип эквипотенциальности.
Изменить условия работы так, чтобы не приходилось поднимать или опускать объект.
Адаптация: снег не должен опускаться на крышу, снег не должен покидать тучу.
Решение: Уничтожать снежные тучи или заставить снег идти в другом месте.
Прием 13. Принцип «наоборот».
а) Вместо действия, диктуемого условиями задачи, осуществить обратное действие (например, не охлаждать объект, а нагревать).
б) Сделать движущуюся часть объекта (или внешней среды) неподвижной, а неподвижную — движущейся.
в) Перевернуть объект «вверх ногами».
Адаптация: Перевернуть систему снег-крыша. Снег должен поддерживать крышу.
Решение: Сделать крышу в виде сетки, к которой с высокой частотой прикреплено большое количество нитей, свисающих с сетки вниз. Снег должен застревать между нитями, уплотняться и держать себя сам.
Прием 14. Принцип сфероидальности.
а) Перейти от прямолинейных частей объекта к криволинейным, от плоских поверхностей к сферическим, от частей, выполненных в виде куба или параллелепипеда, к шаровым конструкциям.
б) Использовать ролики, шарики, спирали.
в) Перейти к вращательному движению, использовать центробежную силу.
Адаптация: перейти от плоской крыши к сферической.
Решение: Сделать крышу в виде сферического или полуцилиндрического купола. Это уменьшит нагрузку на единицу поверхности крыши, а также будет способствовать скатыванию снега с крыши.
Адаптация: перейти к вращательному движению крыши.
Решение: Сделать крышу в виде вращающегося диска. Снег под действием центробежных сил будет слетать с крыши, уменьшая нагрузку. Кроме того. Центробежные силы будут растягивать саму крышу, компенсируя изгибающие нагрузки от веса снега.
Прием 15. Принцип динамичности.
а) Характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы.
б) Разделить объект на части, способные перемещаться относительно друг друга;
в) Если объект в целом неподвижен, сделать его подвижным, перемещающимся.
Адаптация: сделать крышу подвижной.
Решение: сделать крышу в виде горизонтально расположенной транспортерной ленты. Когда начнет падать снег включить транспортер и тогда крыша будет сбрасывать снег в сторону.
Прием 16. Принцип частичного или избыточного решения.
Если трудно получить 100% требуемого эффекта, надо получить «чуть меньше» или «чуть больше». Задача при этом может существенно упроститься.
Адаптация: «Чуть меньше» означает, что крыша может задерживать не весь упавший на нее снег.
Решение: Сделать крышу с отверстиями, что снизит расход материала. Некоторое количество снега, выпадающего в отверстия не создаст серьезных проблем для движения на автопарковке и будет растоплено шинами и выхлопными газами.
Прием 17. Принцип перехода в другое измерение.
а) Трудности, связанные с движением (или размещением) объекта по линии, устраняются, если объект приобретает возможность перемещаться в двух измерениях (то есть на плоскости). Соответственно, задачи, связанные с движением (или размещением) объектов в одной плоскости, устраняются при переходе к пространству трех измерений.
б) Многоэтажная компоновка объектов вместо одноэтажной.
в) Наклонить объект или положить его «набок».
г) Использовать обратную сторону данной площади.
д) Использовать оптические потоки, падающие на соседнюю площадь или на обратную сторону имеющейся площади.
Адаптация: Сделать крышу не из одного слоя, а из нескольких.
Решение: Сделать крышу в виде нескольких слоев сеток, расположенных на небольшом расстоянии друг от друга и имеющим разный размер ячейки — крупные ячейки выше, мелкие ниже. Снег будет просачиваться через верхние слои, постепенно достигая нижних. Тогда нагрузка будет распределена по вертикали, и вес приходящийся на одну сетку будет значительно меньше.
Прием 18. Использование механических колебаний.
а) Привести объект в колебательное движение.
б) Если такое движение уже совершается, увеличить его частоту (вплоть до ультразвуковой).
в) Использовать резонансную частоту.
г) Применить вместо механических вибраторов пьезовибраторы.
д) Использовать ультразвуковые колебания в сочетании с электромагнитными полями.
Адаптация: привести крышу в колебательное движение.
Решение: Возбудить в крыше вертикальные колебания, что позволит поддерживать снег за счет динамических сил. Если при этом слегка наклонить крышу, то постепенно снег будет с нее сползать.
Прием 19. Принцип периодического действия.
а) Перейти от непрерывного действия к периодическому (импульсному).
б) Если действие уже осуществляется периодически — изменить периодичность.
в) Использовать паузы между импульсами для другого действия.
Адаптация: крыша должна удерживать снег периодически, а периодически не удерживать снег. Крыша должна периодически очищаться от снега. Следует установить на ней периодический очиститель.
Решение: Установить на крыше надувную подушку, в которую периодически резко подавать газ. Надуваясь и увеличиваясь подушка будет сбрасывать снег с себя и крыши.
Прием 20. Принцип непрерывности полезного действия.
а) вести работу непрерывно (все части объекта должны все время работать с полной нагрузкой).
б) устранить холостые и промежуточные ходы.
Адаптация: Исходя из этого приема, крыша должна непрерывно находиться под максимальной нагрузкой. Но снег падает периодически, значит нагрузку надо добавить. Например, собрать на крышу весь снег из соседних участков. Тогда оправдано сделать крышу толстой.
Решение: Сделать толстую крышу в виде хранилища снега, куда собирать его со всех соседних участков.
Прием 21. Принцип проскока.
Вести процесс или отдельные его этапы (например, вредные или опасные) на большой скорости.
Адаптация: Вредным является процесс удержания снега. Его нужно осуществлять так быстро, чтобы нагрузка на крышу не превзошла критическую. Крыша должна появляться на некоторое время, в течение которого она начнет деформироваться под действием нагрузки, но недостаточное для развития разрушающих деформаций. После чего на ее месте должна оказываться другая, недеформированная крыша.
Решение: Крыша должна представлять собой ленту, движущуюся с огромной скоростью так, чтобы ее участок, на котором лежит снег, не успел деформироваться до разрушающих нагрузок.
Прием 22. Принцип «обратить вред в пользу».
а) Использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта.
б) Устранить вредный фактор за счет сложения с другим вредным фактором.
в) Усилить вредный фактор до такой степени, чтобы он перестал быть вредным.
Адаптация: Вредным фактором является снег. Усилить его — значит увеличить его количество. Если увеличить количество снега аж до самой земли, то он начнет держать себя сам.
Решение: Сделать крышу в виде перевернутых конусов, опирающихся на землю. Снег заполняя конусы будет частично поддерживать себя.
Прием 23. Принцип обратной связи.
а) Ввести обратную связь.
б) Если обратная связь есть — изменить ее.
Адаптация: обратная связь в нашем случае может быть записана так: чем больше снега — тем толще нужна крыша или чем больше снега — тем быстрее его надо убирать. Используя полученное ранее решение с наклоном крыши можно получить его модификацию.
Решение: Наклон крыши увеличивается по мере усиления снегопада.
Прием 24. Принцип «посредника».
а) Использовать промежуточный объект, переносящий или передающий действие.
б) На время присоединить к объекту другой (легко удаляемый) объект.
Адаптация: На время присоединить к крыше элементы, помогающие ей удерживать снег.
Решение: В случае большого количества снега на крыше устанавливать дополнительные опоры, которые убирать после очистки крыши от снега.
Прием 25. Принцип самообслуживания.
а) Объект должен сам себя обслуживать, выполняя вспомогательные и ремонтные операции.
б) Использовать отходы (энергии, вещества).
Адаптация: крыша сама должна себя обслуживать. Так как снег она не пропускает (по условию задачи), то обслуживание может заключаться в самоочистке от снега. У крыши должны быть элементы, помогающие ей очиститься от снега. Желательно за счет самого снега.
Решение: Сделать крышу из пружинящих лепестков. Падающий снег, накапливаясь, будет сжимать пружинистые лепестки, которые распрямляясь будут отбрасывать снег в сторону от крыши.
Прием 26. Принцип копирования.
а) Вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии.
б) Заменить объект или систему объектов их оптическими копиями (изображениями). Использовать при этом изменение масштаба (увеличить или уменьшить копии).
в) Если используются видимые оптические копии, перейти к копиям инфракрасным или ультрафиолетовым.
Адаптация: оптическая копия крыши — это голограмма. Голограмма выполняется с помощью лазерного луча. Если мощность луча достаточно велика, то такая «лазерная» крыша может плавить снег сама.
Решение: Крыша в виде лазерного луча, организованного в плоскость и имеющего достаточную мощность для плавления падающего снега.
Прием 27. Дешевая недолговечность взамен дорогой долговечности. Заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).
Адаптация: крыша должна стать одноразовой и уничтожаться после каждого снегопада.
Решение: Сделать крышу в виде ковра, к которому прилипает снег. После снегопада ковер со снегом скатать в рулон и отправить на снегоплавильную станцию или складировать до весны, а на крыше расстелить новый ковер.
Прием 28. Замена механической схемы.
а) Заменить механическую систему оптической, акустической или «запаховой».
б) Использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом.
в) Перейти от неподвижных полей к движущимся, от фиксированных — к меняющимся по времени, от неструктурных — к имеющим определенную структуру.
г) Использовать поля в сочетании с ферромагнитными частицами.
Адаптация: применить для удержания снега электростатические или магнитные поля.
Решение: Перед подлетом снега к крыше его следует электростатически зарядить или намагнитить и далее удерживать или менять траекторию падения с помощью электростатических или магнитных полей.
Прием 29. Использование пневмо- и гидроконструкций. Вместо твердых частей объекта использовать газообразные и жидкие: надувные и гидронаполняемые, воздушную подушку, гидростатические и гидрореактивные.
Адаптация: использовать надувные конструкции крыши.
Решение: Сделать крышу в виде надувной подушки с постоянным давлением. В этом случае основную нагрузку будет держать газ, а нагрузка на оболочку, работающую только на растяжение будет заметно снижена.
Прием 30. Использование гибких оболочек и тонких пленок.
а) Вместо обычных конструкций использовать гибкие оболочки и тонкие пленки.
б) Изолировать объект от внешней среды с помощью гибких оболочек и тонких пленок.
Адаптация: Так как исходная задача уже подразумевает крышу, как плоскость не имеющую толщины, применение этого приема «в лоб» не даст ничего нового. Значит надо посмотреть на ситуацию по-другому. Пленка — это не обязательно пленка вещества, это может быть пленка воздуха.
Решение: Установить по всей поверхности крыши сопла, подающие воздух. Снег будет или динамически поддерживаться в воздухе или сдуваться в сторону, если крышу или сопла наклонить.
Прием 31. Применение пористых материалов.
а) Выполнить объект пористым или использовать дополнительные пористые элементы (вставки, покрытия и т. п.)
б) Если объект уже выполнен пористым, предварительно заполнить поры каким-то веществом.
Адаптация: крыша должна быть пористой
Решение: Сделать крышу в виде натянутой сетки с ячейками имеющими размер, не позволяющий снегу проникнуть через них. Расход материала уменьшится.
Решение 2: Сделать толстую крышу из легкого пористого материала с крупными порами. Снег забиваясь в поры будет формировать массу, способную нести силовую нагрузку.
Прием 32. Принцип изменения окраски.
а) Изменить окраску объекта или внешней среды.
б) Изменить степень прозрачности объекта или внешней среды.
в) Для наблюдения за плохо видимыми объектами или процессами использовать красящие добавки.
г) Если такие добавки уже применяются, использовать меченые атомы.
Адаптация: изменить окраску крыши или снега.
Решение: Если распылить на выпавший снег черную краску, то это будет способствовать быстрейшему его таянию под воздействием солнечных лучей.
Прием 33. Принцип однородности. Объекты, взаимодействующие с данным объектом, должны быть сделаны из того же материала (или близкого ему по свойствам).
Адаптация: крыша должна быть сделана из снега.
Решение: Сделать крышу ледяной либо из первого выпавшего снега, либо предварительно соорудить ледяную конструкцию.
Прием 34. Принцип отброса и регенерации частей.
а) Выполнившая свое назначение или ставшая ненужной часть объекта должна быть отброшена (растворена, испарена и т. д.) или видоизменена непосредственно в ходе работы.
б) Расходуемые части объекта должны быть восстановлены непосредственно в ходе работы.
Адаптация: крыша должна исчезать выполнив свою функцию — не дать снегу упасть на автостоянку. Тогда она должна исчезать вместе со снегом. Это похоже на непрерывный поток.
Решение: Пустить по наклонной крыше теплую воду, которая стекая, будет забирать с собой падающий на нее снег.
Прием 35. Изменение физико-химических параметров объекта.
а) Изменить агрегатное состояние объекта.
б) Изменить концентрацию или консистенцию.
в) Изменить степень гибкости.
г) Изменить температуру.
Адаптация: изменить агрегатное состояние снега.
Решение: Подогреть крышу и снег лежащий на ней, чтобы он превратился в воду. Тогда он сможет сам стечь с нее уменьшив нагрузку.
Прием 36. Применение фазовых переходов. Использовать явления, возникающие при фазовых переходах, например изменение объема, выделение или поглощение тепла и т. д.
Адаптация: Процесс уплотнения снега при его длительном лежании приводит к повышению плотности и прочности снега. Этот эффект можно использовать для поддержания прочности крыши.
Решение: Сделать крышу в виде толстой арочной конструкции с радиальными каналами. Снег заполняя каналы будет спрессовываться по мере приближения к геометрическому центру и станет способен выдерживать силовую нагрузку.
Прием 37. Применение термического расширения.
а) Использовать термическое расширение (или сжатие) материалов.
б) Если термическое расширение уже используется, применить несколько материалов с разными коэффициентами термического расширения.
Адаптация: можно использовать термическое расширение материала крыши для выравнивания нагрузки на нее.
Решение: Сделать крышу из двух листов с разным коэффициентом термического расширения. В результате выпадения снега температурное поле на крыше будет меняться и в крыше будут возникать напряжения, которые можно использовать для компенсации веса снега.
Приeм 38. Применение сильных окислителей.
а) Заменить обычный воздух обогащенным.
б) Заменить обогащенный воздух кислородом.
в) Воздействовать на воздух или кислород ионизирующими излучениями.
г) Использовать озонированный кислород.
д) Заменить озонированный (или ионизированный) кислород озоном.
Основная цель этой цепи приемов — повысить интенсивность процессов.
Адаптация: можно повысить интенсивность таяния или растворения снега.
Решение: Подавать на поверхность крыши специальные химические реагенты, растворяющие снег или переводящие его в жидкое состояние.
Прием 39. Применение инертной среды.
а) Заменить обычную среду инертной.
б) Вести процесс в вакууме.
Адаптация: Понятие «инертный» означает — не реагирующий. Следует сделать снег не реагирующим с крышей, например, исключить или значительно ослабить силу притяжения или удельный вес снега. Это возможно, если превратить его в пар. Решение: При подлете снега к крыше следует превратить его в пар путем нагревания тепловыми или СВЧ установками.
Прием 40. Применение композиционных материалов. Перейти от однородных материалов к композиционным.
Решение: Сделать крышу из композиционного материала.
Представленные решения можно разделить на две основные группы: повышающие несущую способность крыши и уменьшающие снеговую нагрузку на крышу. Следует отметить, что в случае постановки задачи в формулировке «удерживать снег» вторая часть массива решений не была бы получена, несмотря на их дееспособность.
Очевидно также, что не все приемы давали одинаково действенные решения, а некоторые приемы приводили к решениям, похожим на другие. Для того, чтобы оптимизировать работу с приемами была построена «Таблица выбора приема устранения технических противоречий» в которой для разрешения конкретных видов противоречий рекомендовалось применять не все приемы, а только определенные.
Для выбора приемов с помощью таблицы необходимо определить два параметра: что мы хотим улучшить и что при этом ухудшается. Для этого вспомним ТП, записанное в начале разбора: «если толщину крыши сделать большой, то крыша удержит вес снега, но получится очень дорогой; если толщину крыши сделать маленькой, то она будет дешевой, но не сможет удержать вес снега и разрушится». Но в стандартной таблице выбора приемов нет терминов «толщина» и «стоимость». Значит, придется найти адекватные замены этим терминам с учетом особенностей рассматриваемой технической задачи. Сразу нужно отметить, что возможно несколько вариантов замены. Рассмотрим два из возможных.
Вариант замены терминов №1
Как было показано в предварительном анализе, эквивалентом стоимости может служить материалоемкость крыши. Термина «материалоемкость» также нет в таблице, но есть термин «объем неподвижного объекта». Если представлять крышу относительно монолитной конструкцией, то «материалоемкость», как вес материала может быть заменена «объемом неподвижного объекта» (крыши), считая плотность материала постоянной.
Термин «толщина», как линейный размер, может быть заменен на «длину неподвижного объекта».
Тогда получаем, что по условиям задачи надо изменить «длину неподвижного объекта» и при этом ухудшается «объемом неподвижного объекта». С помощью таблицы, определяем рекомендуемые приемы разрешения ТП: №№ 35, 8, 2, 14. Решения, получаемые с помощью этих приемов описаны выше.
Вариант замены терминов №2
Используем часть ТП «если толщину крыши сделать маленькой, то она будет дешевой, но не сможет удержать вес снега и разрушится». Термин «толщина», как и прежде заменяем на «длину неподвижного объекта». Термин «удержать вес» может быть заменен на «прочность», таким образом, у нас при изменении «длины» (толщины) ухудшается «прочность». Но в таблице не оказывается рекомендаций по разрешению такого противоречия. Требуется еще одна замена терминов.
В нашем случае термин «толщина», для подстановки его в графу «что требуется изменить», путем нескольких итераций может быть заменен на «объем неподвижного объекта». Интересно, что в предыдущем варианте этот термин использовался в разделе «что ухудшается». В результате, при паре нужно изменить «объем неподвижного объекта» и при этом ухудшается «прочность», получаем рекомендацию воспользоваться приемами №№ 28, 6, 32.
Легко заметить, что среди них нет ни одного приема из рекомендованных для предыдущего рассмотренного варианта выбора параметров подстановки №1. Получается, что в зависимости от выбранной адаптации задачи к терминам таблицы могут быть рекомендованы совершенно разные приемы даже для одного и того же технического противоречия. Отсюда следует, что к вопросу замены терминов задачи на термины, присутствующие в таблице, следует подходить внимательно и в случае неоднозначности пробовать все возможные варианты для получения большего количества решений. Правда, так можно очень быстро придти к тотальному перебору всех приемов.
Обобщая результаты можно сделать следующие выводы: 1.
Рекомендуемые приемы устранения ТП направлены на активизацию мышления и выход за пределы известных решений. 2.
Качество решений, получаемых с помощью приемов, зависит как от кругозора решателя, так и от его настойчивости. 3.
Корректность выбора рекомендуемых приемов устранения ТП с помощью таблицы зависит от мастерства решателя адаптировать задачу к терминам, используемым в таблице. 4.
Перечень терминов, используемых в качестве входных данных в таблице разрешения ТП, может оказаться недостаточным. Необходима работа по расширению таблицы и заполнению пустых клеток внутри существующей.
Способы, приемы и системы обработки почвы
Способ механической обработки почвы — это характер и степень воздействия рабочими органами почвообрабатывающих орудий и машин на изменение профиля (сложения), генетическую и антропологическую разнокачественность обрабатываемого слоя почвы в вертикальном направлении. Различают отвальный, безотвальный, роторный и комбинированный способы.
Отвальный — воздействие рабочими органами почвообрабатывающих орудий и машин на почву с полным или частичным оборачиванием обрабатываемого слоя для изменения местоположения разнокачественных слоев или генетических горизонтов почвы в вертикальном направлении в сочетании с усиленным рыхлением и перемешиванием почвы, подрезанием и заделкой наземных органов растений и удобрений в почву. Все виды отвальной обработки (старопахотных земель, пласта многолетних трав, залежей, лугов и т. д.) проводятся плугами разных конструкций.
Безотвальный — воздействие рабочими органами почвообрабатывающих орудий и машин па почву без изменения расположения генетических горизонтов и дифференциации обрабатываемого слоя по плодородию в вертикальном направлении в целях рыхления или уплотнения почвы, подрезания подземных и сохранения надземных органов растений па поверхности почвы. При этом способе сохраняется стерня (жнивье) на поверхности почвы. Безотвальный способ обработки почвы осуществляется плугами со снятыми отвалами, чизельными плугами, чизельными культиваторами, тяжелыми культиваторами.
Роторный — воздействие на почву вращающимися рабочими органами почвообрабатывающих орудий и машин для устранения дифференциации обрабатываемого слоя по сложению и плодородию активным крошением и тщательным перемешиванием почвы, растительных остатков и удобрений с образованием гомогенного (однородного) слоя почвы. Роторная обработка осуществляется 4-мя резами.Комбинированные способы — различные сочетания по горизонтам и слоям почвы, а также срокам осуществления отвального, безотвального и роторного способов обработки.
Применение того или иного способа обработки обусловлено ее задачами, климатическими условиями, типом почвы и степенью окультуренности, требованиями возделываемых культур и др.
Прием механической обработки — это однократное воздействие на почву различными почвообрабатывающими орудиями и машинами тем или иным способом в целях осуществления одной или нескольких технологических операций на определенную глубину.
В зависимости от глубины обработки почвы выделены 4 группы приемов: поверхностной, обычной (средней), глубокой и сверхглубокой обработки почвы.
Приемы поверхностной обработки — механическое воздействие почвообрабатывающими орудиями и машинами па поверхность почвы и нижележащие слои до 15 см.
Прикатывание — обработка почвы катками, обеспечивающая крошение глыб, комков, уплотнение и выравнивание поверхности почвы оно может быть предпосевным и послепосевным. Предпосевное прикатывание является обязательным приемом обработки, особенно на торфяных и легких но гранулометрическому составу песчаных и супесчаных почвах. На легких почвах большой эффект даст также послепосевное прикатывание одновременно с посевом. Для прикатывания применяют гладкие, кольчато-шпоровые, кольчато-зубчатые и др. катки.
Боронование — способствует прошению глыб, комков, уплотнению и выравниванию поверхности поля. Это эффективный прием весенней обработки зяби по уходу за зерновыми, зернобобовыми и пропашными культурами и многолетними травами. Рабочими органами зубовой бороны являются неподвижные зубья с квадратным сечением у тяжелых и округлым у легких. Тяжелые зубовые бороны с давлением на один зуб 1,5 кг рыхлят почву на 5-8 см, среднее с давлением на зуб от 1 до 1,5 кг рыхлят почву на 4-6 см, легкие с давлением на зуб от 0,5 до 1 кг рыхлят на глубину 2-3 см.
У сетчатых борон мелкие зубья закреплены на подвижной раме и могут передвигаться в почве независимо друг от друга. Не повреждая культурных растений по уходу за ними, сетчатая борона хорошо рыхлит почву. Наилучшее качество боронования достигается при скоростях 12 км/почвы, а посевов — 5-7 км/ч.
Дискование — прием обработки почвы, обеспечивающий крошение, рыхление, частичное оборачивание и перемешивание почвы, измельчение сорняков. Дисковая борона в качестве рабочего органа имеет вращающиеся сферические диски, которые можно устанавливать под разным углом атаки к направлению движения. С увеличением угла атаки увеличивается крошение и глубина обработки, лучше подрезаются сорняки. Бороны с вырезными дисками применяют на тяжелых и задернистых почвах.
Лущение жнивья (стерни) — прием обработки почвы после уборки зерновых культур, обеспечивающий крошение, рыхление, частичное перемешивание и оборачивание почвы, измельчение подземных и заделку надземных органов растений, семян сорняков, возбудителей болезней и вредителей культурных растений отвальными или дисковыми лущильниками. Они оборачивают и рыхлят почву на глубину от 6 до 12 см и хорошо разрезают горизонтально расположенные корневища, лемешные хорошо оборачивают почву и подрезают сорняки на глубину 8-16 см. Для лущения стерни могут быть использованы чизельные культиваторы.
Культивация — это крошение, рыхление, перемешивание почвы, подрезание подземных органов сорняков. Рабочими органами культиваторов являются лапы различных конструкций. Культиваторы рыхлят почву от 6 до 12 см. В районах, подверженных ветровой эрозии, для оставления стерни на поверхности почвы применяют культиваторы плоскорезы КПШ-5, КПШ-9 и штанговые культиваторы ОП-8,5, ОП-12.
Выравнивание, шлейфование — выравнивание поверхности рыхлой почвы. Осуществляется культиваторами с одновременным боронованием, комбинированными агрегатами типа КД-720М, АКШ и РВК, тяжелыми пружинными боронами БСП-15, БСП-21, деревянным брусом, волокушами и др.
Гребневание — обеспечивает форму изменения поверхности ноля для лучшего прогревания и более раннего созревания почвы, выполняется рабочими органами типа окучника; грядование — способствует образованию на поверхности поля гряд, быстрейшему прогреванию и созреванию почвы.
Бороздование — нарезка борозд на поверхности почвы окучниками-бороздоделателями.
Лункование — образование замкнутых углублений почвы дисковыми лункообразователями для задержания талых и ливневых вод на почвах, подверженных водной эрозии. Окучивание — разновидность междурядной обработки с приваливанием почвы к основанию стеблей пропашных культур рабочими органами культиваторов окучников. Букетировка обеспечивает прореживание всходов свеклы с заданным размером вырезов и букетов, крошение, рыхление почвы и подрезание подземных органов растений в вырезах, выполняется культиваторами с плоскорежущими специально расставленными лапами.
Комбинированная агрегатная обработка — комплекс приемов, способствует совмещению нескольких технологических операций обработки почвы (крошение, рыхление, выравнивание, уплотнение). Выполняется почвообрабатывающими агрегатами типа КД-720М, ОП-8.5, зерновая сеялка СКП-2.1, пропашная сеялка СКП-2.1 М, сеялка ноутил, АКШ и РВК и др. почвы, растительных остатков, удобрений вращающимися рабочими фрезерование — тщательное крошение, рыхление, перемешивание органами фрезы.
Приемы обычной (средней обработки почвы) — воздействие почвообрабатывающими машинами на почву определенным способом на глубину 16-25 см.
Вспашка — прием обработки почвы плугом, обеспечивающий крошение, рыхление и оборачивание обрабатываемого слоя почвы не менее чем на 135°. Основное назначение отвальной вспашки — восстановление высокого плодородия во всем пахотном слое. При вспашке плугами с предплужниками последние сбрасывают верхний слой почвы на дно борозды, а основной корпус плуга поднимает нижнюю хорошо крошащуюся часть пахотного слоя и прикрывают ею верхний слой. При такой вспашке производятся глубокая заделка и разложение всех растительных остатков, вредителей и зачатков болезней, глубоко подрезаются сорняки. Вспашку плугом с предплужниками (углоснимами) называют культурной. Вспашку плугом с оборачиванием пласта на 180° называют оборотом пласта, с оборачиванием па 135° и укладкой пластов под углом 45° к горизонту — взметом пласта. Для вспашки могут применять и дисковые плуги.
Безотвальное рыхление — обеспечивает крошение, рыхление почвы без оборачивания обычными плугами со снятыми отвалами, плугами без отвалов, чизельными плугами и культиваторами. При безотвальном рыхлении на поверхности почвы остается некоторая часть стерни, подрезанные сорняки, яйца и личинки вредителей, часть пылеватых частиц, находящихся в верхнем слое почвы, в процессе рыхления попадает в более глубокие слои.
Приемы глубокой обработки — периодическое воздействие почвообрабатывающими орудиями и машинами на почву определенным способом в целях увеличения мощности обрабатываемого слоя без существенного изменения генетического сложения на глубину 25-35 см. Вспашка с пропахиванием нижележащего слоя почвы. — с ее помощью производятся оборачивание, крошение, рыхление, вынесение на поверхность части подзолистого горизонта, подрезание и заделку в почву надземных органов сорняков, послеуборочных остатков культурных растений, удобрений, семян сорняков, зачатков болезней и вредителей культурных растений. Этот прием применяется при увеличении мощности пахотного слоя дерново-подзолистых почв, вновь осваиваемых торфяных почв.
Чизельная обработка — рыхление, крошение пахотного и подпахотного горизонтов без оборота пласта. Чизель рыхлит почву, отрывая ее от монолита, но не уплотняет подпахотные слои, не образует «плужной подошвы». Прорезая щели, он способствует лучшему поглощению почвой воды, более глубокому проникновению. По глубине рыхления почвы чизельные орудия подразделяются на культиваторы, плуги и глубокорыхлители. Культиваторы рыхлят почву на глубину до 25 см, плуги — до 40, глубокорыхлители — до 60 см.
Щелевание — обработка щелерезами, способствует глубокому прорезанию для улучшения водно-физических свойств слабоводопроницаемых (глинистых и суглинистых) почв. Заключается в прорезании в почве щелей шириной 2,5-4 см на глубину 30-60 см с расстоянием между ними 100-150 см специальными щелерезами.
Кротование почвы — прием обработки, обеспечивающий образование в почве горизонтальных дрен, кротовин. Применяют для отвода излишней воды одновременно со вспашкой на глубине 35-40 см параллельно поверхности почвы. Диаметр кротовин — 6-8 см, расстояние между кротовинами — 70-140 см.
Приемы сверхглубокой обработки — периодическое воздействие на почву специальными почвообрабатывающими орудиями и машинами в целях коренного изменения генетического сложения почвы с взаимным перемещением слоев и горизонтов в вертикальном направлении на глубину более 35 см.
Плантажная двухслойная вспашка — прием отвальной обработки почвы плантажными плугами с установкой рабочих корпусов на двух уровнях на глубину 40 см и более.
Плантажная трехслойная вспашка — прием отвальной обработки почвы, обеспечивающий взаимное перемещение в вертикальном направлении трех разнокачественных частей обрабатываемого слоя почвы плугами различных конструкций на глубину 50-75 см.
Система обработки почвы.
Обработкой почвы решается много задач. При интенсивном земледелии главными остаются регулирование эффективного плодородия почвы, баланса органического вещества, питательного режима растений, улучшение фитосанитарных условии в севообороте, создание благоприятных условий для посева, ухода за растениями и уборки урожая. Любым отдельно взятым приемом невозможно решить все эти задачи. Возникает необходимость применения нескольких способов и приемов обработки почвы в определенной последовательности. Система обработки почвы — совокупность способов и приемов основной, предпосевной и послепосевной обработок, выполняемых в определенной взаимосвязанной последовательности, вытекающей из главных задач, обусловленных биологией возделываемых культур, их местом в севообороте и зональными почвенно-климатическими особенностями.
При составлении системы обработки почвы необходимо учитывать количество и характер выпадающих осадков и их распределение в году, сумму положительных температур, продолжительность вегетационного периода, гранулометрический состав почвы, мощность пахотного слоя, содержание гумуса, степень увлажнения почвы, подверженность эрозии. Необходимо учитывать, из-под какой культуры и когда освобождается поле, степень засоренности и какая биологическая группа сорняков преобладает. Всякая система обработки почвы осуществляется с учетом биологических особенностей и порядка чередования возделываемых в севообороте культур.
Система обработки почвы должна быть составлена с учетом энергосбережения и иметь почвозащитную направленность. В основу ее классификации положены следующие признаки.
- Биологические и технологические особенности возделываемых культур: под яровые зерновые и зернобобовые; пропашные; озимые; промежуточные (покосные, пожнивные).
- Предшественники: после озимых и яровых зерновых; многолетних трав; пропашных; однолетних трав в занятом пару (сидеральный пар); чистые нары.
- Подверженности эрозии и засоренности радионуклидами: водной эрозии; ветровой эрозии; загрязненных радионуклидами.
- Гранулометрический состав и тип почв: песчаные и супесчаные; легко- среднесуглинистые; тяжелосуглинистые; торфяные; переувлажненные минеральные.
- Время проведения: основная; предпосевная; послепосевная. Это первая наиболее глубокая обработка, выполняемая после уборки предшествующей культуры определенным способом, самостоятельно или в сочетании с приемами поверхностной обработки для решения главных задач обработки. Она коренным образом улучшает почвенные условия жизни сельскохозяйственных культур. В результате ее проведения изменяется строение пахотного слоя почвы, обеспечиваются наиболее благоприятные условия для протекания биологических, физико-химических и физических процессов, усиливается круговорот питательных веществ. Вследствие улучшения газообмена, оптимизации водного и теплового режимов усиливается активность почвенной микрофлоры, что увеличивает содержание в ней доступных для растений форм азота, фосфора, калия, магния, серы, железа и других жизненно важных элементов питания растений. Основная обработка почвы значительно очищает почву от семян и вегетативных органов размножения сорной растительности, зачатков болезней и вредителей сельскохозяйственных культур. При ее осуществлении заделываются в почву удобрения, растительные остатки, создаются условия для защиты почвы от эрозионных процессов, миграции радионуклидов в подпахотные слои почвы.
Основная обработка почвы проводится в летне-осенний период (зяблевая, под озимые культуры) или в весенне-летний период в год посева яровых культур. При выборе способа и приемов основной обработки почвы учитывают биологические особенности и технологию возделываемой культуры, предшественник, почвенно-климатические условия, тип засоренности, подверженность эрозии почвы. С учетом этих особенностей устанавливают и сроки проведения основной обработки.
Под яровые культуры основную обработку, как правило, проводят в летне-осенний период или весной. Оптимальными сроками основной обработки под яровые культуры являются осенние, они имеют большое преимущество перед весенними в решении главных задач обработки почвы. Весенние сроки основной обработки почвы под яровые культуры обусловливаются необходимостью внесения органических удобрений (под пропашные) или организационными причинами.
Основная обработка почвы под озимые, покосные и пожнивные культуры определяется предшественником и сроками его уборки, гранулометрическим составом и степенью увлажнения почвы. К приемам основной обработки почвы относятся: вспашка, безотвальная обработка, чизельная, фрезерование.
Вспашка — важнейший прием обработки почвы и проводится для создания в почве наиболее благоприятных условия для роста и развития растений. Основная задача — рыхление пахотного слоя с оборотом пласта и перемешиванием частиц, с полной заделкой дернины, жнивья, других послеуборочных растительных остатков, а также органических и минеральных удобрений. Чем лучше вспахана почва, т. с. чем полнее оборот пласта по всему нолю, чем качественнее рыхление почвы, тем лучшие условия создаются для роста и развития культурных растений, а значит и выше урожайность сельскохозяйственных культур.
Безотвальная обработка проводится безотвальными плугами, плоскорезами, чизелями, фрезами. Обработка почвы плугами без отвалов, разработанная Т. С. Мальцевым [42], широко применяется на Южном Урале и других районах Российской Федерации. Сущность ее состоит в том, что на каждом поле один раз в течение 4-5 лет проводится рыхление на 35-40 см безотвальным плугом, а в период между глубокими обработками — ежегодная поверхностная обработка дисковыми лущильниками на 10-12 см. Сокращение отвальных обработок защищает почву от водной и ветровой эрозии, сохраняет влагу.
Плоскорезная обработка — прием безотвальной обработки почвы, обеспечивающий крошение, рыхление почвы и подрезание подземных органов растений на глубину 27-30 см плоскорезами — глубокорыхлителями с сохранением на поверхности почвы до 90 % жнивья (стерни).
Впервые плоскорезная обработка почвы стала широко применяться в почвозащитной системе земледелия, разработанной академиком ВАСХНИЛ А.И.Бараевым для целинных земель северного Казахстана [21]- В основу ее положена система обработки почвы под зерновые культуры без оборачивания с сохранением стерни на поверхности. Для выполнения глубокого рыхления в плоскорезной системе обработки почвы используются плоскорезы-глубокорыхлители КПГ-2-150, КПГ-250, предназначенные для глубокого (на 20-27 см) и поверхностного (до 16 см) рыхления с оставлением на поверхности до 80 % стерни. Такая обработка почвы с сохранением стерни на поверхности защищает ее от выдувания ценных почвенных частиц верхнего слоя и резко уменьшает испарение влаги.
Чизельная обработка — научные исследования и практика показывают, что пахота не всегда является лучшим приемом обработки почвы. Система ее с применением отвальных плугов нуждается в совершенствовании. На смену плугу приходят чизельные плуги и культиваторы. Они способствуют лучшему сохранению и накоплению влаги в почве, положительно влияют на физические свойства и биологическую активность почвенных микроорганизмов, предотвращают развитие водной и ветровой эрозии, не оставляют развальных борозд и свальных гребней. Чизель» в переводе с английского означает тяжелый культиватор, или плуг для безотвального рыхления почвы. В отличие от лемешных и дисковых почвообрабатывающих машин чизель рыхлит почву, отрывая ее от монолита, не уплотняя подпахотные слои.
Чизельная обработка почвы все больше распространяется потому, что является почвозащитной благодаря рыхлому и гребнистому дну обрабатываемого пласта, менее энергоемка и более производительна по сравнению со вспашкой. Ширина захвата чизельного культиватора КЧ-5,1 — 5,1 м, а плуга ПЛН-5-35 — 1,75 м, оба орудия агрегатируются трактором Т-150, мощность которого с чизелем используется на 86,7 %, с плугом — до 85 %. Очевидно, что использование чизеля эффективнее примерно в три раза. Приведем пример эффективности чизельной обработки почвы под озимую рожь и ячмень: при вспашке производительность составит 1,26 га, а при чизелевании — 4,4 га; расход топлива будет 14,11 и 5,6 л соответственно, урожайность озимой ржи в первом случае — 4,8, во втором 5,0; ячменя 5,0 и 5,3 т/га.
Периодическое глубокое рыхление чизельными плугами и глубокорыхлителями применяют на почвах с уплотненным подпахотным горизонтом, подверженных водной эрозии и с временным поверхностным избыточным переувлажнением на почвах, подверженных водной и ветровой эрозии, глубокое чизелевание способствует переводу поверхностного стока во внутрипочвенный, увеличению влагозапасов и снижению смыва почвы. На почвах с временным переувлажнением глубокое рыхление освобождает корнеобитаемый слой от избытка влаги, ускоряет созревание почвы, предотвращает вымокание озимых. Чизельное рыхление дерново-подзолистых слабоокультуренных почв тяжелого гранулометрического состава следует проводить один раз в 3 года на глубину 40-45 см. Чизельная обработка как прием основной обработки применяется при возделывании озимых, промежуточных, после пропашных культур, ранневесеннего рыхления зяби и разделки дернины многолетних трав. Скорость движения почвообрабатывающего агрегата с чизелем для лучшего крошения почвы должна быть не менее 10 км/ч. Работа с чизелем не требует высокой профессиональной подготовки.
Фрезерная обработка — пахотный слой крошится, рыхлится и перемешивается, в результате чего создаются хорошие условия для посева семян без дополнительных приемов предпосевной обработки почвы. Фреза обеспечивает отличное качество обработки на торфяных задернелых почвах и на плотных тяжелых. Па таких почвах фреза может заменить плуг и подготовить пашню к посеву. Степень измельчения почвы при фрезерной обработке зависит от окружной скорости фрезбарабанов, формы ножей и длины их рабочей части. Существенное достоинство фрезерования — возможность раньше начинать обработку влажной почвы.
Слишком сильное механическое измельчение почвы — основной недостаток работы фрезы, так как вызывает уплотнение всех бесструктурных, малогумусированных почв. После прохода фрезы не остается крупных комков, которые наряду с мелкими частицами образуются при вспашке плугом и способствуют лучшей аэрации почвы. Повышение воздухоемкости почв, особенно связных, является одной из главных целей обработки. Многочисленные опыты показали, что эта задача при работе фрезы выполняется не так хорошо, как при плужной обработке, и образующиеся при фрезеровании крупные поры вновь быстро исчезают. Кроме того, обработка почвы фрезой, так же как и обработка дисковыми орудиями, способствует размножению корневищных сорняков.
Мы аккредитованы в
АО «Росагролизинг» запускает акцию «Раннее бронирование-2023».
Техника ООО «СибзаводАгро» в лизинг с отсрочкой платежа до сентября 2024 года.
— первоначальный взнос от 0% с отсрочкой оплаты до апреля 2024 года.
— удобные графики платежей.
— срок лизинга до 8 лет.
Сберлизинг предлагает предприятиям АПК комплексное решение по приобретению с/х техники в лизинг. Спецпредложение на технику производства ООО «СибзаводАгро».
ЗАО «Балтийский лизинг» запускает спецпредложение на технику производства ООО «СибзаводАгро» для предприятий АПК, по приобретению с/х техники в лизинг.