Как зависит излучение от температуры
Электромагнитные волны теплового излучения представляют непрерывное распределение фотонов в спектре частот или длин волн. Для излучающего тела спектральное распределение, пиковое значение длины волны и общая энергия излучения на всех длинах волн элементов зависят от температуры поверхности излучающего тела. В свою очередь, при заданной температуре поверхности поглощающая способность, отражающая способность и коэффициент излучения излучающего тела зависят от длины волны излучения.
Взаимообмен энергией излучения
Все тела излучают энергию в виде фотонов, которые испускаются в случайном направлении со случайной фазой и частотой. Если испускаемые фотоны с поверхности одного тела попадают на поверхность другого тела, показанного на рис. 2.35 , они могут поглощаться, отражаться и/или пропускаться. Поведение поверхности с падающим на неё излучением можно описать следующими величинами.
Ссылки: R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Модель излучения Росселанда. «Теплопередача тепловым излучением»), Hemisphere Publishing Corporation, Washington DC, 1992 (на английском языке).
• Поглощающая способность, α — доля падающего излучения, поглощаемая на данной длине волны.
• Отражающая способность, ρ — доля падающего излучения, отражаемая на данной длине волны.
• Коэффициент прохождения, τ — доля падающего излучения, проходящая на данной длине волны.
Эти три коэффициента являются функциями длины электромагнитных волн, λ, в излучении. С точки зрения энергии они должны в сумме давать единицу:
Уравнение 2.273
Согласно закону Кирхгофа для теплового излучения, коэффициент излучения излучающего тела равен спектральной поглощающей способности для любой конкретной длины волны из-за взаимного воздействия:
Уравнение 2.274
Здесь ε — коэффициент излучения, отношение энергии, излучаемой телом, к значению для идеального излучателя (черное тело) при той же температуре и длине волны.
Уравнение 2.273 показывает, что вариант реакции в поведении тела по отношению к тепловому излучению характеризуется его коэффициентами поглощения α, отражения ρ и пропускания τ. В зависимости от значений α, ρ и τ, определяются следующие идеализированные типы излучающего тела:
R. Siegel and J. R. Howell, «Thermal Radiation Heat Transfer (Модель излучения Росселанда. «Теплопередача тепловым излучением»), Hemisphere Publishing Corporation, Washington DC, 1992 (на английском языке).
• Непрозрачное тело — не пропускает любое излучение, но может отражать часть излучения. τ = 0 и α + ρ = 1
• Прозрачное тело — пропускает все излучение, которое падает на него. τ = 1 и α = ρ = 0
• Черное тело — теоретическая модель, предложенная Планком. Черное тело — это объект, который поглощает все падающее электромагнитное излучение на всех длинах волн независимо от его частоты и угла падения. Если излучающий объект удовлетворяет физическим характеристикам черного тела в термодинамическом равновесии, излучение называют излучением черного тела. Для черного тела α = ε и
• Белое тело — предполагается, что все падающее излучение полностью и равномерно отражается во всех направлениях. и
• Серое тело — тело, для которого и
не зависят от температуры и длины волны.
является однородным для всех длин волн. Излучение серого тела или поверхности называют серым излучением. В отличие от серого излучения тепловое излучение со спектром длин волн называется несерым излучением.
Излучаемая мощность
• Мощность — общая или чистая энергия излучения, испускаемая, отражаемая, пропускаемая или поглощаемая за единицу времени для данного источника.
• Интенсивность излучения () — мощность излучения, поглощаемая поверхностью
на единицу площади.
• Светимость () — мощность излучения, испускаемая поверхностью
с единицы площади.
• Интенсивность () — мощность, излучаемая в заданном направлении (телесный угол,
) для данного источника.
• Энергетическая яркость () — излучаемая мощность, испускаемая, отражаемая, пропускаемая или поглощаемая заданной поверхностью на единичный телесный угол на единицу площади проекции.
• Закон Планка
Тепловое излучение, испускаемое телом при любой температуре, содержит широкий диапазон частот. Для черного тела закон Планка описывает частотное распределение излучения черного тела как функцию только температуры объекта. Планк показал, что спектральная энергетическая яркость черного тела , определенная как мощность, излучаемая с единицы площади тела в единичный телесный угол и на единицу частоты,
, имеет формулу относительно температуры тела:
Температура излучения
Наконец, есть еще один способ охарактеризовать электромагнитное излучение — указав его температуру. Строго говоря, этот способ годится только для так называемого чернотельного или теплового излучения. Абсолютно черным телом в физике называют объект, поглощающий всё падающее на него излучение. Однако идеальные поглощающие свойства не мешают телу самому испускать излучение. Наоборот, для такого идеализированного тела можно точно рассчитать вид спектра излучения. Это так называемая кривая Планка, форма которой определяется единственным параметром — температурой. Знаменитый горб этой кривой показывает, что нагретое тело мало излучает как на очень длинных, так и на очень коротких волнах. Максимум излучения приходится на вполне определенную длину волны, значение которой прямо пропорционально температуре.
Указывая эту температуру, нужно иметь в виду, что это не свойство самого излучения, а лишь температура идеализированного абсолютно черного тела, которое на данной волне имеет максимум излучения. Если есть основание считать, что излучение испущено нагретым телом, то, найдя максимум в его спектре, можно приближенно определить температуру источника. Например, температура поверхности Солнца составляет 6 тысяч градусов. Это как раз соответствует середине видимого диапазона излучения. Вряд ли это случайно — скорее всего, глаз за время эволюции приспособился максимально эффективно использовать солнечный свет.
Неоднозначность температуры
Точка спектра, на которую приходится максимум чернотельного излучения, зависит от того, на какой оси мы строим график. Если по оси абсцисс равномерно откладывать длину волны в метрах, то максимум будет приходиться на
λmax = b/T = (2,9·10 –3 м·К)/T,
где b = 2,9·10 –3 м·К. Это так называемый закон смещения Вина. Если построить тот же спектр, равномерно отложив на оси ординат частоту излучения, местоположение максимума вычисляется по формуле:
νmax = (αk/h) · T = (5,9·10 10 Гц/К) · Т,
где α = 2,8, k = 1.4·10 –23 Дж/К — постоянная Больцмана, h — постоянная Планка.
Все было бы хорошо, но, как выясняется λmax и νmax ·соответствуют разным точкам спектра. Это становится очевидно, если вычислить длину волны, соответствующую νmax, то получится:
λ’max = с/νmax = (сh/αk)/T = (5,1·10 –3 м·К)/Т.
Таким образом, максимум спектра, определенный по частоте, в λ’max/νmax = 1,8 раза отличается по длине волны (а значит и по частоте) от максимума того же спектра, определенного по длинам волн. Иными словами, частота и длина волны максимума чернотельного излучения не соответствуют друг другу: λmax ≠ с/νmax.
В видимом диапазоне принято указывать максимум спектра теплового излучения по длине волны. В спектре Солнца, как уже говорились, он приходится на видимый диапазон. Однако по частоте максимум солнечного излучения лежит в ближнем инфракрасном диапазоне.
А вот максимум космического микроволнового излучения с температурой 2,7 К принято указывать по частоте — 160 МГц, что соответствует длине волны 1,9 мм. Между тем, в графике по длинам волн максимум реликтового излучения приходится на 1,1 мм.
Всё это показывает, что температуру надо с большой осторожностью использовать для описания электромагнитного излучения. Ее можно применять только в случае излучения, близкого по спектру к тепловому, либо для очень грубой (с точностью до порядка) характеристики диапазона. Например, видимому излучению соответствует температура в тысячи градусов, рентгену — миллионы, микроволновому — около 1 кельвина.
Законы теплового излучения
Приведенные ниже законы теплового излучения являются основой бесконтактного измерения температуры тепловиорами и пирометрами. Эти законы теплового излучения не применяются термографистами для расчетов в повседневной работе. Вместе с тем, на этих законах излучения основан пересчет температур в программном обеспечении тепловизоров, процедуры калибровки пирометров и тепловизоров, расчет лучистого теплообмена в строительных и промышленных объектах. Знание законов теплового излучения поможет Вам сдать экзамен при аттестации по тепловому контролю на 1 или 2 уровень. Эти законы теплового излучения довольно часто встречаются в вопросах экзаменов по тепловому контролю.
Закон Стефана — Больцмана
Австрийский физик и математик Йозеф Стефан (Joseph Stefan) в 1879 году путём измерения теплоотдачи платиновой проволоки при различных температурах установил пропорциональность излучаемой ею энергии четвертой степени абсолютной температуры. Теоретическое обоснование этого закона было дано в 1884 году учеником Стефана Людвигом Больцманом (Ludwig Boltzmann).
Энергетическая светимость (q) абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры (T).
εКонстанта в этой формуле называется постоянной Стефана-Болъцмана, σ = 5.67⋅10 -8 (Вт/м 2 )/К 4 . Энергетическая светимость — это мощность излучения на всех длинах волн с единицы поверхности (Вт/м2). Из этого следует, что все окружающие нас объекты испускают тепловое излучение, так как всегда имеют температуру выше абсолютного нуля 0 К или выше минус 273ºС. При повышении абсолютной температуры в два раза, мощность излучения увеличится в 16 раз. Но так можно говорить только про температуру в абсолютной шкале Кельвина, в градусах Цельсия температура не меняется в разы или на проценты никогда! Закон теплового излучения справедлив для абсолютно черного тела.
Для перехода к реальным объектам (серым телам) необходимо умножить результат на коэффициент излучения (степень черноты) объекта ε, который всегда меньше 1. Важно отметить два момента, о которых часто забывают. Во-первых, этот закон теплового излучения говорит только об общей излучаемой энергии суммарно на всех длинах волн. Тепловизор воспринимает только часть спектра, например, для LWIR камеры рабочий участок 7-14 мкм. Сколько излучения приходится на разные участки длин волн описывается формулой Планка, о которой далее. Во-вторых, приведенная формула показывает только собственное излучение, которое испускает нагретый объект. В случае с поверхностью реального объекта (не АЧТ) к этому излучению добавится некоторое отражение окружающих объектов. Поэтому невозможно узнать фактическую температуру, настраивая только значение коэффициента излучения ε. В некоторых источниках встречается очевидно ошибочная формула для расчета фактической температуры поверхности Tфакт = Tрад / (корень 4 степени из ε).
Закон излучения Кирхгофа
Немецкий физик Густав Кирхгоф (Gustav Kirchhoff), работая работая над основами спектрального анализа, в 1859 году опубликовал статью «О связи между излучением и поглощением света и теплоты», в которой установил общее положение, «что для лучей одной и той же длины волны, при одной и той же температуре, отношение лучеиспускательной способности к поглощательной для всех тел одинаково». В более подробной работе 1861 года Кирхгоф детально и строго обосновал это положение, известное в настоящее время как закон Кирхгофа. Закон получен на основании второго начала термодинамики и затем подтвержден опытным путём.
Отношение излучательной способности (E) к поглощательной способности (A) одинаково для всех тел при данной температуре (T) для данной длины волны (λ) и не зависит от формы тела, его химического состава и проч.
Закон излучения Кирхгофа является одним из основных законов теплового излучения и не распространяется на другие виды излучения. Из закона следует — чем тело больше поглощает при температуре T на длине волны λ, тем оно больше излучает при данных температуре и длине волны. Таким образом, поверхности с высокой степенью черноты (коэффициентом излучения) хорошо поглощают падающее излучение и сами являются хорошими излучателями. Блестящие зеркальные поверхности с низким коэффициентом излучения мало излучают и плохо поглощают падающее на них излучение. Эта связь очень важна в инфракрасной термографии.
Реальные тела имеют поглощательную способность меньше единицы, а значит, и меньше чем у абсолютно чёрного тела излучательную способность. Тела, поглощательная способность которых одинакова для всех длин волн, называются «серыми телами». Их спектр имеет такой же вид, как и у абсолютно чёрного тела. В общем же случае поглощательная способность тел зависит от длины волны и температуры, и их спектр может существенно отличаться от спектра абсолютно чёрного тела. Изучение излучательной способности разных поверхностей впервые было проведено шотландским ученым Лесли при помощи его же изобретения — куба Лесли (Leslie cube).
Излучение Текст научной статьи по специальности «Физика»
В статье рассматриваются основные виды излучения. Приведены некоторые законы распространения лучистой энергии, применяемые для расчета теплообмена в твердых телах.
i Надоели баннеры? Вы всегда можете отключить рекламу.
Похожие темы научных работ по физике , автор научной работы — Ильюшин Ю. В.
Лучистый теплообмен в высокотемпературных вакуумных печах с экранной тепловой изоляцией
Метод расчета теплообмена излучением в топке осесимметричной конфигурации на основе уравнений для компонент суммарного вектора потока лучистой энергии. Система уравнений
Эффекты теплообразования и теплопередачи под действием электрического тока
Исследование полусферических потоков лучистой энергии в топках сложного профиля газотрубного котла
Исследование процесса нагрева металлической (часть 1)
i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.
Текст научной работы на тему «Излучение»
Пятигорский государственный технологический университет, г. Пятигорск
В статье рассматриваются основные виды излучения. Приведены некоторые законы распространения лучистой энергии, применяемые для расчета теплообмена в твердых тепах.
Существуют три основных вида теплопередачи: теплопроводность, конвекция и лучистый теплообмен.
Теплопроводность. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью; при достаточно высоких температурах в твердых телах его можно наблюдать визуально. Так, при нагревании стального стержня с одного конца в пламени газовой горелки тепловая энергия передается по стержню, и на некоторое расстояние от нагреваемого конца распространяется свечение (с удалением от места нагрева все менее интенсивное).
Интенсивность теплопередачи за счет теплопроводности зависит от градиента температуры, т.е. отношения разности температур на концах стержня к расстоянию ме^ду ними. Она зависит также от площади поперечного сечения стержня (в м2) и коэффициента теплопроводности материала. Соотношение ме^ду этими величинами было выведено французским математиком Ж. Фурье и имеет следующий вид:
где q — тепловой поток;
к — коэффициент теплопроводности;
А — площадь поперечного сечения.
Это соотношение называется законом теплопроводности Фурье; знак «минус» в нем указывает на то, что теплота передается в направлении, обратном градиенту температуры.
Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну из величин — коэффициент теплопроводности, площадь или градиент температуры. Для здания в зимних условиях последние величины практически постоянны, а поэтому для поддержания в помещении нужной температуры остается уменьшать теплопроводность стен, т.е. улучшать их теплоизоляцию.
* Ассистент кафедры Информатики и информационных технологий.
В таблице представлены коэффициенты теплопроводности некоторых веществ и материалов. Из таблицы видно, что одни металлы проводят тепло гораздо лучше других, но все они являются значительно лучшими проводниками тепла, чем воздух и пористые материалы.
Теплопроводность металлов обусловлена колебаниями кристаллической решетки и движением большого числа свободных электронов (называемых иногда электронным газом). Движение электронов ответственно и за электропроводность металлов, а потому неудивительно, что хорошие проводники тепла (например, серебро или медь) являются также хорошими проводниками электричества.
Тепловое и электрическое сопротивление многих веществ резко уменьша-ется при понижении температуры ниже температуры жидкого гелия (1,8 К). Это явление, называемое сверхпроводимостью, используется для повышения эффективности работы многих устройств — от приборов микроэлектроники до линий электропередачи и больших электромагнитов.
Конвекция. При подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). Данное явление называется конвекцией. Чтобы не расходовать тепло отопительной системы впустую, нужно пользоваться современными обогревателями, обеспечивающими принудительную циркуляцию воздуха. Конвективный тепловой поток от нагревателя к нагреваемой среде зависит от начальной скорости движения молекул, плотности, вязкости, теплопроводности и теплоемкости и среды; очень важны также размер и форма нагревателя.
Лучистый теплообмен. Третий вид теплопередачи — лучистый теплообмен — отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение — это один из видов электромагнитного излучения. Другие его виды — радиоволновое, ультрафиолетовое и гамма-излучения — возникают в отсутствие разности температур. Рассмотрим передачу энергии по средствам лучистого обмена более подробно [1].
Лучистая энергия представляет собой энергию электромагнитных колебаний с различными длинами волн, которые исходят от тела и распространяются в вакууме со скоростью света с = 3-108. Обычно рассматривается так называемое тепловое излучение, которому соответствуют длины волн от 0,4 до 40 мк. Такие лучи могут поглощаться другими телами, причем при поглощении их лучистая энергия снова переходит в тепловую. Воз-
будителями электромагнитных волн являются заряженные материальные частицы, т.е. электроны и ионы, входящие в состав вещества. При этом колебания ионов соответствуют излучению низкой частоты; излучение, обусловленное движением электронов, может иметь высокую частоту, если они входят в состав атомов и молекул и удерживаются около своего равновесия значительными силами. При попадании лучистой энергии на какое-либо тело поглощается лишь часть этой энергии; другая ее часть отражается, а некоторая часть проходит сквозь тело. Тела, поглощающие всю падающую на них лучистую энергию, называются абсолютно черными. Тела, полностью отражающие падающую на них лучистую энергию, называются абсолютно белыми, а тела, пропускающие всю падающую на них энергию, -абсолютно прозрачными. Абсолютно черных, белых и прозрачных тел в природе не существует. Практически прозрачными телами являются одно-и двухатомные газы — воздух, азот, кислород, водород и др. Твердые тела и жидкости для тепловых лучей непрозрачны. Поглощение и отражение лучистой энергии твердыми телами в значительной степени зависит от состояния их поверхности: гладкие и полированные поверхности обладают высокой отражательной способностью; шероховатые поверхности, наоборот, обладают высокой поглощательной способностью. Наиболее высокой поглощательной способностью, близкой к абсолютно черному телу, обладает сажа, которая поглощает 90-96 % падающей на нее лучистой энергии. В металлах многие электроны являются свободными. Поэтому в этом случае нельзя говорить о колебаниях около центров равновесия. Электроны движутся и при этом испытывают нерегулярное торможение. Вследствие этого излучение металлов приобретает характер импульсов и имеет волны различной частоты и в том числе волны низкой частоты. Помимо волновых свойств, излучение обладает также и корпускулярными свойствами. Корпускулярные свойства состоят в том, что лучистая энергия испускается и поглощается не непрерывно, а отдельными дискретными порциями — квантами света или фотонами. Испускаемый фотон — частица материи, обладающая энергией, количеством движения и электромагнитной массой. Прохождение фотонов через вещество есть процесс поглощения и последующего испускания энергии фотонов атомами и молекулами этого вещества.
Таким образом, излучение имеет двойственный характер, поскольку оно обладает свойствами непрерывности поля электромагнитных волн и свойствами дискретности, типичными для фотонов. Синтезом обоих свойств является представление, согласно которому энергия и импульсы сосредоточиваются в фотонах, а вероятность нахождения их в том или ином месте пространства — в волнах. Соответственно этому излучение характеризуется длиной волны (X) или частотой колебаний (и = с / X).
Все виды электромагнитного излучения имеют одинаковую природу и различаются лишь длиной волны. Большинство твердых и жидких тел имеет
сплошной спектр излучения, т.е. излучает энергию всех длин волн в интервале от 0 до ®. К числу твердых тел, имеющих сплошной спектр излучения относятся непроводники и проводники электричества, а также различные металлы в окисленном состоянии. Некоторые тела излучают энергию только в определенных интервалах длин волн, т.е. испускают энергию с прерывистым спектром. К ним относятся чистые металлы и газы. Излучение различных тел различно. Оно зависит от природы тела, температуры, состояния поверхности, а для газов — еще от толщины слоя и давления. Большинство встречающихся в природе и технике твердых и жидких тел имеет значительную поглощательную и излучательную способность. Вследствие этого в процессах лучистого теплообмена участвуют лишь тонкие поверхностные слои. Газообразные тела имеют значительно меньшее излучение, чем твердые и жидкие тела. Поэтому в излучении газов участвуют все его частицы, и процесс теплового излучения носит объемный характер.
Излучение всех тел зависит от температуры. С увеличением температуры излучение увеличивается, так как увеличивается внутренняя энергия тела. Изменение температуры тела вызывает не только изменение абсолютной величины интенсивности излучения, но сопровождается еще и изменением спектрального состава или «цвета» излучения. С повышением температуры повышается интенсивность коротковолнового излучения и уменьшается интенсивность длинноволновой части спектра. Зависимость излучения от температуры значительно большая, чем в процессах теплопроводности и конвекции. Поэтому при низких температурах преобладающую роль может играть теплообмен за счет конвекции и теплопроводности, а при высоких — основным видом переноса тепла может быть тепловое излучение.
Виды лучистых потоков
Тело излучает энергию при данной температуре в виде спектра. Энергия излучения в единицу времени, относящаяся к узкому интервалу изменений длин волн от А до X + йк, называется потоком монохроматического, спектрального или однородного излучения (Оі). Суммарное излучение с поверхности тела по всем длинам волн спектра называется интегральным или полным лучистым потоком (О) [2].
Интегральный лучистый поток, испускаемый с единицы поверхности тела, называется плотностью интегрального излучения:
где йО — лучистый поток, вт, испускаемый с элемента поверхности йР, м2’.
Лучистый поток по всей поверхности можно выразить как:
Здесь F — полная поверхность тела, м2.
Различают понятия сферического и полусферического излучения, определяемые как интегральные величины от яркости излучения соответственно по сферическому и полусферическому телесным углам.
Часть падающей энергии излучения, поглощенной данным телом, называется поглощенным излучением. При поглощении лучистая энергия вновь превращается во внутреннюю энергию. Плотность поглощенной энергии равна:
Здесь А — коэффициент поглощения.
Для абсолютно черных тел А = 1. Тело, поглощающее все падающие на него лучи, воспринимается зрением как черное тело. Если поверхность поглощает все лучи, кроме видимых световых, она не кажется черной, хотя по лучистым свойствам она близка к абсолютно черному телу, поскольку имеет высокую поглощающую способность (например, для льда и снега А = 0,95 ^ 0,98).
где R — коэффициент отражения.
Если R = 1 и процессы отражения от поверхности подчиняются законам геометрической оптики, то поверхность тела называют зеркальной; при диффузном отражении поверхность называют абсолютно белой. Часть падающей энергии излучения, проходящая сквозь тело, называется про-пускательным излучением:
где D — коэффициент проницаемости.
Тела, у которых D = 1, называются проницаемыми, прозрачными или диатермичными телами (тонкие слои сухого воздуха, одноатомных газов). Для твердых и жидких тел принимается D = 0, так как практически вследствие значительной поглощательной способности они поглощают лучистую энергию в тонком поверхностном слое.
Совокупные процессы взаимного испускания, поглощения, отражения и пропускания энергии излучения в системах различных тел называются лучистым теплообменом, причем тела, входящие в данную излучающую систему, могут иметь одинаковую температуру. Для тела, участвующего в лучистом теплообмене с другими телами, согласно закону сохранения энергии можно составить следующие уравнения теплового баланса. Для плотности падающего излучения:
^пад -Ё’погл + ЕОТр + -Ё’проп
Уравнение теплового баланса может быть записано также в форме:
если предыдущую зависимость поделить на Епад и учесть предыдущие соотношения.
Сумма собственного излучения и отраженного излучения, испускаемого поверхностью данного тела, называется эффективным излучением. Плотность потока эффективного излучения выражается зависимостью:
Эффективное излучение зависит не только от физических свойств и температуры данного тела, но и от физических свойств и температуры других окружающих его тел. Кроме того, оно зависит от формы, размеров и относительного расположения тел в пространстве [3].
Результирующее излучение представляет собой разность между лучистым потоком, получаемым данным телом, и лучистым потоком, который оно посылает в окружающее его пространство. Результирующее излучение может быть определено двумя способами. Относительно условной поверхности, находящейся вблизи тела:
^рез Е ¿’погл Е АЕпад
Второй способ определения плотности результирующего потока приводит к соотношению:
Между результирующим и эффективным излучениями можно установить связь. Эффективное излучение:
а падающее излучение:
Заменив Епад в первой зависимости второй, получим:
Для черного тела А = 1 и £эфф = Е0.
Из изложенного следует, что все виды полусферического излучения, кроме собственного излучения, являются линейными функциями падающего излучения. Собственное излучение объединяется и увязывается с другими видами излучения через эффективное излучение.
Тела не только излучают, но также поглощают и отражают энергию, излучаемую окружающими телами.
Количество тепла, отданного телом с абсолютной температурой Т1 окружающим его более холодным телам с абсолютной температурой Т2, составляет:
Значительной поглощательной и лучеиспускательной способностью обладают многоатомные газы, в частности двуокись углерода (CO2), водяной пар (H2O), сернистый ангидрид (SO2), аммиак (H3N) и др.
В отличие от твердых тел, газы способны поглощать и излучать энергию лишь в определенных интервалах длин волн. Для лучей с другими длинами волн газы прозрачны и энергия их излучения равна нулю.
В газах поглощение и излучение происходят во всем объеме, вследствие чего поглощательная и лучеиспускательная способности газа зависят от формы газового слоя (т.е. формы сосуда, в котором находится газ), а также от его толщины и парциального давления излучающего газа в газовой смеси.
Совместная передача тепла конвекцией и лучеиспусканием
Передача тепла лучеиспусканием обычно сопровождается одновременной передачей тепла конвекцией. Пусть от стенки с абсолютной температурой Тст тепло передается к среде с абсолютной температурой Т (соответствующие температуры в °С будут tcm и t) [4]. Тепло, передаваемое конвекцией, составит (ак — коэффициент теплоотдачи при конвекции):
Теплообмен лучеиспусканием между телами
где е — приведенная степень черноты системы;
^ — условная расчетная поверхность теплообмена.
а тепло, передаваемое лучеиспусканием:
Общее количество передаваемого тепла равно: