Что является определением термина изолированная нейтраль
Перейти к содержимому

Что является определением термина изолированная нейтраль

  • автор:

Новости

20.07.2015 14 июля управление федеральной антимонопольной службы по Псковской области выдало предупреждение о прекращении действий, содержащих признаки нарушения антимонопольного законодательства, ОАО «Псковэнергосбыт» в лице Великолукского межрайонного отделения «ОАО «Псковэнергоагент». Об этом Псковскому агентству информации сообщили в пресс-службе антимонопольного ведомства.

10.07.2015 В раздел сайта «Разработка проекта электроснабжения / Нормативная литература» добавлены ГОСТ 21.001-2013 и ГОСТ 21.607-2014

Изолированная нейтраль

— нейтраль трансформатора или генератора, неприсоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

Что является определением термина изолированная нейтраль

Войти Зарегистрироваться

Тема вопроса Тема Электробезопасность. Электросетевое хозяйство потребителей. до 1000 В. IV и V группы.
Вопрос
Что является определением термина «Изолированная нейтраль»?

© 2011-2024 All Rights Reserved.

Разделы
Сервисы
Полезные ссылки

Copyright © 2011-2024 All Rights Reserved. Template by «Crazy Joe»

Что является определением термина «изолированная нейтраль»?

Тест 24.ру

Ответы Ростехнадзора по электробезопасности (ЭБ) для электротехнического персонала организаций, осуществляющего эксплуатацию электроустановок потребителей по аттестационным вопросам на тестовые задания. Вопросы с правильными ответами подтверждаются выдержкой из нормативной документации по которым составлены тесты Олимпокс.

Что является определением термина «изолированная нейтраль»?

• Нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств

• Нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно

• Нейтраль трансформатора или генератора, присоединенная к заземляющему устройству через активные токоограничивающие сопротивления

Выдержка из нормативной документации:

Правила технической эксплуатации электроустановок потребителей

Изолированная нейтраль — Нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств

На сайте Тест24.ру подготовлены и размещены тесты по электробезопасности актуальные на 2020 год. Вы можете пройти онлайн тестирование по курсам ЭБ 1260.9, ЭБ 1259.8, ЭБ 1258.8, ЭБ 1257.8, ЭБ 1256.8, ЭБ 1255.8, ЭБ 1254.8 и ЭБ 1547.3 для подготовки к сдаче экзамена на едином портале тестирования Ростехнадзора на группу допуска до и выше 1000 В.

Словарь специальных терминов

Электрическая сеть представляет сово­купность электроустановок, служащих для передачи и распределения электрической энергии, состоящая из подстанций рас­пределительных устройств, токопроводов, воздушных и кабельных линий электропере­дачи. Работа электроустановки 3-х фазного переменного тока промышленной частоты 50 Гц во многом определяется режимом работы нейтралей генераторов или транс­форматоров. Практикуется в основном два вида централей, изолированная нейтраль и заземленная нейтраль.

Изолированная нейтраль — это нейтраль генератора или трансформатора, которая не присоединена к заземляющему устройс­тву или присоединена через устройства с большим электрическим сопротивлением (приборы сигнализации, защиты, дугогасительные реакторы). Заземленная нейтраль — это нейтраль генератора или трансфор­матора, присоединенная непосредственно к заземляющему устройству или через малое электрическое сопротивление. От режима работы нейтралей зависит в значительной степени уровень изоляции электроустановок, выбор коммутационной аппаратуры, величины перенапряжений и способы их ограничения, величины токов однофазных коротких замыканий на землю (корпус), условия работы релейной защиты и т.п.

Замыканием на землю называется слу­чайное соединение находящихся под напря­жением частей электроустановки с конструктивными частями, не изолированными от земли, или непосредственно с землей.

Замыканием на корпус называется случайное соединение находящихся под напряжением частей электроустановки с их конструктивными частями, нормально не находящимися под напряжением.

Электроустановки, в которых ток за­мыкания на землю (корпус) не превыша­ет 500 А, считаются электроустановками с малыми токами замыкания на землю. Электроустановки с током замыкания на землю (корпус) более 500 А считаются электроустановками с большими токами замыкания на землю.

С малыми токами однофазного замы­кания на землю (033) работают электроус­тановки напряжением до и выше 1000 В с изолированной нейтралью генератора или трансформатора. Это 3-фазные электроус­тановки с линейным напряжением соответственно 220-380-660 В и 3-35 кВ.

С большими токами замыкания на зем­лю работают электроустановки с заземлен­ной нейтралью (эффективно заземленной нейтралью) напряжением 110 кВ и выше. С заземленной нейтралью работают также 4 проводные 3-фазные электрические сети напряжением до 1000 В, в которых токи 033 могут не иметь больших значений. Это электроустановки напряжением 220/127 В, 380/220 В, 660/380 В.

Однофазные аварийные замыкания на землю (корпус) составляют до 75% от всех видов повреждений в электроустановках.

Режим работы нейтрали в значитель­ной степени влияет также на условия электробезопасности людей. В электроус­тановках с изолированной и заземленной нейтралью применяются разные элект­розащитные мероприятия, которые будут рассмотрены ниже. Электроустановки по условиям электробезопасности разделя­ются на электроустановки напряжением до 1000 В включительно и выше 1000 В.

а) Электроустановки с изолирован­ной нейтралью.

Рассмотрим работу электрической сети с изолированной нейтралью генератора.

Каждый провод сети с изолированной нейтралью относительно земли обладает определенной величиной сопротивления изоляции, а также определенной величи­ной электрической емкости, т.к. каждый из проводов можно рассматривать, как протяженный конденсатор. На воздушных линиях обкладками конденсатора являются проводник и земля, а диэлектриком воздух; на кабельных линиях обкладками конденса­тора являются жила кабеля и металлическая оболочка кабеля, соединенная с землей, а диэлектриком служит изоляция жил ка­беля. Сопротивление изоляции измеряется в мегаоммах. (1 мОм = 10 6 Ом); емкость измеряется в микрофарадах (1 мкФ = 10 -6 Ф). Это означает, что при нормальном режиме работы электроустановки через сопротив­ления изоляции и землю протекают токи утечки, а через конденсаторы на землю протекают токи, называемые емкостными (ICO).

В исправной электрической сети гео­метрическая сумма токов утечки и емкостных токов (т.е. с учетом сдвига фаз в 3-х фазной сети на 120°) равна нулю.

Эти токи равномерно распределены по всей длине проводов. При этом между каж­дой фазой сети и землей будет действовать фазное напряжение сети (Vф= Vл:√3).

Токи утечки можно определить по фор­муле:

Например, при Vл = 380 В и Rиз = 1 мОм ток утечки будет равен:

Емкостные токи определяются по фор­муле:

Их величина зависит от величины на­пряжения электрической сети и протяжен­ности воздушных и кабельных линий.

Приближенно Iсо можно определить по следующим формулам:

Ico = (V∙e):350 (A) — для воздушных линий

Ico = (V∙e):10 (A) — для кабельных ли­ний

где V — линейное напряжение сети (кВ)

е — длина сети (км)

При нормальных условиях работы сети токи утечки и емкостные токи невелики и не оказывают влияния на нагрузку генераторов или трансформаторов.

При возникновении замыкания одной из фаз на землю, земля получает потенциал поврежденной фазы, а между исправными фазами и землей будет линейное напря­жение. Под действием этого линейного напряжения через место замыкания и через землю будут протекать токи утечки и ем­костные токи двух исправных фаз.

Ток замыкания на землю возрастает в 3 раза и имеет, как правило, ёмкостной характер:

Если замыкание на землю неметалли­ческое, то в месте замыкания может воз­никать, так называемая, перемежающаяся дуга, которая периодически гаснет и за­горается при токах Iс более 5—10 А. При этом могут возникать опасные для изоляции электрооборудования перенапряжения от­носительно земли, достигающие величины равной (3—4) Vф сети, что может привести к пробою изоляции и возникновению 2-фазных коротких замыканий. Опасность дуговых перенапряжений для изоляции возрастает с увеличением напряжения электрической сети, поэтому величина токов замыкания на землю Iс нормируется. В сетях напряже­нием 6 кВ — Iс не должно превышать 30 А, в сетях 10 кВ — не превышать 20 А, в сетях 35 кВ — не превышать 10 А.

С целью уменьшения токов замыка­ния на землю в сетях 3—35 кВ применяют компенсацию емкостных токов замыкания на землю путем заземления нейтралей генераторов или трансформаторов через специальные дугогасящие катушки.

Так как емкостной ток замыкания на землю и индуктивный ток дугогасящей катушки отличаются по фазе на 180°, то в месте замыкания на землю они ком­пенсируют друг друга. В результате ток замыкания на землю не будет превышать 5—10 А, благодаря чему не возникает пе­ремежающаяся дуга.

С точки зрения электробезопасности возникает повышенная опасность для лю­дей, т.к. человек, касающийся неповреж­денной фазы и корпуса, оказывается под действием линейного напряжения.

При однофазных замыканиях на землю не нарушается система межфазных напря­жений, устойчивость работы электрической сети и потребителей, поэтому не требуется немедленное отключение питающих линий энергоснабжения, чтобы не создавать пере­рыва в электроснабжении потребителей.

Исключение составляют электроуста­новки, где требуются повышенные условия электробезопасности (электроустановки торфоразработок, угольных шахт, пере­движные электроустановки). В этих элект­роустановках применяется немедленное от­ключение токов 033. Отключаются релейной защитой также синхронные генераторы и двигатели при внутренних замыканиях обмо­ток статора на корпус при IО 5-10А из-за возможного выгорания железа статора.

В электрических сетях с изолированной нейтралью однофазные замыкания состав­ляют до 63% от всех повреждений.

ПТЭ электроустановок потребителей до­пускают работу электрических питающих сетей с однофазным замыканием на землю в течение 2-х часов с обязательным нахождением и от­ключением поврежденной питающей линии.

В сетях с изолированной нейтралью должен осуществляться непрерывный кон­троль изоляции.

Трехфазная электрическая сеть до 1000 В, которая связана с сетью напря­жением выше 1000 В через понижающий трансформатор, должна быть защищена пробивным предохранителем на случай повреждения изоляции между обмотками высшего и низшего напряжения. Пробивной предохранитель устанавливается на нейтра­ли трансформатора или на фазе обмотки низшего напряжения.

Должен предусматриваться контроль за целостностью пробивных предохрани­телей.

б) Электроустановки с эффективно заземленной нейтралью.

В 3-фазных электроустановках напря­жением 110 кВ и выше при нормальном режиме работы между каждым фазным про­водом сети и землей имеет место фазное напряжение электрической сети.

При возникновении замыкания одной из фаз на землю образуется короткозамкнутый контур через землю и нейтраль источника питания, к которому приложено фазное напряжение сети.

При этом токи 033 могут достигать значений в несколько десятков килоампер.

Длительное протекание таких токов может вызвать повреждение электрооборудования, поэтому в этих электроустановках предус­матривается быстрое отключение их уст­ройствами релейной защиты. В этом случае также устраняются перенапряжения, вызыва­емые перемежающимися дугами, что имеет место в электроустановках с изолированной нейтралью. Недостатком указанных элект­роустановок является возникновение пере­рыва в питании электропотребителей после отключения токов 033, а также значительная стоимость заземляющего устройства, кото­рое согласно ПУЭ, должно обладать весьма малым сопротивлением (R≤0,5ом). 3-фазные четырехпроводные электрические сети с глухозаземленной нейтралью напряжением до 1000 В относятся к сетям с занулением, работа которых рассматривается ниже.

в) Электроустановки постоянного тока.

В электроустановках постоянного тока с номинальным напряжением электроприём­ников 110—220—440 В каждый из проводов имеет относительно земли некоторое со­противление изоляции, распределенное по всей его длине. При этом между «плюсовым» и «минусовым» полюсом через сопротивле­ния изоляции проводов и землю образуется электрическая цепь, и протекают некоторые токи утечки.

При нормальном режиме работы токи утечки незначительны.

Если сопротивления изоляции каждого из проводов относительно земли одина­ковы, то каждый из проводов будет иметь относительно земли напряжение равное 0,5 Vном сети. При неодинаковых сопротивле­ниях изоляции относительно земли напря­жения распределяются таким образом, что их сумма будет равна Vном сети.

При замыкании одного из проводов на землю между землей и другим рабочим проводом возникает напряжение, равное полному напряжению сети.

Это значительно увеличивает опасность поражения человека при касании неповрежденного провода. Режим работы электроус­тановки а этом случае не нарушается, если не применено защитное отключение.

В этих электроустановках должен осу­ществляться непрерывный контроль изо­ляции. В электроустановках, применяемых для систем электрической тяги, приняты следующие величины номинальных напря­жений электроприемников:

Городской наземный транспорт (трам­вай, троллейбус) — 550 В; метрополитен — 750 В;

магистральные и пригородные желез­ные дороги — 3000 В;

промышленный электротранспорт: под­земный — 250 В; наземный — 500 В, 1500 В.

На шинах питающих тяговых подстанций номинальные напряжения приняты на 10% выше, чем на токоприемниках подвижного состава.

В тяговых электрических сетях контак­тный провод и контактный рельс на мет­рополитене являются плюсовым полюсом источника постоянного тока, которые изо­лированы от земли с помощью специальных изоляторов, закрепленных на металличес­ких или железобетонных конструкциях опор контактной сети и других сооружениях.

Ходовые рельсы являются минусовым полюсом источника тока. Все металличес­кие части опор контактной сети и других сооружений заземляются на ходовые рель­сы с помощью специальных заземляющих проводников.

В случаях нарушения изоляции кон­тактной сети, обрыва контактной сети, замыкания разнополярных проводов, не­исправности в подвижном составе и т.д. возникают короткие замыкания. Из-за устойчивого горения дуги постоянного тока при коротких замыканиях могут воз­никнуть пережоги контактных проводов, разрушиться токоприемники и другое электрооборудование, возникнуть пожары на подвижном составе, что может вызвать длительный перерыв в движении подвиж­ного состава и угрозу для жизни людей.

Поэтому в системе электрической тяги предусматривается быстрое, надежное, селективное отключение токов короткого замыкания на поврежденных участках кон­тактной сети с помощью быстродействую­щих автоматических выключателей посто­янного тока, имеющих собственное время отключения порядка 0,04—0,05 секунд.

Для обеспечения четкого отключения токов короткого замыкания на участках контактной сети должны быть соблюдены условия, при которых токи короткого за­мыкания были бы больше максимальных расчетных токов нагрузки линии и установок зашиты быстродействующих линейных вы­ключателей.

Если указанные условия не выполня­ются, то применяются специальные техни­ческие мероприятия, способствующие на­дежному отключению быстродействующих выключателей. Это позволяет обеспечить также повышенную электробезопасность людей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *