Как научиться собирать схемы электрические хорошо
Перейти к содержимому

Как научиться собирать схемы электрические хорошо

  • автор:

Как читать монтажные схемы и делать по ним монтаж

Монтажные схемы — это чертежи, показывающие реальное расположение компонентов как внутри, так и снаружи объекта, изображённого на схеме. Такие схемы чертят для монтажа многих видов радиоаппаратуры и не только, с помощью монтажных схем например, собирают электрические шкафы. Монтажная схема представляет собой список радиодеталей, узлов и компонентов, но они не соединяются между собой дорожками, на выводах этих элементов указывается маршрут. Маршрут – это буквенно-цифровое обозначение на схеме, указывается на выводах элементов, указывает на то, с каким другим элементом эта цепь должна соединяться. Все монтажные схемы читаются одинаково, но инженеры их могут рисовать по разному. В данной статье мы научимся читать монтажные схемы и делать монтаж, все примеры буду приводить с электрическими шкафами.

Монтажные схемы

При монтаже удобно работать с двумя схемами, с монтажной и принципиальной электрической. Монтажная схема чертится после составления принципиальной, некоторые пункты при составлении монтажных схем могут упускаться, в таком случае можно обратиться к электрической схеме. Возьмем небольшой кусочек схемы и посмотрим как ее нужно читать, как правильно указывать маршрут и т.п., к примеру имеется вот такой кусочек монтажной схемы: Кусочек монтажной схемыНа схеме изображены 2 релюшки, какого они типа и на какое напряжение обычно указывается рядом с релюшками, или пишется в электрической схеме, т.е. если в монтажной схеме не написано (или может забыли написать) рабочее напряжение какого либо элемента, открываете электрическую схему, находите там этот элемент и смотрите. В данном случае у нас изображены 2 релюшки: KV8 и KV9, в кружочках, выше элемента указывается порядковый номер или номер элемента. А кружочки что внутри это как вы наверное уже поняли контактные площадки релюшек, если по другому, то посадочные места, контакты. Внутри кружочков так же пишется цифра, а буквами —А- и —В- означаются контакты для питания. Контакты которые должны соединяться с другими элементами, выносятся полосками за край корпуса и с краю пишется маршрут, в нашем случае от элемента -40- отходит один контакт с маршрутом -41В-, данный маршрут говорит о том, что контакт номер –В- элемента номер -40- должен соединяться с контактом -В- элемента элемента -41-. Можно сказать, что контакты –В- релюшек -40- и -41- соединяются вместе. Что касается указаний маршрута на кембриках, то на элементе -40- на контакт -В- закручивается (т.к. у нас контакты релюшек с винтовыми клеммами) провод на который одет кембрик с надписью -41:В-, а на элементе -41- к контакту -В- одевается другой кембрик с маршрутом -40:В-. КембрикиЕсли выразиться попроще, то на кембриках (или кабельных маркерах) указываются обратные маршруты с соединяемыми элементами. На некоторых элементах, например на тех же релюшках, могут быть пририсованы какие-нибудь радиоэлементы, ниже на схеме параллельно обмоткам релюшек нарисованы диоды: Кусочек монтажной схемыТакие элементы, как правило на чертежах соединятся прямо с контактами БЕЗ указаний маршрутов – зачем писать маршрут когда и так понятно, что анод диода -VD5- соединяется с контактом –В- релюшки -К4-, а катод соединяется с контактом –А- того же элемента. На вывода таких элементов кембрики НЕ одеваются и маршрут соответственно тоже, не пишется. Если посмотрите внимательнее, то на схеме 2 увидите так называемую перемычку, которая соединяет контакты -А- элементов -30- и -31- (релюшек -К4- и -К5-) между собой. Такие перемычки обычно рисуют в тех случаях, когда проще провести линию между элементами, особенно если они располагаются рядом друг с другом, чем писать маршрут на схеме. Если бы элементы располагались в разных концах монтажной схемы, то рисовать длинную линию соединяющую эти два элемента не имеет смысла, проще указать маршрут. Думаю и тут понятно, что контакт -А- элемента -30- соединяется с контактом –А- элемента -31-. На схеме есть еще перемычка, которая соединяет контакты -11- и –А- элемента -30- между собой. В перемычках обычно не указывают маршрут, как на монтажной схеме, так и при монтаже этого участка схема, но новичкам все же советую не лениться и подписывать кембрики. Монтаж схемы может выполняться разными проводами, например экранированным, силовым, обычным монтажным и т.п. или проводами у которых разное сечение. На монтажных схемах с краю обычно всегда пишут, какие провода нужно использовать для монтажа и какое у них сечение, пример ниже: Обозначение проводовНиже вы можете увидеть небольшой участок такой схемы, где указано, каким проводом делать монтаж этих цепей. Из схемы видно, что монтаж контактов 1,2,4 разъема Х13 должен выполняться проводом, с сечение которого 0.35мм2, а соединение (монтаж) контактов 9,15,16 выполняются проводом 0.75мм2 и т.д. Кстати, монтаж заземления выполняется проводом желто-зеленого цвета, так принято. electric95-5.pngОбычно, большинство элементов на монтажных схемах легко читается и понимается, многие элементы (резисторы, конденсаторы, диоды, лампочки …) обозначаются стандартным образом. Обозначение элементов на монтажных схемахНо часто, на монтажке рисуют элементы, посмотрев на которые не сразу понимаешь что это, в таких случаях смотрим на порядковый номер элемента и идем искать его на принципиальной электрической схеме. Вот, к примеру один из вариантов обозначения винтовых клеммников – согласитесь, сразу и не поймешь что это такое. Обозначение винтовых клеммниковНиже обозначение на монтажной схеме трехфазного трансформатора, то, что это возможно трансформатор, можно догадаться по надписям А,В,С (фазы). Обозначение трансформатораВот так может обозначаться трехполюсный автоматический выключатель Обозначение трехполюсного автоматического выключателяОни кстати могут быть самыми разными, есть автоматические выключатели на 10-20 ампер, а есть на большие токи (1000А и более) с магнитным приводом, который электрическим способом переключает автомат, при срабатывании которого раздается сильный треск и грохот.
В общем то, сложности возникают только в первое время, если вы устроились на какое то предприятие, консультируйтесь с работниками или инженером, с тем, кто рисовал монтажку.

Монтаж

Рабочее место

Монтажник обычно занимается соединением деталей в корпусе шкафа между собой проводами. Но в обязанности некоторых входит и расстановка элементов внутри шкафа. Мы же будем рассматривать только соединение элементов между собой проводами. Прежде чем приступать к монтажу, прикиньте в голове, как будете прокладывать жгуты проводов внутри шкафа. Старайтесь не прокладывать много жгутов, если в монтажной схеме есть элементы, которые соединяются между собой экранированным проводом, то экранированные провода нужно прокладывать отдельно, а сами экраны нужно соединять с общим проводом или землей. Силовые провода желательно крепить после выполнения основного монтажа. Провода для монтажа обычно выдают в катушках или бобинах, разматывать их следует аккуратно и не нужно отрезать несколько концов, для удобства их помещают в специальные подставки для удобной размотки, и еще, не выкидывайте табличку которая прилагается к проводу, на табличке указывается сечение провода и некоторые другие параметры, если потеряете – в следующий раз будет тяжело определить параметры провода. Кембрики нужны для того, чтобы указывать на них маршрут, которые затем одеваются на концы проводов. Указание маршрутов необходимо для того, чтобы самому не запутаться в проводах, отпадает необходимость каждый раз прозванивать их в случае, если вы забыли какой провод куда идет. Кроме того, таким образом облегчается поиск неисправностей и ремонт устройства. Фото из архива, вот так выглядело мое рабочее место:

Необходимые инструменты

Прежде чем приступить к монтажу приготовьте следующие инструменты:

  1. Инструмент для снятия изоляция, предназначены для удобного снятия изоляции с провода. Обычными кусачками можно повредить жилы. Инструмент для снятия изоляция
  2. Набор кембриков для используемых типов проводов, не одевайте слишком толстые и широкие кембрики на тонкие провода. Использовать вместо кембриков (ПВХ трубочек) термоусадочные трубки не рекомендуется, потому что при сильном нагреве они могут усаживаться. КембрикиТакже, если позволяет бюджет, можно использовать кабельные маркеры. Кабельные маркеры
  3. Маркер для того, чтобы писать маршрут на кембриках, желательно с тонким стержнем и перманентный. Маркер
  4. Жидкий флюс, канифоль, припой, возможно пригодится паяльная кислота или оксидал, для пайки окисленных выводов радиоэлементов, лепестков и т.п., паяльник 25-40 ватт.
  5. Самоклеющиеся площадки, для крепления жгутов на стенках шкафа. Самоклеющаяся площадка
  6. Стяжки или хомутики, для стяжки проводов. В некоторых случаях применяют специальные пластиковые пеналы, или каналы – внутри которых и прокладываются провода. Кабельная стяжка

Конечно, может пригодится еще что то, но как правило этого бывает достаточно. Самое главное, приступайте к работе с хорошим и бодрым настроением чтобы не допустить ошибок – электроника шуток не любит.

Перед началом монтажа внимательно изучите схему, монтаж стоит начинать с того участка, где стоит больше всего элементов, еще стоит обратить внимание на то, куда идут провода. Если с какого-то одного участка идет группа проводов на другой участок, нужно начинать с этого места. Если на двери шкафа имеются приборы и кнопки с регуляторами, то монтаж начинают с двери, от двери к корпусу шкафа делают петлю из получившегося жгута проводов, чтобы дверь нормально открывалась и закрывалась.

Жгут проводов от двери шкафа

Монтаж может выполняться разными проводами, в монтажной схеме всегда указывают, какой провод нужно применять для данного участка схемы, делать монтаж проводом меньшего сечения чем указано в монтажной схеме не рекомендуется, т.к. провод меньшего сечения может не выдержать нужных токов и может расплавиться, оголиться. Никогда не снимайте изоляцию с провода больше, чем это нужно, это во первых не красиво, во вторых, может случайно коротнуть, если провода располагаются рядом. Если провода крепятся, скажем на релюшки или на клеммники с помощью винтов, прикиньте, как глубоко может войти провод под винт — вот столько и снимайте изоляцию. Вывода проводов, с которых сняли изоляцию, и которые крепятся на элементы в шкафу, всегда нужно залуживать! Как только зачистили и залудили один конец провода, берется кембрик, пишется на нем маршрут, после чего одевается на провод, а сам провод нужно припаять или прикрутить к элементу. На другой конец провода так же одевается кембрик с указанием обратного маршрута, затем конец провода завязывается в узел и провод можно бросить, этот конец провода нам пока не нужен. На первом этапе монтажа на все вторые концы проводов одеваются кембрики с указанием маршрутов, концы завязывают в узел, чтобы кембрик не вылетел и провод бросают. Когда закончите крепить концы проводов на определенном участке, получится небольшая косичка из проводов. Потом эта косичка аккуратно собирается и прокладывается по корпусу (по стенке) шкафа, провода прокладываются до того элемента, куда должны идти по монтажной схеме, т.е. с одного элемента до другого. По ходу прокладки, жгут может разветвляться и идти на другой элемент.

Жгут проводов

В конце концов должен образоваться пучок проводов с одетыми кембриками на концах. На рисунке выше показан пучок проводов около клеммников, провода отрезаются нужной длины, с них снимается изоляция, залуживаются, и крепятся на клеммники. И так со всеми проводами, которые по монтажной схеме должны идти на этот элемент.

Конечно, с монтажом простых бытовых устройств, например блоков питания или усилилелей ЗЧ все намного проще. Обычно при соединении узлов или плат между собой проводами в качестве маршрутов можно указывать шины питания, вход или выход, плюс или минус питания, указать напряжение и так далее.

Как только закончили основной монтаж, можно приступать к монтажу силовых цепей, на силовые провода так же одеваются кембрики и точно так же пишется маршрут. Чаще силовые провода используются для питающих цепей и на кембриках как правило указывается только фаза.

Монтаж силовых цепей

После того, как полностью закончили монтаж приступают к прозвонке цепей. НИ В КОЕМ СЛУЧАЕ НЕ ВКЛЮЧАЙТЕ УСТРОЙСТВО БЕЗ ПРЕДВАРИТЕЛЬНОЙ ПРОВЕРКИ И ПРОЗВОНКИ! Для прозвонки удобно использовать мультиметр с пищалкой. К примеру, в нижеприведенной схеме, если мы прикоснемся одним щупом мультиметра к контакту резистора -4:1-, а другим щупом к контакту лампочки с указанием маршрута -23:R12- — мультиметр должен запищать, если окажется что нет контакта, то мультиметр естественно будет молчать.

Монтаж силовых цепей

В таком случае нужно искать ошибку, возможно, вы один из концов провода прикрутили к другому элементу или вполне возможно, что просто нет механического контакта, особенно если зажимы винтовые. Поиск ошибок — процесс достаточно трудоемкий, лучше изначально все делать правильно и без ошибок, после монтажа участка цепи всегда перепроверяйте цепь. Если после прозвонки ошибок не нашли, то можно потихоньку приступать к запуску. Сначала, как правило просто подают питание, при этом автоматы отключены и платы могут быть вынуты с устройства, таким образом еще раз проверяют правильность монтажа и нету ли нигде короткого замыкания. После, можно проверить индикацию и пускатели путем принудительного включения, а так же другие вспомогательные элементы схемы. Конечно, разные устройства настраиваются и налаживаются по-разному, тут нельзя дать точных рекомендаций. Вообще, в мои обязанности входило только монтаж схемы, а настройку уже выполнял другой специалист. Во время первого запуска устройства прикасаться к корпусу и элементам категорически запрещается! Прежде чем лезть в устройство всегда нужно ПОЛНОСТЬЮ отключать питание.

Романов А.С. Опубликована: 2012 г. 0 0

Вознаградить Я собрал 0 1

Оценить статью

  • Техническая грамотность

Как научится читать электронные схемы

Для начинающих электронщиков важно понимать, как работают детали, как их рисуют на схеме и как разобраться в схеме электрической принципиальной. Для этого нужно сперва ознакомиться с принципом работы элементов, а как читать схемы электроники я расскажу в этой статье на примерах популярных устройств для начинающих.

Как научится читать электронные схемы

Электронная схема — это набор электронных компонентов, соединенных между собой проводниками, которые обеспечивают выполнение определенных функций в электронном устройстве. Электронные схемы используются в различных устройствах, таких как компьютеры, смартфоны, телевизоры и другие.

Умение читать электронные схемы необходимо для понимания работы электронного устройства и выявления неисправностей. Электронные схемы содержат информацию о компонентах, их расположении и соединении, а также о принципах работы устройства. Чтение электронных схем помогает быстро и точно определить проблему и найти оптимальное решение для ее устранения.

Схема настольной лампы и фонарика на светодиоде

Схема – это рисунок на которых с помощью определенных символов изображаются детали схемы, линиями – их соединения. При этом, если линии пересекаются – то контакта между этими проводниками нет, а если в месте пересечения присутствует точка – это узел соединения нескольких проводников.

Кроме значков и линий на схеме изображены буквенные обозначения. Все обозначения стандартизированы, в каждой стране свои стандарты, например в России придерживаются стандарта ГОСТ 2.710-81.

Контакт на схеме

Начнем изучение с простейшего – схемы настольной лампы.

Схема настольной лампы

Схемы не всегда читают слева направо и сверху вниз, лучше идти от источника питания. Что мы можем узнать из схемы, посмотрите в правую её часть. ~ — значит питание переменным током.

Рядом написано «220» — напряжением в 220 В. X1 и X2 – предполагается подключение в розетку с помощью вилки. SW1 – так изображается ключ, тумблер или кнопка в разомкнутом состоянии. L – условное изображение лампочки накаливания.

Краткие выводы:

На схеме изображено устройство, которое подключается к сети 220 В переменного тока с помощью вилки в розетку или других разъёмных соединений. Есть возможность отключения с помощью переключателя или кнопки. Нужно для питания лампы накаливания.

С первого взгляда кажется очевидным, но специалист должен уметь сделать такие выводы глядя на схему без пояснений, это умение даст возможность выносить диагноз неисправности и устранять её или же собирать устройства с нуля.

Перейдем к следующей схеме. Это фонарик с питанием от батарейки, в качестве излучателя в нём установлен светодиод.

Схема фонарика на светодиоде

Взгляните на схему, возможно, вы увидите новые для себя изображения. Справа изображен источник питания, так выглядит батарейка или аккумулятор, длинный вывод это плюс другое название – Катод, короткий – минус или Анод. У светодиода к аноду (треугольная часть обозначения) подключается плюс, а к катоду (на УГО выглядит как полоска) – минус.

Это нужно запомнить, что у источников питания и потребителей названия электродов наоборот. Две исходящие от светодиода стрелки дают вам понять, что этот прибор ИЗЛУЧАЕТ свет, если бы стрелки наоборот указывали на него – это был бы фотоприемник. Диоды имеют буквенное обозначение VDx, где х- порядковый номер.

Важно:

Нумерация деталей на схемах идет столбцами сверху вниз, слева направо.

Резистор – это сопротивление. Преобразует электрический ток в тепло, препятствую его движению, выглядит как прямоугольник, обычно на схемах имеет буквенное обозначение «R».

Обозначение на схемах светодиодов и резисторов

Обозначение на схемах ключа и батарейки

Как читать электронные схемы: увеличиваем уровень сложности

Когда вы уже разобрались с базовым набором элементов, пора ознакомится с более сложными схемами, давайте рассмотрим схему трансформаторного блока питания.

Схема трансформаторного блока питания

Главным средством преобразователя на схеме является трансформатор TV1, это новый для вас элемент. Предлагаю рассмотреть ряд подобных изделий.

Обозначение на схеме трансформаторов

Трансформаторы используются повсеместно, либо в сетевом (50 гц), либо в импульсном (десятки кГц) исполнении. Катушки индуктивности используются в генераторах, радиопередающих устройствах, фильтрах частот, сглаживающих и стабилизирующих приборах. Она выглядит следующим образом.

Трансформаторы и катушки индуктивности

Второй незнакомый элемент на схеме – это конденсатор, здесь используется для сглаживания пульсаций выпрямленного напряжения. Вообще основная его функция – это накапливать энергию в качестве заряда на его обкладках. Изображается следующим образом.

Обозначение на схемах конденсаторов

Если к схеме добавить узел стабилизации, построенный по схеме параметрического стабилизатора, напряжение блока питания будет стабилизировано. При этом только от повышения питающего напряжения, при просадках ниже, чем Uстабилизации напряжение будет пульсирующем в такт с просадками. VD1 – это стабилитрон, они включаются в обратном смещении (катодом к точке с положительным потенциалом). Различаются по величине тока стабилизации (Iстаб) и напряжения стабилизации (Uстаб).

Стабилизация напряжения

Краткие итоги:

Что мы можем понять из этой схемы? То, что блок питания состоит из трансформатора, выпрямителя и сглаживающего фильтра на конденсаторе. Подключается первичной стороной (входом) к сети переменного тока с напряжением 220 Вольт. На его выходе имеет два разъёмных соединения – «+» и «-» и напряжение 12 В, нестабилизорванное.

Конденсаторы

Давайте перейдем еще более сложным схемам и познакомимся с другими элементами электрических цепей.

Как читать схемы с транзисторами?

Транзисторы – это управляемые ключи, вы можете закрыть их и открыть, а если нужно открыть не полностью. Данные свойства позволяют их применять, как в ключевом, так и линейном режимах, что позволяет их использовать в огромном спектре схемных решений.

Давайте рассмотрим популярную среди новичков схему – симметричный мультивибратор. Это по сути генератор, который на своих выходах выдаёт симметричные импульсы. Может применяться, как основа для простых мигалок, в качестве источника частоты для пищалки, в качестве генератора для импульсного преобразователя и во многих других цепях.

Схема с транзисторами

Пройдемся по знакомым деталям сверху вниз. Вверху мы видим 4 резистора, средние два – времязадающие, а крайние – задают ток резистора, также влияют на характер выходных импульсов.

Далее HL – это светодиоды, а ниже два электролита – это полярные конденсаторы, когда будете их монтировать оставайтесь внимательны – неправильное подключение электролитического конденсатора чревато выходом его из строя вплоть до взрыва с выделением тепла.

Интересно:

На графическом обозначении электролитического конденсатора всегда помечается «положительная» обкладка конденсатора, а на настоящих элементах – чаще всего есть пометка отрицательной ножки, не перепутайте!

Электроличтические конденсаторы

VT1-VT2 – это новые для вас элементы, таким образом обознаются биполярные транзисторы обратной проводимости (NPN), ниже указана модель транзистора – «КТ315». У них обычно 3 ножки:

При этом на корпусе их назначение не указывается. Чтобы определить назначение выводов, нужно воспользоваться одним из поисковых запросов:

1. «Название элемента» — цоколевка.

2. «Название элемента» — распиновка.

3. «Название элемента» datsheet.

Это справедливо, как для радиоламп, так и для современных микросхем. Запросы имеют почти одинаковый смысл. Вот таким образом я нашел цоколевку транзистора КТ315.

Транзистор КТ315

На изображении с распиновкой должно быть четко видно: с какой стороны считать ножки, где находится ключ, срез или метка, чтобы вы правильно определили необходимый вывод.

Интересно:

У биполярных транзисторов стрелка на эмиттере обозначается направление протекания тока (от плюса к минусу), если стрелка ОТ базы – это транзистор обратной проводимости (NPN), а если К базе то прямой проводимости (PNP), часто вы можете заменить все NPN транзисторы на PNP, как в схеме мультивибратора, тогда нужно будет и поменять полярность источника питания (плюс и минус местами) ведь, повторюсь, стрелка на эмиттере указывает направление протекания тока.

На приведенной схеме положительный контакт источника питания подключен к верхней части схемы, а отрицательный к нижней. Так и на транзисторе стрелка указывает сверх-вниз – по направлению протекания тока!

В элементах с большим количеством ног имеет значение куда подключать, так же, как и в диодах и светодиодах, если вы перепутаете ножки – в лучшем случае схема не заработает, а в худшем – убьете детали.

Что мы смогли узнать, прочитав схему мультивибратора:

В этой схеме используются транзисторы и электролитические конденсаторы, питается она напряжением в 9 В (хотя может и больше, и меньше, например 12 В не повредят схеме, как и 5 В).

Стало ясно о способе соединения деталей и включения транзисторов. А также о том, что схема представляет собой прибор, работающий на принципе автогенератора основанного на процессе перезаряда транзисторов, которое вызвано попеременным открытием и закрытием транзисторов каждого по очереди, когда первый открыт, второй закрыт.

Проследив пути протекания тока (от плюса к минусу) и использовав знания о том, как работает биполярный транзистор мы делаем выводы о характере работы.

Тиристоры – полууправляемые ключи, учимся читать схемы

Давайте рассмотрим схему с не менее важным и распространенным элементом – тиристором. Я выбрал слово «полууправляемый» потому что, в отличие от транзистора, вы можете только открыть его, ток в нем прервется либо при прерывании питания, либо при смене полярности приложенного к нему напряжения. Открывается с помощью подачи на управляющий электрод напряжения.

Симисторы – содержат два тиристора соединённых встречно-параллельно. Таким образом, одним компонентом можно коммутировать переменный ток, при прохождении верхней части (положительной) полуволны синусоиды, при условии наличия сигнала на управляющем, электроде откроется один из внутренних тиристоров. Когда полуволна сменит свой знак на отрицательный – он закроется и в работу вступит второй тиристор.

Динисторы – разновидность тиристора, без управляющего электрода, а открываются они, подобно стабилитронам, по преодолению определенного уровня напряжения. Часто используются в импульсных блоках питания, как пороговый элемент для запуска автогенераторов и в устройствах для регулировки напряжения.

Тиристоры

Вот так, собственно это выглядит на схеме.

Схема простейшего регулятора мощности на симисторе

Внимательно смотрим на подключение. Схема предназначена для подключения к сети переменного тока, например 220 В, в разрыв одного из питающих проводов, например фазного (L). Симистор VS1 – основной силовой элемент цепи, справа внизу дана его распиновка из даташита, 3 вывод – управляющий. На него через двунаправленный динистор VD1 модели DB3 рассчитанный на напряжение включения порядка 30 вольт, подаётся управляющий сигнал.

Так как все полупроводниковые приборы в этой конкретной схеме двунаправленные, регулировка осуществляется по обеим полуволнам синусоиды. Динистор открывается, когда на конденсаторе C1 появляется необходимой величины потенциал (напряжение), а скорость его заряда, следовательно, момент открытия ключей, задаётся RC цепью, состоящей из R1, переменного резистора (потенциометра) R2 и С1.

Эта простая схем имеет огромное значение и прикладное применение.

Как научится читать принципиальные схемы электронных приборов

Выводы

Благодаря умению читать схемы электрические принципиальные, вы можете определить:

1. Что делает это устройство, для чего оно предназначено.

2. При ремонте – номинал вышедшей из строя детали.

3. Чем питать это устройство, каким напряжением и родом тока.

4. Примерную мощность электронного устройства, исходя из номиналов компонентов силовых цепей.

Важно не только знать условные графические обозначения элементов, но и принцип их работы. Дело в том, то не всегда те или иные детали могут использоваться в привычной роли. Но в пределах сегодняшней статьи рассмотреть все распространенные элементы довольно сложно, так как это займет очень большой объем.

Смотртите также к на сайте:

  • Особенности современных магнитных пускателей и их применение
  • Чем короткое замыкание отличается от перегрузки
  • 10 самых распространённых причин поломок электрооборудования

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » В помощь начинающим электрикам

Подписывайтесь на наш канал в Telegram: Домашняя электрика

Поделитесь этой статьей с друзьями:

Как научиться собирать электрические схемы

Я студент учусь на 3 курсе на энергетика. Прошлого семестра у меня были такие предметы как Электроника и автоматика. Тогда я не придал должного внимания этим предметам, но теперь у меня появилось много свободного времени и я заинтересовался этим. Я начал сам изучать электронику и уже кое-чему научился (ну как новичок) ну но для меня остается непонятно как собрать схему физически (ну самые простенькие схемы я могу собрать (2-3 элементы), а где уже побольше элементов для меня тяжело) то есть я вижу схему на бумаге, более менее понимаю ее, но как собрать, куда паять провода для меня темный лес.
Подскажите как можно этому научиться или натренироваться.

Лучший ответ

читай, собирай потихоньку, начиная с малого

все так учатся. Нет такой книги, что с нуля прочитав, ты сразу пойдешь херачить сложные схемы

нужно долго и долго учиться, собирать и собирать, на 3х, на 5, на 10 детальках.

мигалки, крякалки, потом посложнее и посложнее.

скачай справочник Ю. П. Алексеев — бытовая приемно-усилительная радиоаппаратура — Справочник.

Хороша тем, что помимо схем и фото потрохов популярной аппаратуры 80х в ней есть подробные описания работы схемы по узлам пошагово.

то есть помимо основной теории в одних книгах — полезно на примере этих схем разбирать принцип работы на готовых устройствах

и интернет тебе в помощь!

сайтов полно: паяльник, радиокот, радиоскот, и много много других — не ленись, ищи информацию

найди также архивы журналов Радио СССР, 80-90х годов

п. с. Точно! Электроника шаг за шагом! Р. Сворень .

Хоть и сильно устарела, но принципы и основы в ней уж очень легко написаны для начинающего — все в чрезвычайно доступной и усваиваемой форме! Обязательна к прочтению!

Остальные ответы
Прочитай книгу: В помощь начинающему радиолюбителю.

читай книги для начинающих радиолюбителей, смотри обучающие ролики для начинающих на ютубе. пробуй собирать простые схемы, и постепенно освоишься.
скачай какую нибудь программу — симулятор работы электронных схем.

Ужас. И это на 3 курсе. Я уже в пятом классе первый приёмник сам собрал. Читай книги для радиолюбителей.

Лёха из ПитераИскусственный Интеллект (134813) 8 лет назад
это результаты ЕГЭ

Р. Сворень. «Электроника шаг за шагом»
Я. Войцеховский. «Радиоэлектронные игрушки».
Начинал с этого, собирал схемки, потихоньку разбирался.
А так-же «ВРЛ», «Радио», и многое другое.
А еще важна практика. Если не пытаться, то точно ничего не получится.

Обычно элементы на схемах похожи на своё материальное воплощение.
У элементов на схеме и «в натуре» есть выводы, которыми они и соединяются друг с другом, питанием, нагрузкой.
Вот эти выводы и соединяй между собой по схеме.
Хоть друг к дружке подпаивай-хоть проводками.

Как это ты добрался до 3-го курса при таких знаниях? Небось, домашки из Интернета списывал? Понятно теперь, почему у нас в поликлиниках разучились даже простую простуду диагностировать, а уж вылечить — и вовсе безнадега.

СергейИскусственный Интеллект (281813) 8 лет назад

именно. Интернета не было, книги и журналы буквально по обрывкам страниц друг у друга списывали — в общем выживали как могли и ведь научились по всему этому!

а сейчас даже жопу не отрывай — окей гугл, схемы усилителей.

Гадкий УМастер (2079) 8 лет назад

книжка «Р. Сворень. «Электроника шаг за шагом»»
в жизни очень помогла в понимании процессов электроники.

Как читать электрические схемы

Электрическая схема

При изучении электроники возникает вопрос, как читать электрические схемы. Естественным желанием начинающего электронщика или радиолюбителя является спаять какое-то интересное электронное устройство. Однако на начальном пути достаточных теоретических знаний и практических навыков как всегда не хватает. Поэтому устройство собирают вслепую. И часто бывает, что спаянное устройство, на которое было затрачено много времени, сил и терпения, — не работает, что вызывает только разочарование и отбивает желание у начинающего радиолюбителя заниматься электроникой, так и не ощутив все прелести данной науки. Хотя, как оказывается, схема не заработала из-за допущения сущего пустяковой ошибки. На исправление такой ошибки у более опытного радиолюбителя ушло бы меньше минуты.

В данной статье приведены полезные рекомендации, которые позволят свести к минимуму количество ошибок. Помогут начинающему радиолюбителю собирать различные электронные устройства, которые заработают с первого раза.

Как научиться читать электрические схемы

Любая радиоэлектронная аппаратура состоит из отдельных радиодеталей, спаянных (соединенных) между собой определенным образом. Все радиодетали, их соединения и дополнительные обозначения отображаются на специальном чертеже. Такой чертеж называется электрической схемой. Каждая радиодеталь имеет свое обозначение, которое правильно называется условное графическое обозначение, сокращенно – УГО. К УГО мы вернемся дальше в этой статье.

Монтажница радиоэлектронной аппаратуры

Принципиально можно выделить два этапа совершенствования чтения электрических схем. Первый этап характерен для монтажников радиоэлектронной аппаратуры. Они просто собирают (паяют) устройства не углубляясь в назначение и принцип работы основных его узлов. По сути дела – это скучная работа, хотя, хорошо паять, нужно еще поучиться. Лично мне гораздо интересней паять то, что я полностью понимаю, как оно работает. Появляются множества вариантов для маневров. Понимаешь какой номинал, например резистора или конденсатора критичный в данной случае, а каким можно пренебречь и заменить другим. Какой транзистор можно заменить аналогом, а где следует использовать транзистор только указанной серии. Поэтому лично мне ближе второй этап.

Второй этап присущ разработчикам радиоэлектронной аппаратуры. Такой этап является самый интересный и творческий, поскольку совершенствоваться в разработке электронных схем можно бесконечно.

По этому направлению написаны целые тома книг, наиболее известной из которых является «Искусство схемотехники». Именно к этому этапу мы будем стремиться подойти. Однако здесь уже потребуются и глубокие теоретические знания, но все оно того стоит.

Учиться читать электрические схемы мы будем из самых простых примеров и постепенно продвигаться дальше.

Обозначение источников питания

Любое радиоэлектронное устройство способно выполнять свои функции только при наличии электроэнергии. Принципиально выделяют два типа источников электроэнергии: постоянного и переменного тока. В данной статье рассматриваются исключительно источниках постоянного тока. К ним относятся батарейки или гальванические элементы, аккумуляторные батареи, различного рода блоки питания и т.п.

В мире насчитывается тысячи тысяч разных аккумуляторов, гальванических элементов и т.п., которые отличаются как внешним видом, так и конструкцией. Однако всех их объединяет общее функциональное назначение – снабжать постоянным током электронную аппаратуру. Поэтому на чертежах электрических схем источники они обозначаются единообразно, но все же с некоторыми небольшими отличиями.

Электрические схемы принято рисовать слева на право, то есть так, как и писать текст. Однако такого правила далеко не всегда придерживаются, особенно радиолюбители. Но, тем не менее, такое правило следует взять на вооружение и применять в дальнейшем.

Обозначение батарейки на чертеже электрической схемы

Гальванический элемент или одна батарейка, неважно «пальчиковая», «мизинчиковая» или таблеточного типа, обозначается следующим образом: две параллельные черточки разной длины. Черточка большей длины обозначает положительный полюс – плюс «+», а короткая – минус «-».

Также для большей наглядности могут проставляться знаки полярности батарейки. Гальванический элемент или батарейка имеет стандартное буквенное обозначение G.

Обозначение аккумуляторов на чертежах электрических схем

Однако радиолюбители не всегда придерживаются такой шифровки и часто вместо G пишут букву E, которая обозначает, что данный гальванический элемент является источником электродвижущей силы (ЭДС). Также рядом может указываться величина ЭДС, например 1,5 В.

Иногда вместо изображения источника питания показывают только его клеммы.

Группа гальванических элементов, которые могут повторно перезаряжаться, аккумуляторной батареей. На чертежах электрических схем они обозначается аналогично. Только между параллельными черточками находится пунктирная линия и применяется буквенное обозначение GB. Вторая буква как раз и обозначает «батарея».

Обозначение проводов и их соединений на схемах

Электрические провода выполняют функцию объединения всех электронных элементов в единую цепь. Они выполняют роль «трубопровода» — снабжают электронные компонент электронами. Провода характеризуются множеством параметров: сечением, материалом, изоляцией и т.п. Мы же будем иметь дело с монтажными гибкими проводами.

На печатных платах проводами служат токопроводящие дорожки. Вне зависимости от вида проводника (проволока или дорожка) на чертежах электрических схем они обозначаются единым образом – прямой линией.

Например, для того, что бы засветить лампу накаливания необходимо напряжение от аккумуляторной батареи подвести с помощью соединительных проводов к лампочке. Тогда цепь будет замкнута и в ней начнет протекать ток, который вызовет нагрев нити лампы накаливания до свечения.

Простая электрическая цепь

Проводник принять обозначать прямой линией: горизонтальной или вертикальной. Согласно стандарту, провода или токоведущие дорожки могут изображаться под углом 90 или 135 градусов.

В разветвленных цепях проводники часто пересекаются. Если при этом не образуется электрическая связь, то точка в месте пересечения не ставится.

Обозначение проводов и их соединений на чертежах электрических схем

Если в месте пересечения проводников образуется электрическая связь, то это место обозначается точкой, называемой электрическим узлом. В узле могут пересекаться одновременно несколько проводников. Здесь я советую познакомиться с первым законом Кирхгофа.

Обозначение общего провода

В сложных электрических цепях с целью улучшения читаемости схемы часто проводники, соединенные с отрицательной клеммой источника питания, не изображают. А вместо них применяют знаки, обозначающие отрицательных провод, который еще называют общий или масса или шасси или земля.

Общий провод, масса, отрицательный провод, GND

Рядом со знаком заземления часто, особенно в англоязычных схемах, делается надпись GND, сокращенно от GRAUND – земля.

Обозначение общего провода на электрических схемах

Однако следует знать, что общий провод не обязательно должен быть отрицательным, он также может быть и положительным. Особенно часто за положительный общий провод принимался в старых советских схемах, в которых преимущественно использовались транзисторы pnp структуры.

Поэтому, когда говорят, что потенциал в какой-то точке схемы равен какому-то напряжению, то это означает, что напряжение между указанной точкой и «минусом» блока питания равен соответствующему значению.

Например, если напряжение в точке 1 равно 8 В, а в точке 2 оно имеет величину 4 В, то нужно положительный щуп вольтметра установить в соответствующую точку, а отрицательный – к общему проводу или отрицательной клемме.

Потенциал в точке электрической схемы

Таким подходом довольно часто пользуются, поскольку это очень удобно с практической точки зрения, так как достаточно указать только одну точку.

Особенно часто это применяется при настройке или регулировке радиоэлектронной аппаратуре. Поэтому учиться читать электрические схемы гораздо проще, пользуясь потенциалами в конкретных точках.

Условное графическое обозначение радиодеталей

Основу любого электронного устройства составляют радиодетали. К ним относятся резисторы, светодиоды, транзисторы, конденсаторы, различные микросхемы и т. д. Чтобы научиться читать электрические схемы нужно хорошо знать условные графические обозначения всех радиодеталей.

Для примера рассмотрим следующий чертеж. Он состоит из батареи гальванических элементов GB1, резистора R1 и светодиода VD1. Условное графическое обозначение (УГО) резистора имеет вид прямоугольника с двумя выводами. На чертежах он обозначается буквой R, после которой ставится его порядковый номер, например R1, R2, R5 и т. д.

Как читать электрические схемы

Поскольку важным параметром резистора помимо сопротивления является мощность рассеивания, то ее значение также указывается в обозначении.

УГО светодиода имеет вид треугольника с риской у его вершины; и двумя стрелочками, острия которых направлены от треугольника. Один вывод светодиода называется анодом, а второй – катодом.

Обозначение светодиода на электрических схемах

Светодиод, как и «обычный» диод, пропускает ток только в одном направлении – от анода к катоду. Данный полупроводниковый прибор обозначается VD, а его тип указывается в спецификации или в описании к схеме. Характеристики конкретного типа светодиода приводятся в справочниках или «даташитах».

Как читать электрические схемы реально

Давайте вернемся к простейшей схеме, состоящей из батареи гальванических элементов GB1, резистора R1 и светодиода VD1.

Как мы видим – цепь замкнута. Поэтому в ней протекает электрический ток I, который имеет одинаковое значение, поскольку все элементы соединены последовательно. Направление электрического тока I от положительной клеммы GB1 через резистор R1, светодиод VD1 к отрицательной клемме.

Назначение всех элементов вполне понятно. Конечной целью является свечение светодиода. Однако, чтобы он не перегрелся и не вышел из строя резистор ограничивает величину тока.

Величина напряжения, согласно второму закона Кирхгофа, на всех элементах может отличаться и зависит от сопротивления резистора R1 и светодиод VD1.

Если измерить вольтметром напряжение на R1 и VD1, а затем полученные значения сложить, то их сумма будет равна напряжению на GB1: V1 = V2 + V3.

Как научиться читать электрические схемы

Соберем по данному чертежу реальное устройство.

Схема подключения светодиода

Как читать электрические схемы с минимальным набором радиодеталей мы разобрались. Теперь можем перейти к более сложному варианту.

Добавляем радиодетали

Рассмотрим следующую схему, состоящую из четырех параллельных ветвей. Первая представляет собой лишь аккумуляторную батарею GB1, напряжением 4,5 В. Во второй ветви последовательно соединены нормально замкнутые контакты K1.1 электромагнитного реле K1, резистора R1 и светодиода VD1. Далее по чертежу находится кнопка SB1.

Как читать чертежи электрических схем

Третья параллельная ветвь состоит из электромагнитного реле K1, шунтированного в обратном направлении диодом VD2.

В четвертой ветви имеются нормально разомкнутые контакты K1.2 и бузер BA1.

Здесь присутствуют элементы, ранее нами не рассмотрены в данной статье: SB1 – это кнопка без фиксации положения. Пока она нажата ее, контакты замкнуты. Но как только мы перестанем нажимать и уберем палец с кнопки, контакты разомкнутся. Такие кнопки еще называют тактовыми.

Кнопки без фиксации обозначение на электрических схемах

Следующий элемент– это электромагнитное реле K1. Принцип работы его заключается в следующем. Когда на катушку подано напряжение, замыкаются его разомкнутые контакты и размыкаются замкнутые контакты.

Электромагнитное реле обозначение на чертежах электрических схем

Все контакты, которые соответствуют реле K1, обозначаются K1.1, K1.2 и т. д. Первая цифра означает принадлежность их соответствующему реле.

Бузер

С ледующий элемент, ранее не знакомый нам, — это бузер. Бузер в какой-то степени можно сравнить с маленьким динамиком. При подаче переменного напряжения на его выводы раздается звук соответствующей частоты. Однако в нашей схеме отсутствует переменное напряжение. Поэтому мы будем применять активный бузер, который имеет встроенный генератор переменного тока.

Бузер обозначение на чертежах электрических схем

Пассивный бузер – для переменного тока.

Активный бузер – для постоянного тока.

Активный бузер имеет полярность, поэтому следует ее придерживаться.

Теперь мы уже можем рассмотреть, как читать электрическую схему в целом.

В исходном состоянии контакты K1.1 находятся в замкнутом положении. Поэтому ток протекает по цепи от GB1 через K1.1, R1, VD1 и возвращается снова к GB1.

При нажатии кнопки SB1 ее контакты замыкаются, и создается путь для протекания тока через катушку K1. Когда реле получило питание ее нормально замкнутые контакты K1.1 размыкаются, а нормально замкнутые контакты K1.2 замыкаются. В результате гаснет светодиод VD1 и раздается звук бузера BA1.

Теперь вернемся к параметрам электромагнитного реле K1. В спецификации или на чертеже обязательно указывается серия применяемого реле, например HLS‑4078‑DC5V. Такое реле рассчитано на номинальное рабочее напряжение 5 В. Однако GB1 = 4,5 В, но реле имеет некоторый допустимы диапазон срабатывания, поэтому оно будет хорошо работать и при напряжении 4,5 В.

Для выбора бузера часто достаточно знать лишь его напряжение, однако иногда нужно знать и ток. Также следует не забывать и о его типе – пассивный или активный.

Диод VD2 серии 1N4148 предназначен для защиты элементов, которые производят размыкание цепи, от перенапряжения. В данном случае можно обойтись и без него, поскольку цепь размыкает кнопка SB1. Но если ее размыкает транзистор или тиристор, то VD2 нужно обязательно устанавливать.

Учимся читать схемы с транзисторами

На данном чертеже мы видим транзистор VT1 и двигатель M1. Для определенности будем применять транзистор типа 2N2222, который работает в режиме электронного ключа.

Как научиться читать электрические схемы быстро

Чтобы транзистор открылся, нужно на его базу подать положительный потенциал относительно эмиттера – для npn типа; для pnp типа нужно подавать отрицательный потенциал относительно эмиттера.

Кнопка SA1 с фиксацией, то есть он сохраняет свое положение после нажатия. Двигатель M1 постоянного тока.

В исходном состоянии цепь разомкнута контактами SA1. При нажатии кнопки SA1 создается несколько путей протеканию тока. Первый путь – «+» GB1 – контакты SA1 – резистор R1 – переход база-эмиттер транзистора VT1 – «-» GB1. Под действием протекающего тока через переход база-эмиттер транзистор открывается и образуется второй путь току – «+»GB1SA1 – катушка реле K1 – коллектор-эмиттер VT1 – «-» GB1.

Получив питание, реле K1 замыкает свои разомкнутые контакты K1.1 в цепи двигателя M1. Таким образом, создается третий путь: «+» GB1SA1K1.1M1 – «-» GB1.

Теперь давайте все подытожим. Для того чтобы научиться читать электрические схемы, на первых порах достаточно лишь четко понимать законы Кирхгофа, Ома, электромагнитной индукции; способы соединения резисторов, конденсаторов; также следует знать назначение всех элементом. Также поначалу следует собирать те устройства, на которые имеются максимально подробные описания назначения отдельных компонентов и узлов.

Электроника для начинающих

Разобраться в общем подходе к разработке электронных устройств по чертежам, с множеством практических и наглядных примеров поможет мой очень полезный для начинающих курс Как читать электрические схемы и создавать электронные устройства. Пройдя данный курс, Вы сразу почувствуете, что перешли от новичка на новый уровень.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *