Катушки индуктивности и дроссели (типы, характеристики, расчет и намотка)
Современное определение катушки индуктивности характеризует ее как элемент электрической цепи (двухполюсник), обеспечивающий заданную в ней индуктивность. Катушки индуктивности применяются в самой разнообразной радиоэлектронной аппаратуре. Их качество и параметры оказывают большое влияние на работу радиоэлектронных устройств. Катушки индуктивности применяются для настройки колебательных контуров на данную частоту (катушки настройки, рис. 1.5), для передачи электрических колебаний из одного контура в другой (катушка связи), для разделения или ограничения электрических сигналов различной частоты (дроссели) и т.д. В детекторных, ультра- и коротковолновых радиоприемниках довольно часто используют для настройки на радиостанции вариометры. Вариометр представляет собой устройство плавного механического изменения индуктивности катушки. В катушке, состоящей из двух соединенных последовательно катушек, изменение индуктивности производится изменением их положения относительно друг друга. Если катушка имеет магнитный сердечник, то ее индуктивность изменяется его перемещением. Известны различные конструкции вариометров. В наиболее известной конструкции вариометра одна катушка вращается внутри другой.
Рис. 1.5. Конструкции контурных катушек индуктивности, выполненные на ферритовых стержнях: а — СВ и ДВ; 6 — КВ
Дроссель от немецкого слова — «сокращать» является разновидностью катушки индуктивности. Свойства такой катушки зависят от того, какой частоты электрический ток нужно «сокращать» или «задерживать». Дроссель включают в электрическую цепь для подавления переменной составляющей тока в цепи, либо для разделения или ограничения сигналов различных частот. В зависимости от назначения дроссели делятся на высокочастотные и низкочастотные. Это различие относится и к конструктивному их исполнению. Дроссели высокой частоты изготовляют в виде однослойных или многослойных катушек без сердечников или с сердечниками. Для дросселей длинных и средних волн применяют секционную намотку. Дроссели на коротких и метровых волнах имеют однослойную намотку, сплошную или с принудительным шагом.
Для уменьшения габаритов дросселей применяют магнитные сердечники. Дроссели высокой частоты с сердечниками из магнитодиэ-лектриков и ферритов имеют меньшую собственную емкость и могут работать в более широком диапазоне частот. Низкочастотный дроссель подобен электрическому трансформатору с одной обмоткой.
Катушка индуктивности характеризуется номинальным значением индуктивности. Основной единицей в системе СИ является генри (Гн). На практике пользуются производными от генри единицами — миллигенри (мГн), микрогенри (мкГн) и наногенри (нГн), которые связаны с основной единицей следующим образом:
В литературе прошлых лет встречается единица измерения индуктивности — сантиметр:
1см = 10^-9 Гн = 10^-6 мГн = 10^-3 мкГн.
Сердечники катушек индуктивности
Для уменьшения потерь в сердечниках катушек используются маг-нитодиэлектрики — материалы, у которых частицы размельченного фер-ритового вещества разделены между собой диэлектриком. К числу таких материалов относятся известные альсифер и карбонильное железо. В последнее время в качестве материала для сердечников широко применяют ферриты: никель-цинковые, марганец-никелевые, литий-цинко-вые. Условное обозначение ферритов: НН — никель-цинковые низкочастотные ферриты, НМ — марганец-цинковые, ВТ — ферриты с прямоугольной петлей гистерезиса. Цифры, стоящие перед буквенными обозначениями, указывают среднее значение начальной магнитной проницаемости материала сердечника. Достоинства ферритов — стабильность магнитных характеристик в широком диапазоне частот, малые потери на вихревые токи и простота изготовления ферритовых деталей. Ферриты почти не поддаются механической обработке, они обрабатываются только абразивами, такими как, например, корунд. Изделия из ферритов нельзя обрабатывать на станках, так как это может привести к утрате магнитных свойств — резкому увеличению потерь, снижению проницаемости. Благодаря высокому удельному сопротивлению, катушки с сердечниками из ферритов могут иметь очень большую добротность, на низких частотах свыше 500, а на частотах 500. 1000 кГц — 300.
Основной характеристикой магнитного материала сердечника является магнитная проницаемость. На практике она оценивается относительной величиной (по отношению к магнитной проницаемости вакуума) и является безразмерной. Магнитную проницаемость ферритов можно считать постоянной лишь при первом, грубом приближении.
Если к температурной стабильности начальной магнитной проницаемости ферритов не предъявляются повышенные требования, то применяют марганец-цинковые ферриты марок 6000НМ, 4000НМ, 3000НМ, 2000НМ, 1500НМ и 1000НМ. Эти ферриты используются в диапазоне частот до нескольких сотен килогерц как в слабых, так и в сильных полях. Ферриты марок 2000НМ1, 1500НМ1, 1500НМ2, 1500НМЗ, 1000НМЗ и 700НМ предназначены для частот до 3 МГц в слабых и средних полях. Им свойственны малые потери и малый температурный коэффициент начальной магнитной проницаемости в широком интервале температур. Для магнитных антенн приемников выпускаются фер-ритовые стержни марок 700НМ (до 3 МГц), 150ВЧ (до 12 МГц), 100ВЧ (до 18 МГц), 50ВЧ2 (до 30 МГц) и 30ВЧ2 (до 100 МГц). Стержни изготовляются круглого и прямоугольного сечения. Ферритовые детали можно склеивать полистироловым, эпоксидным и другими клеями.
Стабильность катушек индуктивности с сердечниками из никель-цинковых ферритов с начальной магнитной проницаемостью 10. 50 (ферриты марок ВЧ) составляет 1 год, при этом индуктивность изменяется не более ±5%, а катушки с сердечниками из того же материала, но марок НН — до ±2%. Индуктивность катушек с сердечниками из марга-нец-цинковых ферритов (марки НМ) за год изменяется до 5% и является менее стабильной, чем предыдущие. Катушки на альсиферовых кольцах изменяют свою индуктивность в течении года не более чем на ±1%.
Конструкция каркасов катушек индуктивности
Конструкции катушек индуктивности очень разнообразны. Основными конструктивными элементами катушек являются каркас, обмотка, а вспомогательными — сердечник, экран и т.д. Намотка катушек производится проводом на специальных каркасах, которые придают обмотке механическую прочность. По форме каркасы бывают трубчатые (с фланцами и без них), шпули, ребристые, плоские, тороидальные и другие. Каркасы в зависимости от рабочего диапазона частот и назначения изготавливаются из различных материалов: кабельной бумаги, электрокартона, текстолита, гетинакоа, пресспорошка, керамики, слюды, полистирола, органического стекла, эскапона и других. Выбор материала для каркаса зависит от предъявляемых к нему требований по электрической прочности, допустимой величины диэлектрических потерь, термостойкости, влагостойкости и т. д. Наибольшую стабильность имеют катушки на керамических каркасах, а наименьшую — многослойные катушки, намотанные на каркасах из гетинакса и пресспорошка. Иногда катушки УКВ и КВ диапазонов делают бескаркасными. При их изготовлении, например, для контуров маломощных коротковолновых передатчиков, витки для жесткости скрепляют планками из органического стекла толщиной З. 4мм. Концы обмоток катушек на каркасе закрепляют нитками или вплавляют паяльником в каркас, если он сделан из полистирола или органического стекла. Иногда плоские каркасы после намотки провода сгибают в кольцо.
Намотка катушек индуктивности
Обмотки катушек могут быть однослойными или многослойными (рис. 1.6). Обмотка характеризуется количеством витков, шагом намотки t и рядом. Под витком катушки понимают отрезок провода, охватывающий всю окружность каркаса. Шаг — расстояние между соседними витками.
Рис. 1.6. Конструкции катушек индуктивности с различным типом намотки: а — с шагом t, б — виток к витку, в — тип «универсаль»
Ряд — количество витков провода, которое укладывается на всю ширину обмотки. Наиболее простые по конструкции однослойные рядовые обмотки катушек. Они имеют малую величину собственной емкости и высокую добротность. Однако получающиеся при изготовлении большие габариты ограничивают их применение. Чаще всего применяют многослойные обмотки: рядовая многослойная, секционированная индукционная и безиндукционная, галетная, универсальная и тороидальная. Укладка многослойной секционированной индукционной обмотки производится на каркасы-шпули с промежуточными щеками. Количество секций может быть любым, а число рядов в секциях должно быть четным. Секционирование индукционной обмотки используется для высоковольтных и высокочастотных трансформаторов, дросселей высокой частоты. Для получения катушек индуктивности малых размеров и с малой собственной емкостью при большой величине индуктивности пользуются способом универсальной намотки. В этом случае провод укладывается под углом к плоскости вращения и перегибается на торцах. Наибольший угол укладки можно получить при намотке катушки проводом в шелковой изоляции.
Условные обозначения марок ферритов и магнитодиэлектриков
Условное обозначение ферритового стержня состоит из четырех элементов:
1. Буква М указывает, что изделие сделано из феррита.
2. Цифра — начальное значение магнитной проницаемости.
3. Буквы и несколько цифр — марка феррита (В — феррит для работы на частотах выше 5 МГц, Н — для работы на низких частотах).
4. Сокращенное обозначение конструктивного вида сердечника и его размеров в миллиметрах.
В дополнение к названным буквам третьего элемента иногда добавляется еще одна буква с указанием характеристики магнитного поля, в котором может работать этот феррит: С ^ феррит для работы в сильных магнитных полях, И — специальный феррит для работы в импульсных магнитных полях, если этой буквы нет, то феррит предназначен для работы в слабых магнитных полях. После четвертого элемента иногда может стоять цифра, характеризующая различие свойств феррита. После указанных элементов следует черта, которая выделяет наименование изделия изготовленного из феррита (обозначается буквой) и его конструктивные размеры (обозначаются цифрами):
- Б — броневой сердечник, состоящий из двух чашек с цилиндрическим подстроечным стержнем (число после буквы указывает внешний диаметр чашки);
- Г -Г-образный для телеаппаратуры, числа последовательно соответствуют длине, ширине и толщине изделия;
- К — кольцевой сердечник, числа соответствуют внешнему диаметру, внутреннему диаметру и высоте кольца;
- ОС — кольцевой сердечник для отклоняющей системы кинескопа, числа обозначают типоразмер сердечника;
- ПК — П-образный, круглого сечения сердечник для трансформатора строчной развертки, числа указывают расстояние между диаметрами и их диаметр;
- ПП — П-образный, прямоугольного сечения сердечник, числа указывают расстояние между стержнями, ширину стержня, высоту стержня (только для ТВС кинескопа с отклонением луча 70е первое число 53 указывает ширину сердечника);
- СС — для цилиндрических стержней не более 3,5 мм, числа указывают диаметр и длину сердечника (цилиндрические стержни диаметром 8 мм и 10 мм в обозначении не содержат букв СС, в стержнях прямоугольного сечения числа указывают ширину, толщину и длину сердечника);
- Ш — Ш-образный сердечник, числа обозначают ширину и толщину среднего выступа;
- 3 — замкнутый
- О-образный сердечник, числа обозначают высоту изделия, высоту окна, ширину изделия и ширину окна.
М100НН-2-СС 2,8×12: М — феррит; 100 —100; Н — низкочастотный; Н — никель-цинковый; 2 — различные свойства; СС — стержень; 2,8 мм — диаметр; 12 мм — длина.
М700НМ-Б9: М — феррит; 700 — ц = 700; Н — низкочастотный; М — марганец-цинковый; Б — броневой; 9 мм — диаметр.
Литература: В.М. Пестриков. Энциклопедия радиолюбителя.
Электрический дроссель — принцип работы и примеры использования
Катушку индуктивности, используемую для подавления помех, для сглаживания пульсаций тока, для накопления энергии в магнитном поле катушки или сердечника, для развязки частей схемы друг от друга по высокой частоте — называют дросселем или реактором (от нем. drosseln — ограничивать, глушить).
Таким образом, главное назначение дросселя в электрической схеме — задержать на себе ток определенного частотного диапазона или накапливать энергию за определенный период времени в магнитном поле.
Физически ток в катушке не может измениться мгновенно, на это требуется конечное время, — данное положение прямо следует из Правила Ленца.
Если бы ток через катушку мог изменяться мгновенно, то на катушке при этом возникало бы бесконечное напряжение. Самоиндукция катушки при изменении тока сама формирует напряжение — ЭДС самоиндукции. Таким образом, дроссель задерживает ток.
Если необходимо подавить переменный компонент тока в цепи (а помехи или пульсации — это как раз пример переменной составляющей), то в такую цепь устанавливают дроссель — катушку индуктивности, обладающую для тока частоты помех значительным индуктивным сопротивлением. Пульсации в сети существенно снизятся, если на пути установлен дроссель. Таким же образом можно развязать или изолировать друг от друга сигналы различной частоты, действующие в цепи.
В радиотехнике, в электротехнике, в СВЧ-технике, — используются высокочастотные токи от единиц герц до гигагерц. Низкие частоты в пределах 20 кГц относятся к звуковым частотам, затем следует ультразвуковой диапазон — до 100 кГц, наконец диапазон ВЧ и СВЧ — выше 100 кГц, единицы, десятки и сотни МГц.
Итак, дроссель — катушка самоиндукции, применяемая в качестве большого индуктивного сопротивления для тех или иных переменных токов.
В том случае, если дроссель должен представлять большое индуктивное сопротивление токам низкой частоты, он должен обладать большой индуктивностью, и в этом случае он делается со стальным сердечником. Дроссель высокой частоты (представляющий большое сопротивление токам высокой частоты) делается обычно без сердечника.
Низкочастотный дроссель похож с виду на железный трансформатор, с тем лишь отличием, что обмотка на нем всего одна. Катушка навита на сердечник из трансформаторной стали, пластины которого изолированы между собой дабы снизить вихревые токи.
Такая катушка обладает высокой индуктивностью (более 1 Гн), она оказывает значительное противодействие любому изменению тока в электрической цепи, где она установлена: если ток резко стал убывать — катушка его поддерживает, если ток начал резко возрастать — катушка станет его ограничивать, не даст резко нарасти.
Одна из широчайших сфер применения дросселей — это высокочастотные схемы . Многослойные или однослойные катушки навиваются на ферритовые или стальные сердечники, либо используются совсем без ферромагнитных сердечников — просто пластмассовый каркас или только проволока. Если схема работает на волнах среднего и длинного диапазона, то возможно часто встретить секционную намотку.
Дроссель с ферромагнитным сердечником имеет меньшие габариты, чем дроссель без сердечника той же индуктивности. Для работы на высоких частотах используют сердечники ферритовые или из магнитодиэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели способны работать в довольно широком диапазоне частот.
Как вы уже поняли, основной параметр дросселя — индуктивность, как и у любой катушки . Единица измерения данного параметра — генри, а обозначение — Гн. Следующий параметр — электрическое сопротивление (на постоянном токе), оно измеряется в омах (Ом).
Затем идут такие характеристики, как допустимое напряжение, номинальный подмагничивающий ток, и конечно добротность, — крайне важный параметр, особенно для колебательных контуров. Различные типы дросселей находят сегодня самое широкое применение для решения самых разнообразных инженерных задач.
Безвитковые дроссели предназначены для подавления высокочастотных помех в электрических цепях. Обычно они представляют собой ферритовый сердечник, выполненный в виде полого цилиндра (или кольца круглого сечения), через который проходит проводник.
Реактивное сопротивление такого дросселя на низких частотах (в том числе на промышленной частоте) мало, а на высоких частотах (0,1 МГц…2,5 ГГц) велико. Таким образом, если в кабеле возникает высокочастотная помеха, то такой дроссель ее подавляет с вносимым затуханием 10…15 дБ. Для создания магнитопроводов безвитковых дросселей применяют марганец-цинковые и никель-цинковые ферриты.
Дроссели переменного тока широко используются в качестве реактивных (индуктивных) сопротивлений, элементов LR- и LC-контуров, а также в выходных фильтрах преобразователей переменного тока. Такие дроссели изготавливают с индуктивностью от десятых долей микрогенри до сотен генри на токи от ~1 мА до 10 А. Они имеют одну обмотку, расположенную на магнитопроводе из ферро- или ферримагнитного материала.
При проектировании дросселя переменного тока необходимо учитывать его следующие основные номинальные параметры: требуемую мощность (наиболее допустимое значение тока), частоту тока, добротность и массу.
Повысить добротность можно различными методами. С точками зрения изготовления магнитопроводов необходимо учитывать, что повысить добротность можно за счет:
- выбора магнитного материала с высокой магнитной проницаемостью и малыми потерями;
- увеличения площади поперечного сечения магнитопровода;
- введения немагнитного зазора.
Сглаживающие дроссели – элементы преобразователей, предназначенные для уменьшения переменной составляющей напряжения или тока на входе или выходе преобразователя. Такие дроссели имеют одну обмотку, в токе которой (в отличие от дросселей переменного тока) присутствуют как переменная, так и постоянная составляющие. Обмотка дросселя включается последовательно с нагрузкой.
Дроссель должен иметь большую индуктивность (индуктивное сопротивление). На его обмотке происходит падение переменной составляющей напряжения, в то время как постоянная составляющая (за счет малого активного сопротивления обмотки) выделятся на нагрузке.
Составляющие тока создают в магнитопроводе дросселя постоянный магнитный поток (который играет роль подмагничивающего) и переменный поток, изменяющийся по синусоидальному закону. За счет постоянной составляющей тока магнитный поток (индукция) в магнитопроводе изменяется в соответствии с начальной кривой намагничивания, в то время как за счет переменной составляющей перемагничивание осуществляется по частным циклам при соответствующих значениях тока.
При увеличении тока переменная составляющая магнитного потока уменьшается (при постоянстве переменной составляющей тока), что приводит к уменьшению дифференциальной магнитной проницаемости и, следовательно, к уменьшению индуктивности дросселя. Физически уменьшение индуктивности с увеличением подмагничивающего тока связано с тем, что по мере увеличения этого тока магнитопровод дросселя все более и более насыщается.
Дроссели насыщения используются в качестве регулируемых индуктивных сопротивлений в цепях переменного тока. Такие дроссели имеют не менее двух обмоток, одна из которых (рабочая) включается в цепь переменного тока, а другая (управляющая) – в цепь постоянного тока. В принципе работы дросселей насыщения лежит использование нелинейности кривой В(Н) магнитопроводов при их намагничивании управляющим и рабочим токами.
Магнитопроводы таких дросселей не имеют немагнитного зазора. Основными особенностями дросселей насыщения (по сравнению со сглаживающими дросселями) являются значительно большее значение переменной составляющей магнитного потока в магнитопроводе и синусоидальный характер ее изменения.
Развитие радиоэлектронной аппаратуры предъявляет к дросселям различные требования, в частности требует уменьшения габаритов и снижения уровня электромагнитных помех в условиях высокой плотности монтажа компонентов. Для решения этой задачи были разработаны многослойные ферритовые чип-фильтры на основе поверхностного монтажа на печатной плате.
Такие устройства получают по тонкопленочной технологии. На подложку наносятся тонкие слои феррита (например, тайваньская компания «Chilisin Electronics» использует Ni–Zn-феррит), между которыми формируется структура полувитка катушки.
После нанесения слоев, количество которых может достигать нескольких сотен, производится спекание, при котором формируется объемная катушка с ферритовым магнитопроводом. Благодаря такой конструкции минимизируются поля рассеяния и соответственно практически исключается взаимное влияние элементов друг на друга, так как силовые линии в основном замыкаются внутри магнитопровода.
Многослойные ферритовые чип-фильтры: а – технология изготовления; б – внешний вид, соотнесенный со шкалой с шагом 1 мм
Многослойные ферритовые чип-фильтры используются для фильтрации высокочастотных помех в силовых и сигнальных цепях бытовой электроники, источников питания и др. Основными производителями чип-фильтров являются компании «Chilisin Electronics», «TDK Corporation» (Япония), «Murata Manufacturing Co., Ltd» (Япония), «Vishay Intertechnology» (США) и др.
Дроссели с магнитопроводом, изготовленным из магнитодиэлектрика на основе карбонильного железа применяются в радиоаппаратуре, работающей в диапазоне 0,5…100,0 МГц.
В дросселях могут использоваться магнитопроводы, изготовленные из всех известных магнитомягких материалов: электротехнических сталей, ферритов, магнитодиэлектриков, а также прецизионных, аморфных и нанокристаллических сплавов.
В отличие от дросселей в трансформаторах, магнитных усилителях и других подобных устройствах магнитопровод служит для концентрации магнитного потока при минимизации магнитных потерь. В этом случае основная функция, которую выполняет магнитопровод, практически исключает его изготовление из магнитодиэлектрика, который обладает малой относительной магнитной проницаемостью.
Широкая номенклатура ферритов различных марок, предназначенных для работы в аналогичных с магнитодиэлектриками диапазонах частот, сужает область применения магнитодиэлектриков для изготовления магнитопроводов электромагнитных устройств.
Итак, по назначению электрические дроссели подразделяются на:
Дроссели переменного тока, работающие во вторичных импульсных источниках питания. Катушка накапливает энергию первичного источника питания в своем магнитном поле, затем отдает ее в нагрузку. Обратноходовые преобразователи, бустеры — в них используются дроссели, причем иногда с несколькими обмотками, как у трансформаторов. Аналогичным образом работает магнитный балласт люминесцентной лампы, служащий для ее розжига и поддержания номинального тока.
Дроссели для пуска двигателей — ограничители пусковых и тормозных токов. Это эффективнее, чем рассеивать мощность в форме тепла на резисторах. Для электроприводов мощностью до 30 кВт такой дроссель по внешнему виду напоминает трехфазный трансформатор (в трехфазных цепях используются трехфазные дроссели).
Дроссели насыщения, применяемые в стабилизаторах напряжения, и феррорезонансных преобразователях (трансформатор частично превращается в дроссель), а также в магнитных усилителях, где сердечник подмагничивается с целью изменения индуктивного сопротивления цепи.
Сглаживающие дроссели, применяемые в фильтрах для устранения пульсаций выпрямленного тока. Источники питания со сглаживающими дросселями были очень популярны в период расцвета ламповых усилителей из-за отсутствия конденсаторов с очень большой емкостью. Для сглаживания пульсаций после выпрямителя должны были использоваться именно дроссели.
В то время в цепях питания вакуумных дуговых ламп применялись дроссельные усилители — это были специальные усилители, в котором анодными нагрузкамиламп служили дроссели.
Выделяющееся на дросселе Др усиленное переменное напряжение подавалось на сетку следующей лампы через разделительный конденсатор С. Вследствие того, что индуктивное сопротивление дросселя растет с частотой, дроссельный усилитель не мог давать сколько-нибудь равномерного усиления в широкой полосе частот и применялся только в тех случаях, когда нужно усиливать сравнительно узкую полосу частот и большой равномерности усиления в этой полосе не требовалось.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Микро-ликбез по электронике. Часть 2.
Микро-ликбез по электронике. Часть 2.
Часть1
Обсуждение в конференции
Дроссели, катушки индуктивности.
Дроссель (катушка индуктивности), как и конденсатор, способен накапливать энергию, правда в отличие от конденсатора, который может её хранить почти не ограничено долго, катушка индуктивности на это не способна, она отдаёт энергию срезу же после снятия питающего напряжения. Только ведут себя они с точностью до наоборот. Основная характеристика дросселя – индуктивность, измеряется в Генри (Гн).
Если на дроссель подать какое-то напряжение (замкнули KL1 на рис 6 a) .
28 июня 2004, понедельник 17:18
Alexx [ ] для раздела Блоги
реклама
Микро-ликбез по электронике. Часть 2.
Часть1
Обсуждение в конференции
Дроссели, катушки индуктивности.
Дроссель (катушка индуктивности), как и конденсатор, способен накапливать энергию, правда в отличие от конденсатора, который может её хранить почти не ограничено долго, катушка индуктивности на это не способна, она отдаёт энергию срезу же после снятия питающего напряжения. Только ведут себя они с точностью до наоборот. Основная характеристика дросселя – индуктивность, измеряется в Генри (Гн).
Если на дроссель подать какое-то напряжение (замкнули KL1 на рис 6 a) ), то в точке Т1 появится ток, он будет быстро нарастать (скорость возрастания тока обратно пропорциональна индуктивности дросселя).
См. рис. 6. b)
Рис . 6.
Таким образом, если через конденсатор течёт ток только при изменяющемся напряжении, то через дроссель потечёт ток только при постоянном (или медленно меняющемся) напряжении. При быстром изменении напряжения – ток не течёт. У дросселя есть ещё одно интересное свойство – дроссель умеет практически мгновенно отдавать энергию (как и конденсатор), но в отличие от конденсатора, если с дросселя убрать питающее напряжение (разомкнуть KL1, дроссель сразу попытается отдать всю накопленную энергию (в точке Т2 будет большой кратковременный, отрицательный импульс напряжения (рис 6 с) ). В идеале, это будет бесконечно большой импульс.
Рассмотрим схему (Рис 7 b)).
Рис 7.
На входе (Vin) форма напряжения представлена на рис7 а) чёрным графиком. Vout — красный. Видно, что дроссель почти не пропускает переменную составляющую, но пропускает постоянную. Для ещё лучшей фильтрации (удаления переменной составляющей) обычно после дросселя ставят дополнительно между Vout и 0 конденсатор, который дополнительно фильтрует переменную составляющую.
Если подключить параллельно конденсатор и дроссель, получим колебательный контур.
Например, если соединить параллельно катушку и конденсатор и между ними поставить ключ (размкнут), потом зарядить конденсатор, затем замкнуть ключ — энергия запасённая в конденсаторе будет передаваться катушке (ток через катушку будет расти, напряжение на конденсаторе будет падать (за счёт уменьшения в нем энергии), потом катушка начнёт отдавать конденсатору накопленную ей энергию, при этом конденсатор начнёт заряжаться отрицательным (обратным) напряжением (уже за счёт энергии катушки) и т.д.)
При отсутствии потерь энергии, в контуре будут наблюдатся незатухающие колебания с собственной частотой w0= 1 / кв. корень( L * C). В реальности, всегда существуют потери энергии, в следствие чего будут существовать только затухающие периодические колебания с несколько меньшей частотой частотой w=кв. корень(w0^2-b^2), где b(бетта) — коэффициент затухания, т.е. всегда w0>w. Затухать они будут из-за потерь энергии в самом контуре.
Трансформатор.
Если на одном сердечнике намотать несколько независимых обмоток, то получится трансформатор. Каждая по отдельности обмотка будет вести себя как дроссель (катушка индуктивности), но между обмотками будет существовать связь. Если к выводам одной (первой) обмотки приложить напряжение, то и на всех остальных обмотках тоже появится разность напряжений, причём величина этой разности будет во столько раз больше чем на первой обмотке, во сколько раз в это обмотке больше витков, чем в первой.
Иногда играет роль направление обмотки. От него зависит полярность выходного напряжения (точнее фаза). На схемах, начало обмотки обозначается точкой. Иногда обмотки трансформатора включают последовательно, при этом, в зависимости от направления обмоток, общее напряжение складывается (если обмотки в одну сторону) и вычитается (если намотаны в противоположные).
Трансформатор можно применять как для изменения величины напряжения (изменяя соотношение количества витков), так и для гальванической развязки (обмотки электрически не связаны между собой, между ними существует только магнитная связь, т.е. только разность напряжений на одной обмотке зависит от разности напряжений на другой.) Важным свойством трансформатора является то, что мощность прилагаемая к одной обмотке, будет равна мощности на другой обмотке. Т.е. P1=P2 = U1 * I1=U2 * I2. Таким образом, если на второй обмотке напряжение меньше, то ток будет больше. На трансформатор можно подавать только переменное напряжение, т.к. на его его обмотках, как и любой катушке индуктивности, не может быть постоянного напряжения (иначе ток бы неприлично вырос).
Трансформатор в каком-то приближении можно представить в виде рычага, где одно плечо, это одна обмотка, второе плечо – вторая обмотка. Нередко встречаются трансформаторы с более чем двумя обмотками.
Диоды, диоды Шоттки, стабилитроны.
Диод, это прибор, ток через который не линейно зависит от приложенного напряжения.
Рассмотрим вольтамперную характеристику (ВАХ) диода (зависимость тока от напряжения), включенного в прямом направлении (рис 8 a)).
Рис. 8.
При увеличении напряжения от 0 до u1, ток совсем небольшой, но при увеличении напряжения до u2 и u3 ток значительно возрастает (пропорционально квадрату напряжения). При достаточно больших токах, диод можно рассматривать как проводник, т.к. падение напряжения на диоде, даже при большом токе будет небольшим. В диодах Шоттки ток ещё быстрее растёт, следовательно падение напряжение на диодах Шоттки ещё меньше, это позволяет использовать их в устройствах с большими токами.
Затем подадим на диод отрицательное напряжение (Рис8 b)). Вплоть до напряжения u1 ток через диод будет практически отсутствовать. Но при отрицательном напряжении ниже u1, наступает пробой диода, при этом ток быстро увеличивается. Этот эффект используют диоды Зенера (в простонародье – стабилитроны (рис8 с)). Т.е. если в обратно включённом диоде Зенера увеличить напряжение >u2, то ток будет быстро расти. Таким образом, даже при небольшом изменении напряжения (u1 – u2) ток будет меняться значительно. Если последовательно включить резистор и стабилитрон (рис 8 с)), и на Vin подать напряжение (больше u4), через стабилитрон потечёт ток, что вызовет падение напряжения на резисторе, и чем больше напряжение на Vin, тем больший будет ток и большее падение. В итоге, независимо от напряжения на резисторе, напряжение на диоде почти не изменится (на Vout будет меняться в диапазоне u2 – u4).
Таким образом, диод – это устройство, через которое ток в прямом направлении значительно больше тока в обратном направлении.
Биполярный транзистор.
Биполярный транзистор – это прибор, способный усиливать ток.
В каком-то приближении транзистор можно рассматривать как 2 последовательно включённых диода (база-эмиттер и база-коллектор) и возможностью включения связи (канала) эмиттер-коллектор (нарисован красным цветом).
Рассмотрим работу биполярного n-p-n транзистора (рис 9).
Рис 9.
Подключим эмиттер на землю (0В), коллектор — к источнику положительно питания +12В.
В таком подключении условный диод d2 получается включён в обратном направлении, ток через него не течёт, следовательно через d1 ток тоже не течёт. При этом транзистор закрыт (закрыт канал эмиттер-коллектор) и через него не течёт ток. Для того чтобы открыть канал эмиттер-коллектор, нужно чтобы через d1 потёк ток. При этом, ток через канал будет прямо пропорционален току базы (току через d1), но в k раз больше. k – это коэффициент усиления транзистора (обычно от 50 до 300), т.е. даже небольшой ток в базе может вызвать большой ток (более чем в сто раз больший) в канале эмиттер-коллектор, главное чтобы источник энергии этот ток вы держал (ну и транзистор мог). Ток через d1 (он же ток базы) подчиняется тем же законам, что и обычный диод (см. рис. 8a). Если на базе линейно изменять напряжение, то ток будет изменяться нелинейно (рис. 8a), следовательно ток через канал эмиттер-база тоже будет нелинейно меняться. Т.е. транзистор усиливает не напряжение, а ток.
Отличие p-n-p транзистора от рассматриваемого – это обратное включение d1 и d2, как следствие – нужно подавать отрицательное напряжение питания на коллектор. На схеме стрелочка в эмиттере направлена в обратную сторону.
Полевые транзисторы, MOSFETы.
Отличие полевых транзисторов от биполярных – канал управляется не током, а напряжением. Его можно представить как резистор переменного сопротивления, сопротивление которого зависит от напряжения на затворе. Существует огромное множество разновидностей полевых транзисторов.
Рис 10.
Рассмотрим работу полевого транзистора (рис 10 а)). Сопротивление канала сток – исток (нарисован красным, он же R1) задаётся напряжением между затвором и истоком. Причём, ток через затвор практически равен нулю. Таким образом, можно даже при помощи очень малых токов, менять сопротивление, что может вызвать управление очень большими токами.
Там где требуются большие токи, применяют мощные полевые транзисторы (MOSFETы).
На рис 10 b) изображён N-канальный MOSFET.
В нём так же, сопротивление сток-исток зависит от напряжения между затвором и истоком. Если это напряжение мало, то сопротивление канала (R1) очень велико, ток через него не течёт. Но стоит увеличить управляющее напряжение (напряжение затвор- исток), как сопротивление R1 значительно падает, при этом может течь значительный ток.
Конструктивно эти транзисторы выполнены со встроенным диодом (d1), включённом в обратном направлении. Отличие P-канального от рассмотренного выше – диод d1 включён в противоположном направлении, схематически рисуют стрелку в обратную сторону.
В чем разница между дросселем и катушкой индуктивности?
В чем разница между дросселем и катушкой индуктивности?
Дроссель Дроссель, это та же катушка индуктивности, которая обладает большим сопротивлением переменному и малым сопротивлением постоянному току. . Обозначение дросселей на принципиальных схемах производится аналогично катушкам индуктивности и выглядит в виде четырех полуокружностей соединенных между собой.
Чем меньше витков в катушке тем магнитное поле?
Пояснение: чем больше количество витков, тем больше будет магнитодвижущая сила для заданной величины тока. . Пояснение: Чем больше длина катушки, тем большее сопротивление она оказывает формированию магнитного потока для заданной величины магнитодвижущей силы.
Что такое катушка с током?
В катушке может быть несколько десятков, сотен или даже тысяч витков. Соленоид (от греч. solen — «канал», «труба» и eidos — «подобный») — разновидность катушки с током. Обычно под термином «соленоид» подразумевается цилиндрическая обмотка из провода, причём длина такой обмотки многократно превышает её диаметр.
Почему на постоянном токе индуктивное сопротивление равно нулю?
Чем выше частота переменного тока, тем большую роль играет индуктивность и тем больше будет индуктивное сопротивление данной катушки. Наоборот, чем ниже частота тока, тем индуктивное сопротивление катушки меньше. При частоте, равной нулю (установившийся постоянный ток), индуктивное сопротивление тоже равно нулю.
Что делает соленоид?
Применение Соленоиды постоянного тока чаще всего применяются как поступательный силовой электропривод. В отличие от обычных электромагнитов обеспечивает большой ход. Силовая характеристика зависит от строения магнитной системы (сердечника и корпуса) и может быть близка к линейной.
Как работает соленоид?
Соленоид здесь — обмотка втягивающего реле стартера. Втягивающее реле установлено на корпусе стартера, и при подаче питания к обмотке реле происходит втягивание железного сердечника, соединенного с механизмом, выдвигающим шестерню вперед.
Что называется соленоидом и каково его магнитное поле?
Соленоидом называется цилиндрическая катушка, состоящая из большого числа витков провода, образующих винтовую линию (рис. Магнитное поле соленоида напоминает поле полосового магнита (рис. . 6.
Стоит почитать
- В чем проявляется несовместимость партнеров?
- Какие буквы всегда твердые и мягкие?
- Когда можно выйти по удо?
- Как узнать терморезистор?
- Для чего нужен адрес электронной почты?
- Где расположена зона тайга?
- Где пройдут зимние Олимпийские игры 2022 года?
- Что такое лишайники по биологии?
- Можно ли полностью вылечить рефлюкс эзофагит?
- Какая черта характерна для критического мышления?
Похожие вопросы
- Что такое Асцитическая жидкость?
- Как правильно подписывать конверт с письмом?
- Как сделать Факториал?
- Что такое фонетика и что она изучает?
- Где похоронен Пушкин почему именно там?
- Какие есть профзаболевания?
- Как узнать свой код Ифнс?
- Как переименовать столбец в таблице SQL?
- Как загрузить файл на Яндекс Диск с телефона?
- Какой срок предусмотрен для рассмотрения административного дела?