Из чего состоит элемент пельтье
Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока.
В основе работы элементов Пельтье лежит контакт двух токопроводящих материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.
Обычно элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре, которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.
Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 К.
Достоинством элемента Пельтье является небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования. Также достоинством являются отсутствие механических частей и отсутствие шума.
Недостатком элемента Пельтье является низкий коэффициент полезного действия (50-60%), что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, элементы Пельтье нашли широкое применение, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.
Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур. Например, элементы Пельтье применяются в ПЦР-амплификаторах, маленьких автомобильных холодильниках, так как применение компрессора в этом случае невозможно из-за ограниченных размеров, и, кроме того, необходимая мощность охлаждения невелика. Также элементы Пельтье находят применение в инкубаторах, климатических камерах и водяных банях.
По материалам Wikipedia
Россия, 115280 , Москва , ул. Ленинская Слобода, д. 26, стр. 28, оф. 211 , тел.: (495) 675-07-05, (495) 675-26-67, e-mail: info@nikolab.ru
Информация, размещённая на сайте, носит ознакомительный характер и не является публичной офертой, определяемой статьей 437(2) Гражданского кодекса Российской Федерации.
Что такое элемент Пельтье
В 1834 году французский физик Жан Шарль Пельтье в ходе своих исследований электричества открыл явление термоэлектрического эффекта. Сфера его использования ограничивалась несколькими небольшими приложениями вплоть до настоящего времени, когда подобный принцип начинает использоваться все чаще.
Пельтье и схема его экспериментальной установки
Суть эффекта Пельтье
В ходе своих исследований Пельтье заметил, что при пропускании электрического тока через цепь, состоящую из различных материалов, но при одинаковой температуре спаев, возникает эффект, обратный эффекту Зеебека (термоэлектрическому эффекту). При этом тепло поглощается на одном переходе и выделяется на другом. Охлаждающаяся часть обычно имеет температуру около 10 градусов, в то время как поглощающий тепло участок может быстро нагреться до 80 градусов.
Еще более интересным является тот факт, что при изменении полярности источника питания порядок действия меняется на противоположный, то есть, поверхность раньше охлаждавшаяся начинает нагреваться, а поверхность, раньше вырабатывавшая тепло, начинает вырабатывать холод.
Структурная схема элемента
Выработанное тепло Qп (положительное или отрицательное, т. е., холод), согласно экспериментальным данным, пропорционально току через цепь I, времени пропускания тока t и характеризующего контактирующие материалы и их температуру коэффициента Пельтье. Чтобы вычислить это тепло, можно воспользоваться формулой:
Определение выработанного тепла
Что такое элемент Пельтье
Термоэлектрические элементы, принцип работы которых основывается на эффекте Пельтье, состоят из двух полупроводниковых материалов с проводимостью n-типа и p-типа. Вместе их соединяет медная пластина. Если подключить положительную полярность источника питания к материалу с n-проводимостью а отрицательную — к материалу с p-проводимостью, то верхняя часть медной пластины начнет охлаждаться, а нижняя нагреваться.
Если полярность питания, поступающего на элемент или ячейку Пельтье, поменять на обратную, то есть, отрицательную полярность подать на материал n-проводимости, а положительную на материал p-проводимости, функции нагрева/охлаждения меняются местами: верхняя часть нагревается, а нижняя охлаждается.
Элементы Пельтье объединяются в модули с целью увеличения мощности нагрева или охлаждения устройства. Их КПД обычно составляет 30–50%.
Модуль Пельтье
Характеристики элементов Пельтье
На современном рынке представлено много разновидностей элементов Пельтье, но все они имеют такие характеристики, как:
- холодопроизводительность;
- максимальная разность температур между сторонами;
- рабочий ток, обеспечивающий необходимую разность температур;
- напряжение, при котором через устройство протекает рабочий ток;
- омическое сопротивление устройства;
- коэффициент эффективности или КПД (отношение мощности, необходимой для охлаждения к потребляемой электрической мощности).
Как и все в этой жизни, элементы Пельтье также имеют некоторые недостатки, которые необходимо учитывать. Одно из их негативных свойств — высокое потребление электричества. В зависимости от температуры и влажности окружающей среды на устройстве может образовываться конденсат, а при определенных условиях даже лед.
Где применяется
Практическое применение элемента Пельтье безгранично, поскольку существует множество приложений, работающих одновременно и на охлаждение, и на нагрев. Благодаря огромному прогрессу в области полупроводников, в настоящее время создаются устройства, в которых применяется эффект Пельтье, размером с монету.
Внешний вид одного из элементов
Элемент-охладитель размером несколько миллиметров обеспечивает мощность охлаждения до 0.5 Вт. Другими словами, для достижения мощности охлаждения холодильника в 15–20 ватт требуются батареи, состоящие как минимум из 30 или 40 элементов. Фактически, подключение большого количества элементов увеличивает излучающую поверхность и, следовательно, мощность охлаждения. Таким образом, и размер, и получаемая мощность нагрева зависят от количества подключенных элементов, используемых в модуле.
Элементы или модули Пельтье используются чаще для охлаждения, чем для нагревания. Для нагрева больше подходят электрические резисторы, которые гораздо эффективнее справляются с этой задачей, чем элементы Пельтье. Последние лучше применять для выработки холода, поскольку малый размер элементов делает их идеальной заменой дорогому и громоздкому охлаждающему оборудованию, требующему для работы специальные газы или жидкости.
Еще одно из применений — охлаждение процессора на материнских платах, т. е., использование в качестве кулера.
Термоэлектрический охладитель
Проверка элементов Пельтье
Проще всего можно протестировать устройство, используя принцип его действия, то есть, пропустите через него электрический ток и рукой проверьте нагрев одной стороны и охлаждение другой.
Можно проверить работоспособность элемента, основываясь на обратном эффекте Зеебека. В этом случае следует подключить к элементу мультиметр. Его показания после подключения должны быть нулевыми. Если теперь провести горящей зажигалкой по одной из сторон устройства, то мультиметр должен показать наличие электрического тока.
Элементы Пельтье или мой путь к криогенным температурам
Многие слышали про «магические» элементы Пельтье — при прохождении тока через них одна сторона охлаждается, а другая — нагревается. Это работает и в обратную сторону — если одну сторону нагревать, а другую охлаждать — вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей — есть точка максимальной мощности, и если работать далеко от неё — КПД генерации сильно снижается).
В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями, так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…
Краткая теория
Классические «китайские» элементы Пельтье — это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В — то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).
Нужно помнить, что элемент Пельтье — это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В — у нас может не получится 6 ампер (для 6-и амперного элемента) — ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.
Количество перенесенного тепла пропорционально току. Но помимо этого есть паразитный нагрев от протекания тока, и паразитная теплопроводность — все это делает элемент Пельтье хоть сколько-то эффективным в очень узких условиях.
Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С — перенос тепла стремится к 0, а при нулевой разнице — 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию — нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).
Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С — так что если элемент случайно останется без охлаждения и перегреется — то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие — как керамика, так и сами охлаждающие элементы — я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:
Пробуем
Итак, маленький элемент — 5В*2А, большой — 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…
Идея — вынести все на морозный воздух, но есть проблема — кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам — к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях — добавим килограммовую медную пластину — тепловой аккумулятор.
Результат шокирующий — те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха — -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.
Выкатываем тяжелую артиллерию
Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда — подключаем ток — на 12В температура моментально начинает расти, при 5В — падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…
Выводы и видео на сладкое
Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах — я пробовал элементы разных моделей от 3-х разных продавцов — поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).
Ну а с оставшимся сухим льдом можно поступить следующим образом:
PS. А если смешать сухой лед с изопропиловым спиртом — получится жидкий азот для «бедных» — в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей — получить обморожение существенно легче.
Элемент Пельтье: как устроен и работает, как проверить и подключить
Принцип действия элемента Пельтье основан на эффекте Пельтье, который заключается в том, что при пропускании постоянного электрического тока через спай двух разнородных проводников, происходит перенос энергии от одного проводника спая — к другому, при этом в месте спая выделяется или поглощается тепло.
Количество выделенного или поглощенного в ходе данного процесса тепла, будет пропорционально току, времени его протекания, а также коэффициенту Пельтье, характерному для данной пары спаянных проводников. Коэффициент Пельтье, в свою очередь, равен коэффициенту термо-эдс пары, умноженному на абсолютную температуру спая в текущий момент.
И поскольку эффект Пельтье наиболее выразителен у полупроводников, то данное их свойство и используется в популярных и доступных полупроводниковых элементах Пельтье. С одной стороны элемента Пельтье тепло поглощается, с другой — выделяется. Далее мы рассмотрим это явление более внимательно.
Непосредственно физический эффект Пельтье был открыт в 1834 году французским физиком Жаном Пельтье, а спустя четыре года суть данного явления исследовал русский физик Эмилий Ленц, показавший, что если стержни из висмута и сурьмы привести в плотный контакт, на место контакта капнуть воды, а затем пропустить через спай постоянный ток определенного направления, то если при первоначальном направлении тока вода превратится в лед, значит если направление тока изменить на противоположное, то этот лед быстро растает.
В своем эксперименте Ленц наглядно продемонстрировал, что тепло Пельтье поглощается или выделяется в зависимости от направления тока через спай.
Ниже приведена таблица коэффициентов Пельтье для трех популярных пар металлов. Кстати, эффект, обратный эффекту Пельтье, называется эффектом Зеебека (когда при нагревании или охлаждении спаев замкнутой цепи, в этой цепи возникает электрический ток).
Так почему же возникает эффект Пельтье? Причина в том, что в месте контакта двух веществ имеется контактная разность потенциалов, которая порождает контактное электрическое поле между ними.
Если теперь через контакт пропустить электрический ток, то это поле будет либо помогать прохождению тока, либо препятствовать ему. Поэтому, если ток направлен против вектора напряженности контактного поля, то источник прикладываемой ЭДС должен совершить работу, и энергия источника как раз выделяется в месте контакта, это приведёт к его нагреву.
Если же ток источника будет направлен по контактному полю, то он как бы дополнительно поддержится этим внутренним электрическим полем, и теперь поле совершит дополнительную работу по перемещению зарядов. Эта энергия отбирается теперь у вещества, что в действительности и приводит к охлаждению места спая.
Итак, поскольку мы знаем, что в элементах Пельтье используются спаи пар полупроводников, то что за процесс реализован в полупроводниках?
Все просто. Полупроводники эти отличаются уровнями энергий электронов в зоне проводимости. При прохождении электрона через место контакта данных материалов, электрон приобретает энергию, чтобы суметь перейти в более высокоэнергетическую зону проводимости другого полупроводника пары.
При поглощении электроном этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному джоулеву теплу. Если бы вместо полупроводников в элементах Пельтье использовались чистые металлы, то тепловой эффект оказался бы настолько мал, что омический нагрев значительно превзошел бы его.
В реальном преобразователе Пельтье, таком например как TEC1-12706, между двумя керамическими подложками установлены несколько параллелепипедов из теллурида висмута и твердого раствора кремния и германия, спаянных между собой в последовательную цепочку. Эти пары полупроводников n- и p-типа соединены проводящими перемычками, которые и контактируют с керамическими подложками.
Каждая пара маленьких полупроводниковых параллелепипедов образует контакт для прохождения тока от полупроводника n-типа – к полупроводнику p-типа — с одной стороны преобразователя Пельтье, и от полупроводника p-типа — к полупроводнику n-типа — с другой стороны преобразователя.
Когда ток проходит через все эти последовательно соединенные параллелепипеды, то с одной стороны все контакты только охлаждаются, а с другой — все только нагреваются. Если полярность источника изменить, то стороны поменяются ролями.
По такому принципу и работает элемент Пельтье или, как его еще называют, термоэлектрический преобразователь Пельтье, где тепло отбирается от одной стороны изделия, и переносится на противоположную его сторону, при этом создается разность температур с двух сторон элемента.
Можно даже дополнительно охлаждать нагревающуюся сторону элемента Пельтье при помощи радиатора с вентилятором, тогда температура холодной стороны станет ещё ниже. В широко доступных элементах Пельтье разность температур может достигать около 69 °C.
Для того чтобы проверить исправность элемента Пельтье, достаточно пальчиковой батарейки. Красный провод элемента присоединяется к положительной клемме источника питания, черный — к отрицательной. Если элемент исправен, то с одной стороны будет происходить нагрев, с другой — охлаждение, вы сможете почувствовать это пальцами рук. Сопротивление обычного элемента Пельтье находится в районе пары-тройки Ом.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика