Полевой транзистор
Полевые транзисторы — специальный класс транзисторов, которые могут использоваться в качестве выключателей, регуляторов тока или усилителей. Полевой транзистор, отличается от обычного транзистора тем, что ток в нем двигается не пересекая P-N перехода. Величиной тока можно управлять путем регулировки затворного потенциала, подаваемого через этот переход. Существует две основные разновидности полевых транзисторов: полевые транзисторы с затвором на основе перехода и полевые транзисторы с изолированным затвором.
Обратите внимание на основы электричества и на приборы электроники.
Полевой транзистор с затвором на основе перехода
Полевой транзистор с затвором на основе перехода состоит из канальной области (канала) и затвора. Когда он работает, то ток протекает через канал от клеммы истока к клемме стока.
Канал изготовлен из материала n-типа, а затвор — из материала p-типа. Полевые транзисторы с затвором на основе перехода подобного типа называются полевыми транзисторами с затвором на основе перехода с каналом n-типа. На блок-схеме, показанной на рисунке ниже материал p-типа присоединен с обеих сторон к каналу. Однако во многих транзисторах с каналом n-типа этот материал p-типа бывает обернут вокруг канала сплошным кольцом, образуя, тем самым единый, неразрывный p-n переход. Принципы работы данного прибора в основном те же самые, несмотря на методы, использованные в его конструкции.
Потенциал на затворе определяет проводимость на пути от истока до стока указанного транзистора. Затворный потенциал полевого транзистор с затвором на основе перехода, всегда имеет обратное смещение, чтобы снижать до минимума ток, протекающий через переход. Когда переход имеет обратное смещение, то током, протекающим по каналу, можно управлять с помощью изменения размеров обедненной области. Большие значения потенциала обратного смещения вызывают расширение обедненной области, что ограничивает ток, протекающий по каналу. И наоборот, с помощью уменьшения потенциала обратного смещения, и, тем самым, сокращения размеров обеденной области, создается возможность для протекания большего тока от истока к стоку. Состояние обратного смещения гарантирует, что никакой ток не течет самостоятельно через p-n переход.
Полевой транзистор с изолированным затвором
Полевые транзисторы с изолированным затвором отличаются от полевых транзисторов с затвором на основе перехода как по своей конструкции, так и по принципу работы. Обычно в полевых транзисторах с изолированным затвором, как это видно из их названия, затвор изолируется от основного корпуса транзистора тонким слоем окиси металла или каким-нибудь другим изолирующим материалом. Транзисторы этого типа, в которых в качестве изолятора использована окись металла, часто называют полевыми транзисторами со структурой металл-оксид-полупроводник.
Изоляция затвора в этих транзисторах от их основной части обеспечивает им двойное преимущество по сравнению с полевыми транзисторами с затвором на основе перехода. Одно из этих преимуществ заключается в том, что подобная изоляция предотвращает движение тока через затвор независимо от полярности, подаваемого на затвор потенциала. А это, в свою очередь, создает второе преимущество, которое состоит в том, что эти транзисторы могут действовать постоянно, независимо от того подается ли на затвор положительный или отрицательный потенциал.
Применение полевых транзисторов
Полевой или униполярный транзистор — это полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей заряда, протекающим через проводящий канал, управляемый электрическим полем.
Характерной особенностью полевых транзисторов являются высокий коэффициент усиления и высокое входное сопротивление. Известны два типа полевых транзисторов: с управляющим p–n-переходом и с изолированным затвором. Действие полевого транзистора с управляющим p–n-переходом основано на зависимости толщины пространственного заряда p–n-перехода от приложенного к нему напряжения.
Полевой транзистор состоит из пластины полупроводникового материала, которая может служить каналом. Канал может иметь электропроводность как n-типа, так и p-типа. С торцов пластины изготовлены два омических контакта: исток и сток.
Структура полевого транзистора с каналом n-типа
Напряжение источника питания Ucи прикладывается к промежутку сток–исток таким образом, чтобы поток основных носителей (электронов) двигался от истока к стоку.
Управление проводимостью образованного канала осуществляется с помощью p–n-перехода, образованного между зоной затвора (p-типа) и каналом.
К промежутку затвор–исток прикладывается напряжение Uзи, обратно смещающее p–n-переход.
За счет изменения смещающего напряжения изменяется сечение перехода – чем обратно смещающее напряжение больше, тем переход шире. При этом изменяется площадь поперечного сечения проводящего канала и его сопротивление, а значит, и величина протекающего по каналу тока.
В цепи затвора протекает малый обратный ток, в связи с чем необходима малая мощность от источника управляющего сигнала.
Управление сечением канала осуществляется напряжением Uзи, т. е. электрическим полем, 67 возникающим в запирающем слое, без инжекции носителей. Поэтому такие транзисторы называются полевыми.
Как работают полевые транзисторы
Полевой транзистор представляет собой схему из истока, принимающего носители электрического заряда, стока, в который они поступают, и затвора — электрода, принимающего напряжение.
Полевые транзисторы работают в режимах отсечки и насыщения. В режиме насыщения на канале между истоком и стоком проходящий ток достигает определенного напряжения и далее стабилизируется, не влияя на показатели тока в цепи и выдавая на выходе более мощный сигнал. Это позволяет использовать полевые транзисторы в качестве усилителей. В режиме отсечки их можно использовать как переключатель. При поступлении напряжения поле увеличивает показатели тока на участке от истока к стоку за счет расширяющегося p-n-перехода. С увеличением напряжения канал для носителей электрического заряда начинает сужаться и перекрывается при достижении определенного предела — это называется режимом отсечки. Для управления такими транзисторами важны показатели электрического поля — на режимы работы не влияет ток, как в биполярных транзисторах.
Такое свойство, а также малые размеры определяют применение полевых транзисторов — их можно в большом количестве разместить в управляющих схемах компактного электрооборудования в качестве ключей для переключения. Их применяют для обеспечения работы аппаратуры, для которой важна стабильность тока.
Полевые транзисторы бывают двух видов:
- с управляющим p-n-переходом, который создает препятствие для носителей заряда и ослабляет их поток;
- с изолированным затвором — в них исток и сток разделены диэлектрическим слоем, за счет чего повышается входное сопротивление.
Также полевые транзисторы различаются своими характеристиками.
Как выбрать полевой транзистор
В зависимости от назначение полевых транзисторов их необходимо подбирать по параметрам:
- типу проводимости — электронной с маркировкой N или дырочной с маркировкой P;
- максимально допустимому и начальному току стока;
- напряжению на участках сток-исток, затвор-сток, затвор-исток; сопротивлению;
- входной, проходной и выходной емкости;
- току утечки;
- крутизне характеристики;
- размерам, способу установки, материалам, корпусу.
В нашем каталоге есть полевые и биполярные транзисторы для радиотехники и других устройств с различными техническими характеристиками. Чтобы приобрести товар из ассортимента транзисторов, добавьте его в корзину на сайте или свяжитесь с нашими менеджерами по телефонам вверху страницы.
Управление затвором полевого транзистора
В большинстве схем самодельных генераторов высокого напряжения для электростатической коптильни используется полевой транзистор, но к сожалению управление его затвором часто организовано неправильно.
Речь пойдёт о схемах высоковольтных источников напряжения для получения электростатики, их мощность как правило не превышает 7 ватт – большего и не нужно. Хотя небольшая мощность источников позволяет достаточно вольно обходиться с выбором применяемых компонентов, для успешного построения рабочего блока требуется соблюдение некоторых правил, некоторые из которых мы и рассмотрим.
Для начала возьмем любую типовую схему на достаточно древнем чипе UC384x, стоит он копейки, есть в любом ларьке, имеет минимальную обвязку и неплохой ток выходного каскада в 1 Ампер. Рассмотрим выходной каскад:
В выходном каскаде мы видим диод, как правило это 1n4148: с помощью него идёт разряд затвора и резистор Rg, через который происходит заряд. Сделаем резистор Rg равным 12 Ом и посмотрим осциллограммы:
Здесь и далее цена клетки 2v/200ns, красный щуп на выходе чипа а желтый непосредственно на гейте, транзистор IRF3710. Затвор достаточно тяжелый: Qg = 130nC. Открытие транзистора происходит достаточно шустро, управляющий чип даёт нужный ток а закрытию помогает диод. Особых нареканий всё это не вызывает.
Теперь заменим резистор Rg с 12 на 100 Ом:
Картина стала значительно хуже: время увеличилось в несколько раз, так делать не стоит. Теперь посмотрим работу с таймером 555, фото макетки выше, схема выходного каскада ниже:
Резистор Rg сделаем равным 100 Ом, диод ставить не будем. Почему это плохо:
Время открытия и закрытия затянуто: в таком режиме работы транзистор перегреется даже на небольших мощностях.
Поставим резистор Rg 12 Ом:
Несмотря на всего 200мА тока, который даёт выходной каскад чипа NE555, транзистор открывается неплохо, для быстрого закрытия параллельно резистору Rg требуется диод как на вышеприведенной схеме.
Как сделать совсем хорошо? Для этого нам потребуется комплементарная пара биполярных транзисторов, из которых мы соберем примитивный драйвер. Транзисторы рекомендую SS8050 и SS8550, имея ток коллектора 1,5 Ампер они с избытком покроют все наши потребности, посмотрим схему:
Плёночный или керамический конденсатор С1 – 1-2u, равно как и резистор Rp – 5-10k можно не ставить, но правильнее что б они были. Резистор Rg – 1 Ом, Rb – 47-100 Ом. Запустим схему:
Бинго! Так и нужно дёргать полевик, несколько деталей общей ценой до 50 рублей заменили полноценный драйвер, который кстати стоит примерно так же 🙂
Дополнительно снял видеоролик в котором так же отражены некоторые нюансы управление полевым транзистором:
Полевые транзисторы. For dummies
А теперь давайте поговорим о полевых транзисторах. Что можно предположить уже по одному их названию? Во-первых, поскольку они транзисторы, то с их помощью можно как-то управлять выходным током. Во-вторых, у них предполагается наличие трех контактов. И в-третьих, в основе их работы лежит p-n переход. Что нам на это скажут официальные источники?
Полевыми транзисторами называют активные полупроводниковые приборы, обычно с тремя выводами, в которых выходным током управляют с помощью электрического поля. (electrono.ru)
Определение не только подтвердило наши предположения, но и продемонстрировало особенность полевых транзисторов — управление выходным током происходит посредством изменения приложенного электрического поля, т.е. напряжения. А вот у биполярных транзисторов, как мы помним, выходным током управляет входной ток базы.
Еще один факт о полевых транзисторах можно узнать, обратив внимание на их другое название — униполярные. Это значит, что в процессе протекания тока у них участвует только один вид носителей заряда (или электроны, или дырки).
Три контакта полевых транзисторов называются исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители). Структура кажется простой и очень похожей на устройство биполярного транзистора. Но реализовать ее можно как минимум двумя способами. Поэтому различают полевые транзисторы с управляющим p-n переходом и с изолированным затвором.
Вообще, идея последних появилась еще в 20-х годах XX века, задолго до изобретения биполярных транзисторов. Но уровень технологии позволили реализовать ее лишь в 1960 году. В 50-х же был сначала теоретически описан, а затем получил воплощение полевой транзистор с управляющим p-n переходом. И, как и их биполярные «собратья», полевые транзисторы до сих пор играют в электронике огромную роль.
Перед тем, как перейти к рассказу о физике работы униполярных транзисторов, хочу напомнить ссылки, по которым можно освежить свои знания о p-n переходе: раз и два.
Полевой транзистор с управляющим p-n-переходом
Итак, как же устроен первый тип полевых транзисторов? В основе устройства лежит пластинка из полупроводника с проводимостью (например) p-типа. На противополжных концах она имеет электроды, подав напряжение на которые мы получим ток от истока к стоку. Сверху на этой пластинке есть область с противоположным типом проводимости, к которой подключен третий электрод — затвор. Естественно, что между затвором и p-областью под ним (каналом) возникает p-n переход. А поскольку n-слой значительно уже канала, то большая часть обедненной подвижными носителями заряда области перехода будет приходиться на p-слой. Соответственно, если мы подадим на переход напряжение обратного смещения, то, закрываясь, он значительно увеличит сопротивление канала и уменьшит ток между истоком и стоком. Таким образом, происходит регулирование выходного тока транзистора с помощью напряжения (электрического поля) затвора.
Можно провести следующую аналогию: p-n переход — это плотина, перекрывающая поток носителей заряда от истока к стоку. Увеличивая или уменьшая на нем обратное напряжение, мы открываем/закрываем на ней шлюзы, регулируя «подачу воды» (выходной ток).
Итак, в рабочем режиме полевого транзистора с управляющим p-n переходом напряжение на затворе должно быть либо нулевым (канал открыт полностью), либо обратным.
Если величина обратного напряжения станет настолько большой, что запирающий слой закроет канал, то транзистор перейдет в режим отсечки.
Даже при нулевом напряжении на затворе, между затвором и стоком существует обратное напряжение, равное напряжению исток-сток. Вот почему p-n переход имеет такую неровную форму, расширяясь к области стока.
Само собой разумеется, что можно сделать транзистор с каналом n-типа и затвором p-типа. Сущность его работы при этом не изменится.
Условные графические изображения полевых транзисторов приведены на рисунке (а — с каналом p-типа, б — с каналом n-типа). Стрелка здесь указывает направление от p-слоя к n-слою.
Статические характеристики полевого транзистора с управляющим p-n-переходом
Поскольку в рабочем режиме ток затвора обычно невелик или вообще равен нулю, то графики входных характеристик полевых транзисторов мы рассматривать не будем. Перейдем сразу к выходным или стоковым. Кстати, статическими их называют потому, что на затвор подается постоянное напряжение. Т.е. нет необходимости учитывать частотные моменты, переходные процессы и т.п.
Выходной (стоковой) называется зависимость тока стока от напряжения исток-сток при константном напряжении затвор-исток. На рисунке — график слева.
На графике можно четко выделить три зоны. Первая из них — зона резкого возрастания тока стока. Это так называемая «омическая» область. Канал «исток-сток» ведет себя как резистор, чье сопротивление управляется напряжением на затворе транзистора.
Вторая зона — область насыщения. Она имеет почти линейный вид. Здесь происходит перекрытие канала в области стока, которое увеличивается при дальнейшем росте напряжения исток-сток. Соответственно, растет и сопротивление канала, а стоковый ток меняется очень слабо (закон Ома, однако). Именно этот участок характеристики используют в усилительной технике, поскольку здесь наименьшие нелинейные искажения сигналов и оптимальные значения малосигнальных параметров, существенных для усиления. К таким параметрам относятся крутизна характеристики, внутреннее сопротивление и коэффициент усиления. Значения всех этих непонятных словосочетаний будут раскрыты ниже.
Третья зона графика — область пробоя, чье название говорит само за себя.
С правой стороны рисунка показан график еще одной важной зависимости — стоко-затворной характеристики. Она показывает то, как зависит ток стока от напряжения затвор-исток при постоянном напряжении между истоком и стоком. И именно ее крутизна является одним из основных параметров полевого транзистора.
Полевой транзистор с изолированным затвором
Такие транзисторы также часто называют МДП (металл-диэлектрик-полупроводник)- или МОП (металл-оксид-полупроводник)-транзисторами (англ. metall-oxide-semiconductor field effect transistor, MOSFET). У таких устройств затвор отделен от канала тонким слоем диэлектрика. Физической основой их работы является эффект изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля.
Устройство транзисторов такого вида следующее. Есть подложка из полупроводника с p-проводимостью, в которой сделаны две сильно легированные области с n-проводимостью (исток и сток). Между ними пролегает узкая приповерхностнаяя перемычка, проводимость которой также n-типа. Над ней на поверхности пластины имеется тонкий слой диэлектрика (чаще всего из диоксида кремния — отсюда, кстати, аббревиатура МОП). А уже на этом слое и расположен затвор — тонкая металлическая пленка. Сам кристалл обычно соединен с истоком, хотя бывает, что его подключают и отдельно.
Если при нулевом напряжении на затворе подать напряжение исток-сток, то по каналу между ними потечет ток. Почему не через кристалл? Потому что один из p-n переходов будет закрыт.
А теперь подадим на затвор отрицательное относительно истока напряжение. Возникшее поперечное электрическое поле «вытолкнет» электроны из канала в подложку. Соответственно, возрастет сопротивление канала и уменьшится текущий через него ток. Такой режим, при котором с возрастанием напряжения на затворе выходной ток падает, называют режимом обеднения.
Если же мы подадим на затвор напряжение, которое будет способствовать возникновению «помогающего» электронам поля «приходить» в канал из подложки, то транзистор будет работать в режиме обогащения. При этом сопротивление канала будет падать, а ток через него расти.
Рассмотренная выше конструкция транзистора с изолированным затвором похожа на конструкцию с управляющим p-n переходом тем, что даже при нулевом токе на затворе при ненулевом напряжении исток-сток между ними существует так называемый начальный ток стока. В обоих случаях это происходит из-за того, что канал для этого тока встроен в конструкцию транзистора. Т.е., строго говоря, только что мы рассматривали такой подтип МДП-транзисторов, как транзисторы с встроенным каналом.
Однако, есть еще одна разновидность полевых транзисторов с изолированным затвором — транзистор с индуцированным (инверсным) каналом. Из названия уже понятно его отличие от предыдущего — у него канал между сильнолегированными областями стока и истока появляется только при подаче на затвор напряжения определенной полярности.
Итак, мы подаем напряжение только на исток и сток. Ток между ними течь не будет, поскольку один из p-n переходов между ними и подложкой закрыт.
Подадим на затвор (прямое относительно истока) напряжение. Возникшее электрическое поле «потянет» электроны из сильнолегированных областей в подложку в направлении затвора. И по достижении напряжением на затворе определенного значения в приповерхностной зоне произойдет так называемая инверсия типа проводимости. Т.е. концентрация электронов превысит концентрацию дырок, и между стоком и истоком возникнет тонкий канал n-типа. Транзистор начнет проводить ток, тем сильнее, чем выше напряжение на затворе.
Из такой его конструкции понятно, что работать транзистор с индуцированным каналом может только находясь в режиме обогащения. Поэтому они часто встречаются в устройствах переключения.
Условные обозначения транзисторов с изолированным затвором следующие:
Здесь
а − со встроенным каналом n- типа;
б − со встроенным каналом р- типа;
в − с выводом от подложки;
г − с индуцированным каналом n- типа;
д − с индуцированным каналом р- типа;
е − с выводом от подложки.
Статические характеристики МДП-транзисторов
Семейство стоковых и стоко-затворная характеристики транзистора с встроенным каналом предсталены на следующем рисунке:
Те же характеристики для транзистора с идуцированным каналом:
Экзотические МДП-структуры
Чтобы не запутывать изложение, хочу просто посоветовать ссылки, по которым о них можно почитать. В первую очередь, это всеми любимая википедия, раздел «МДП-структуры специального назначения». А здесь теория и формулы: учебное пособие по твердотельной электронике, глава 6, подглавы 6.12-6.15. Почитайте, это интересно!
Общие параметры полевых транзисторов
- Максимальный ток стока при фиксированном напряжении затвор-исток.
- Максимальное напряжение сток-исток, после которого уже наступает пробой.
- Внутреннее (выходное) сопротивление. Оно представляет собой сопротивление канала для переменного тока (напряжение затвор-исток — константа).
- Крутизна стоко-затворной характеристики. Чем она больше, тем «острее» реакция транзистора на изменение напряжения на затворе.
- Входное сопротивление. Оно определяется сопротивлением обратно смещенного p-n перехода и обычно достигает единиц и десятков МОм (что выгодно отличает полевые транзисторы от биполярных «родственников»). А среди самих полевых транзисторов пальма первенства принадлежит устройствам с изолированным затвором.
- Коэффициент усиления — отношение изменения напряжения исток-сток к изменению напряжения затвор-исток при постоянном токе стока.
Схемы включения
Как и биполярный, полевой транзистор можно рассматривать как четырехполюсник, у которого два из четырех контактов совпадают. Таким образом, можно выделить три вида схем включения: с общим истоком, с общим затвором и с общим стоком. По характеристикам они очень похожи на схемы с общим эмиттером, общей базой и общим коллектором для биполярных транзисторов.
Чаще всего применяется схема с общим истоком (а), как дающая большее усиление по току и мощности.
Схема с общим затвором (б) усиления тока почти не дает и имеет маленькое входное сопротивление. Из-за этого такая схема включения имеет ограниченное практическое применение.
Схему с общим стоком (в) также называют истоковым повторителем. Ее коэффициент усиления по напряжению близок к единице, входное сопротивление велико, а выходное мало.
Отличия полевых транзисторов от биполярных. Области применения
- высокое входное сопротивление по постоянному току и на высокой частоте, отсюда и малые потери на управление;
- высокое быстродействие (благодаря отсутствию накопления и рассасывания неосновных носителей);
- поскольку усилительные свойства полевых транзисторов обусловлены переносом основных носителей заряда, их верхняя граница эффективного усиления выше, чем у биполярных;
- высокая температурная стабильность;
- малый уровень шумов, так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда, которое и делает биполярные транзисторы «шумными»;
- малое потребление мощности.
Где применяются полевые транзисторы? Да практически везде. Цифровые и аналоговые интегральные схемы, следящие и логические устройства, энергосберегающие схемы, флеш-память… Да что там, даже кварцевые часы и пульт управления телевизором работают на полевых транзисторах. Они повсюду, %хабраюзер%. Но теперь ты знаешь, как они работают!
- транзисторы
- полевые транзисторы
- MOSFET
- электроника