Как определить направление вектора напряженности магнитного поля
Перейти к содержимому

Как определить направление вектора напряженности магнитного поля

  • автор:

Вектор напряженности магнитного поля

Вектор напряжённости магнитного поля как вспомогательный вектор для описания поля в магнетиках

Когда мы рассматриваем магнитное поле в вакууме при отсутствии магнетиков, магнитное поле порождается токами проводимости и выполняется равенство:

где $\overrightarrow$ — вектор плотности токов проводимости.

В магнетиках поле возникает благодаря токам проводимости и молекулярным токам ($\overrightarrow$), что необходимо учитывать. Для молекулярных токов имеет место векторное равенство:

где $\overrightarrow$ — объемная плотность молекулярных токов, $\overrightarrow$ — вектор намагниченности. Так, при наличии магнетиков выражение (1) с учетом равенства (2) примет вид:

Выразим ток проводимости из уравнения (3), получим:

Определение вектора напряженности магнитного поля

Вектором напряженности магнитного поля называют вектор, равный:

Статья: Вектор напряженности магнитного поля

Найди решение своей задачи среди 1 000 000 ответов

Напряженность магнитного поля не является чисто полевой величиной, так как включает вектор $\overrightarrow,\ $который является характеристикой намагниченности среды. По своему значению $\overrightarrow$ является вспомогательным вектором и играет роль подобную вектору электрического смещения $\overrightarrow\ $в электричестве.

Основные уравнения для вектора напряженности

Из определения вектора $\overrightarrow$ и уравнения (4), следует весьма удобное уравнение для вычисления поля в магнетиках:

Закон полного тока при наличии магнетиков имеет вид:

Формула (7) выражает теорему о циркуляции вектора напряженности магнитного поля, которая гласит:

«Циркуляция вектора напряженности магнитного поля по некоторому контуру равна алгебраической сумме макроскопических токов, которые охвачены заданным контуром».

В вакууме $\overrightarrow=0$, тогда:

Напряженность поля прямолинейного бесконечного проводника в вакууме определяется формулой:

где $b$ — расстояние от проводника до точки, где рассматривается поле. Из формулы (9) определяется размерность напряженности магнитного поля. Основная единица напряженности в системе СИ — ампер деленный на метр ($\frac$).

Связь и вектора напряженности магнитного поля с намагниченностью и вектором магнитной индукции

Обычно вектор намагниченности ($\overrightarrow$) связывают с вектором напряженности в каждой точке магнетика:

где $\varkappa $ — магнитная восприимчивость, безразмерная величина. Для неферромагнитных веществ и в не больших полях $\varkappa $ не зависит от напряженности. В анизотропных средах $\varkappa $ является тензором и направления $\overrightarrow$ и $\overrightarrow$ не совпадают.

Помимо магнитной восприимчивости в магнетиках используют другую безразмерную физическую величину, которая характеризует магнитные свойства вещества — это относительная магнитная проницаемость (или просто магнитная проницаемость ($\mu $)) вещества. Причем:

\[\mu =1+\varkappa \ \left(11\right).\]

Тогда между индукцией магнитного поля в магнетике и напряженностью магнитного поля существует следующая связь:

Формула (12) показывает, что в изотропных средах векторы $\overrightarrow$ и $\overrightarrow$ имею одинаковое направление, однако по модулю напряженность поля в $\mu <\mu >_0$ раз меньше.

Формула напряженности магнитного поля

Определение и формула напряженности магнитного поля

Напряженностью магнитного поля $\bar$ называют векторную физическую величину, направленную по касательной к силовым линиям поля, являющуюся характеристикой магнитного поля, равную:

где $\bar$ – вектор магнитной индукции, $\mu_=4 \pi \cdot 10^$ Гн/м(Н/А 2 )- магнитная постоянная, $\bar$ – вектор намагниченности среды в исследуемой точке поля.

Для магнитного поля в вакууме напряженность магнитного поля определяется выражением:

В изотропной среде формула (1) преобразуется к виду:

где $\mu$ – скалярная величина, называемая относительной магнитной проницаемостью среды (или просто магнитной проницаемостью). В изотропной среде векторы напряженности магнитного поля и магнитной индукции совпадают по направлению.

Иногда напряженность магнитного поля $d \bar$ определяют как векторную величину, направленную по касательной к силовой линии поля, по модулю равной отношению силы (dF), с которой поле воздействует на единичный элемент тока (dl), который расположен перпендикулярно полю в вакууме, к магнитной постоянной:

Закон Био-Савара-Лапласа

Это важнейший в электромагнетизме закон. Он определяет вектор напряженности $d \bar$ в произвольной точке магнитного поля, которое создает в вакууме элементарный проводник длинны dl с постоянным током I:

где $d \bar$ – вектор элемента проводника, который по модулю равен длине проводника, направление совпадает с направлением тока; $\bar$ – радиус–вектор, который проводят от рассматриваемого элементарного проводника к точке рассмотрения поля; $r=|\bar|$ .

Вектор $d \bar$ – перпендикулярен плоскости, в которой находятся векторы $d \bar$ и $\bar$, и направлен так, что из его конца вращение вектора $d \bar$ по кратчайшему пути до совмещения с вектором $\bar$ происходило по часовой стрелке. Для нахождения направления вектора $d \bar$ можно использовать правило буравчика (Буравчик (винт) вращаем так, чтобы его поступательное движение совпадало с направлением тока, тогда направление, по которому вращается ручка винта, совпадает с направлением вектора напряженности поля, которое создает рассматриваемый ток).

Закон Био-Савара-Лапласа дает возможность вычислять величину полной напряженности магнитного поля, которое создает ток, текущий по проводнику любой формы.

Для нахождения полной напряженности магнитного поля, которое создает в исследуемой точке ток I, который течет по проводнику l, следует векторно суммировать все элементарные напряженности $d \bar$, порождаемые элементами проводника и найденные по формуле (4).

Единицы измерения

Основной единицей измерения момента силы в системе СИ является: [H]=А/м

Примеры решения задач

Задание. Чему равна напряженность (H) в центре кругового витка (R — радиус витка) с током I.

Решение. Каждый элементарный ток витка магнитное поле в центре окружности, напряженность которого направлена по положительной нормали к плоскости контура витка (рис.1). Поэтому, если элементарную напряженность поля найти по закону Био-Савара – Лапласа, то векторное сложение элементарных полей можно будет заменить на алгебраическое.

В соответствии с законом Био-Савара – Лапласа dH равно:

Применяя выражение (1.1) к нашему случаю, получим:

Возьмем интеграл по контуру, получим:

Ответ. $H=\frac$

Warning: file_put_contents(./students_count.txt): failed to open stream: Permission denied in /var/www/webmath-q2ws/data/www/webmath.ru/poleznoe/guide_content_banner.php on line 20

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 470 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Задание. Какова напряженность магнитного поля, которую создает электрон, движущийся прямолинейно и равномерно со скоростью v? Если точка, в которой исследуется поле, находится на расстоянии r от электрона на перпендикуляре к вектору скорости, если перпендикуляр провести через мгновенное положение частицы.

Решение. Сделаем рисунок.

Напряженность магнитного поля будем искать, применяя закон Био – Савара – Лапласа:

Если все заряды одинаковы (q), то плотность тока равна:

заряд отрицательный, следовательно, направления векторов $\bar$ и $\bar$ противоположны. n – концентрация зарядов. Подставим формулу (2.3) в (2.2), результат в (2.1) получаем:

где dN=Sdln — количество заряженных частиц в отрезке dl. В таком случае, напряженность поля, которое создает один заряд:

По условию задачи $\bar \perp \bar$ , значит модуль напряжённости магнитного поля в точке А (рис.2) будет равен:

Вектор напряженности магнитного поля

Справочник

Поле моделирует то, что объект испытал бы, связанный с силой в данной точке пространства. Поля часто представляются в двух измерениях с помощью линий поля. Плотность этих силовых линий указывает на напряженность поля в конкретной точке — чем плотнее линии, тем сильнее поле. Условные обозначения того, как отображать линии гравитационного, электрического и магнитного поля, немного отличаются для моделирования уникальных аспектов каждой силы. Некоторые распространенные модели показаны ниже.

Примеры напряженности поля

Электрические поля возникают из-за электрических зарядов и изменяющихся магнитных полей. Электрический заряд или совокупность зарядов будут иметь связанное электрическое поле. Любой заряженный объект, помещенный в это поле, будет испытывать электростатическую силу, поскольку поле взаимодействует с зарядом объекта. Силовые линии представляют собой силу, которую испытала бы положительно заряженная частица, если бы она находилась в поле в этой точке.

Изменяющееся магнитное поле также может вызывать перемещение электрических зарядов. Это явление обычно используется в электрических генераторах для наведения электрических токов в проводах. Индуцированный ток можно увеличить, вызывая большие изменения в магнитном поле или сворачивая провод так, чтобы изменяющееся магнитное поле влияло на большее количество проводов.

Определение магнитного поля

Магнитное поле определяется силой, с которой заряженная частица испытывает движение в этом поле, после того как мы учтем гравитационные и любые дополнительные электрические силы, воздействующие на заряд. Величина этой силы пропорциональна количеству заряда q, скорости заряженной частицы v и величине приложенного магнитного поля. Направление этой силы перпендикулярно как направлению движущейся заряженной частицы, так и направлению приложенного магнитного поля. Основываясь на этих наблюдениях, мы определяем напряженность магнитного поля B на основе магнитной силы \[\overrightarrow>\] на заряд q, движущийся со скоростью как векторное произведение скорости и магнитного поля, т. е.

\[\vec=q \vec+\vec\]

Фактически, так мы определяем магнитное поле \[\vec\] — с точки зрения силы, действующей на заряженную частицу, движущуюся в магнитном поле. Величина силы определяется из определения перекрестного произведения, поскольку оно связано с величинами каждого из векторов. Другими словами, величина силы удовлетворяет:

\[F=q v B \sin \theta\]

где θ — угол между скоростью и магнитным полем.

Те́сла, единица магнитной индукции (В) в системе СИ, названа в честь физика Н. Теслы. Обозначается Тл.

1 Тл = 1 Н/(А.м)

Иногда используется меньшая единица, называемая гауссом (G), где \[1 G=10^ \mathrm\].

Напряженность магнитного поля

Определение

Напряжённость магнитного поля \[\boldsymbol\] — физическая величина, используемая как
одна из основных мер напряжённости магнитного поля. Единицей напряженности магнитного поля является ампер на метр или А/м.

С инженерной точки зрения напряженность магнитного поля Н можно рассматривать как возбуждение, а плотность магнитного потока В как ответ среды.

С точки зрения теоретической физики поле Н определяется как векторная разность между плотностью потока В и намагничиванием М. Поле H иногда называют «вспомогательным» или просто «полем H».

Эти два подхода идентичны в смысле рассматриваемых физических величин (с одними и теми же физическими единицами А/м), но называются разными именами, и разный акцент делается на их значении и использовании при выводе некоторых уравнений.

Магнитное поле является векторным полем в пространстве и представляет собой вид энергии, полная
количественная оценка которой требует знания векторных полей как напряженности магнитного поля, и плотность
потока (или другие коррелирующие с ними значения, такие как намагниченность M или поляризация J). В вакууме
в каждой точке и векторы ориентированы в одном направлении и прямо пропорциональны через проницаемость
свободного пространства, но в других средах они могут быть смещены (особенно в неоднородных или анизотропных
материалах). Связь между магнитным полем В и напряженностью магнитного поля Н определяется формулой:

  • \[\vec\] = намагниченность материала
  • \[\mu_\]= магнитная проницаемость пространства (константа = \[1,25663706 H_ A^\])

Нет времени решать самому?

Напряженность магнитного поля

Напряженность магнитного поля можно определить с помощью силы, которая действует на помещенный в поле пробный магнит. Так как магнитные полюсы не существуют по отдельности, на северный и южный полюсы пробного магнита действуют противоположно направленные силы, и возникает момент пары сил. Этот момент характеризует величину напряженности поля в данном месте.

В магнитном поле цилиндрической катушки он прямо пропорционален числу витков и силе тока и обратно пропорционален длине катушки. Направление вектора напряженности магнитного поля в каждой точке совпадает с направлением силовых линий. Внутри катушки (магнита) он направлен от южного полюса к северному, вне катушки — от северного к южному.

Единица СИ напряженности магнитного поля

Единица СИ напряженности магнитного поля:

Эрстед — Единица напряженности магнитного поля

Единица напряженности магнитного поля Эрстед не принадлежит к системе СИ.

\[ 1 Эрстед = \frac<1000> \frac \]
\[ 1 \frac<Ампер> = \frac Эрстед \]

Напряженность магнитного поля в цилиндрической катушке

Напряженность магнитного поля в цилиндрической катушке

Напряженность магнитного поля в цилиндрической катушке

H напряженность магнитного поля внутри цилиндрической катушки, Ампер/метр
I сила тока в катушке, Ампер
n число витков, Ампер
l длина катушки (т. е. силовых линий в области однородного поля), метр

то напряженность магнитного поля определяется формулой

Произведение I·n часто называют числом ампер-витков.

Напряженность магнитного поля вокруг прямолинейного проводника

Напряженность Н магнитного поля прямолинейного проводника постоянна вдоль круговой силовой линии.

H напряженность магнитного поля прямолинейного проводника, Ампер/метр
I сила тока в проводнике, Ампер
r расстояние от проводника в плоскости, перпендикулярной проводнику, метр

то напряженность магнитного поля определяется формулой

Напряженность магнитного поля в центре витка с током

Напряженность магнитного поля в центре витка с током

Напряженность магнитного поля в центре витка с током

H напряженность магнитного поля в центре витка с током, Ампер/метр
I сила тока в витке, Ампер
r радиус витка, метр

то напряженность магнитного поля определяется формулой

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *