Как найти силу тока через кпд
Перейти к содержимому

Как найти силу тока через кпд

  • автор:

Спасите. Как можно вычислить силу тока через КПД (пожалуйста, формулу).

Транспортер поднимает за 1 минуту груз, масса которого равна 300 кг. , на высоту 8 м. КПД транспортера 60%. Определите силу тока через електродвигатель, если напряжение в сети 380 В.

Лучший ответ

Не существует такой формулы.
Есть определения и законы, которые нужно учить: сила тока I = q / t, напряжение U = I R, мощность P = U I, работа (энергия) Q = P t.
А из них уже, смотря по условиям задачи, выводятся расчётные формулы.

Ирина.Мудрец (10330) 14 лет назад

Помогите, пожалуйста ребенку:
Транспортер поднимает за 1 минуту груз, масса которого равна 300 кг., на высоту 8 м. КПД транспортера 60%. Определите силу тока через електродвигатель, если напряжение в сети 380 В.

I = P/U = E/ηUt = mgh/ηUt ненаввижу детей
Остальные ответы
а как узнать адрес человека через размер ботинок?
какая связь между током и КПД.
Ирина.Мудрец (10330) 14 лет назад

Если можете, помогите.
Транспортер поднимает за 1 минуту груз, масса которого равна 300 кг., на высоту 8 м. КПД транспортера 60%. Определите силу тока через електродвигатель, если напряжение в сети 380 В.

работа = масса * расстояние (идеальная) работа реальная = работа идеальная / кпд мощность = работа/время = напряжение*сила тока что то типа (300*8)/(0,6 *60* 380) = 0,1754 не нравится только число, какое то оно некрасивое

так как кпд = c * m * дельта t / I * U * тао, то можем вывести следующее : I = c * m * дельта t / кпд * U * тао
P.S. дельта t (т.е. треугольник и t) равен t2 — t1

Физика. 10 класс

§ 26. Закон Ома для полной электрической цепи. КПД источника тока

В 1826 г. немецкий физик Георг Симон Ом ( 1787–1854 ) опытным путём установил, что при постоянной температуре отношение напряжения между концами металлического проводника к силе тока в нём является величиной постоянной. На основании этого был сформулирован закон, названный законом Ома для участка электрической цепи: , где R — сопротивление участка цепи. От чего и как зависит сила тока в замкнутой цепи, содержащей источник тока, т. е. в полной электрической цепи?

Рис.

Закон Ома для полной электрической цепи. Рассмотрим электрическую цепь, состоящую из источника тока (гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R. Известны ЭДС источника тока и его сопротивление r, которое называют внутренним. Схема цепи представлена на рисунке 132. Пусть сила тока в цепи I, а напряжение между концами проводника U.

Закон Ома для полной цепи связывает силу тока I в цепи, ЭДС источника тока и полное сопротивление цепи R + r, которое складывается из сопротивлений внешнего (резистор) и внутреннего (источник тока) участков цепи (сопротивлением соединительных проводов пренебрегаем). Эту связь можно установить теоретически на основании закона сохранения энергии.

Если через поперечное сечение проводника за промежуток времени t проходит заряд q, то работу сторонней силы по перемещению электрического заряда можно определить по формуле

Поскольку сила тока , то

В неподвижных проводниках неизменного химического состава в результате работы сторонних сил происходит увеличение только внутренней энергии внешнего и внутреннего участков цепи. Таким образом, при прохождении электрического тока в резисторе и источнике тока выделяется количество теплоты Q, которое можно определить по закону Джоуля–Ленца:

На основании закона сохранения энергии:

Подставим формулы (26.1) и (26.2) в равенство (26.3) и в результате математических преобразований получим:

Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Поэтому IR = U — падение напряжения (напряжение) на внешнем участке цепи, Ir — падение напряжения на внутреннем участке цепи.

Выражая силу тока из формулы (26.4), получим:

Формула (26.5) является математическим выражением закона Ома для полной электрической цепи , согласно которому сила тока в полной электрической цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи.

От теории к практике

Аккумулятор, внутреннее сопротивление которого r = 0,80 Ом, подсоединён к резистору. Чему равна ЭДС аккумулятора, если напряжение на его полюсах U = 6,0 В, а сила тока в цепи I = 0,50 А?

Электродвижущая сила

Весь современный мир держится на электричестве. Наряду с глобальной интернет-сетью, наш мир «опутан» сетью электрических проводов. Что такого происходит в этих тоненьких проводах, что от них зависит жизнь целого города? Давайте поближе познакомимся с электрическим током и узнаем, откуда он появляется.

Мы с вами уже познакомились с электрическими схемами в теме «Законы постоянного тока», где выяснили, какие приборы существуют и как используются в схемах. В этой статье мы поговорим о том, как в элементарных электрических цепях появляется ток. Начало положено, сопротивление бесполезно.

Источник тока

Как мы уже выяснили, электрические схемы не могут работать просто так. Представим, что вы хотите поехать на машине, в которой нет бензина. Конечно, машина не заведется, так как ее нужно заправить. Электрические схемы работают по такому же принципу. Если их не подпитывать током, то они не будут работать.

Электрический ток — это направленное, упорядоченное движение электрических зарядов. Поэтому, чтобы поддерживать в цепи ток длительное время, в нем должен быть участок, на котором будет происходить перенос зарядов против сил электростатического поля (поля, создаваемого неподвижными зарядами). То есть, то место, где электроны будут принудительно приходить в движение.

Источник тока — элемент электрической цепи, в котором на заряды действует сторонняя сила, задающая направление движения зарядов (тока).

Перемещение зарядов на этом участке возможно лишь с помощью сил неэлектростатического происхождения, называемых сторонними силами. Эти силы приводят заряды в движение. Благодаря этому поддерживается ток в цепи. Действие сторонних сил характеризуется величиной, называемой электродвижущей силой источника тока (ЭДС), о которой поговорим чуть позднее.

Примером источника тока может служить обычная батарейка. Вы наверняка замечали, что на пальчиковых батарейках с одной стороны пишется «плюс», а с другой — «минус». Это означает, что электрический ток пойдет от положительной части батарейки к отрицательной. А почему ток выходит из одной части, но заходит в другую?

Для объяснения этого явления рассмотрим картинку ниже. Главным критерием рабочей электрической цепи является ее замкнутость, то есть вся цепь неразрывно связана. Подключим нашу батарейку (источник тока) к электрической цепи, которую также называют внешней электрической цепью.

Как мы видим на этом рисунке, на заряды внутри источника тока действует сторонняя сила (\(F_\)), от плюса к плюсу) и сила электростатического поля (\(F\)), которая направлена от плюса к минусу. Без действия сторонних сил внутри источника положительный заряд будет двигаться от «+» к «-» (по направлению силы \(F\)).

Мы действуем сторонними силами так, чтобы он стал двигаться к «+» (по направлению \(F_\)), то есть против сил электростатического поля. Тогда заряды вылетают из источника тока и далее по внешней цепи, уже под действием обычного электростатического поля, движутся по стандартным законам от «+» к «-». Это и есть наш долгожданный электрический ток – движущиеся заряды. Если бы мы не действовали сторонними силами, все заряды бы просто сидели на месте («+» окружили бы «-», и наоборот). То есть, сама сторонняя сила задает направление движения заряда.

После того как заряд выходит из источника тока, на него действует только одна сила F. Поэтому он обходит всю цепь и возвращается в этот же источник тока. Там на него вновь действует сторонняя сила, ну а дальше вы уже знаете.

Если бы в источнике тока не было сторонних сил, то все положительные заряды застряли бы у минуса.

Основные параметры источника тока

Как и любой другой элемент электрической цепи, источник тока обладает своими характеристиками, которые могут меняться в зависимости от условий использования. Главными характеристиками являются ЭДС источника тока (электродвижущая сила) и его внутреннее сопротивление.

ЭДС источника тока (ε) — это физический параметр, который характеризует работу сторонних сил (\(А_\)), затраченную на перемещение зарядов (q) внутри источника.

Внутреннее сопротивление определяет количество потерь энергии при прохождении тока через источник тока.

Стоит понимать, что внутреннее сопротивление появляется из-за неидеальности реальных предметов. Только у идеальных источников тока отсутствует внутреннее сопротивление.

Однако при расчете характеристик электрических схем никакой сложности не возникает, так как мы просто представляем, что в цепи появляется дополнительный резистор (на схемах обозначается прямоугольником и буквой R), сопротивление которого будет равняться внутреннему сопротивлению источника тока.

Раз уж мы затронули расчеты электрических схем, то пора вплотную к ним приблизиться.

Закон Ома для участка цепи

Георг Ом рос в небогатой семье. Также он был довольно азартным человеком, любил играть в бильярд в компании друзей. В университетские годы Ом был лучшим игроком в бильярд среди студенческой молодежи, показывал прекрасные результаты в конькобежном спорте.

Дальше мы с вами поговорим о напряжении на элементах электрической цепи, и, в частности, на источнике тока. Поэтому вспомним, что такое напряжение из темы «Законы постоянного тока». Напряжение – физическая величина, которая показывает, какую работу сторонние силы должны приложить, чтобы перенести заряд от одной точки до другой.

Так как у источника тока имеется внутреннее сопротивление, значит, внутри него также будет и напряжение. Чтобы найти его, воспользуемся законом Ома — умножим внутреннее сопротивление источника тока r на сам ток I и получим:

Также мы можем найти напряжение, которое будет выделяться на внешней цепи. Для этого снова умножим ток I на общее сопротивление цепи R:

Оказывается, что не вся энергия источника тока уходит в цепь. Как раз таки та часть энергии, которая уходит на преодоление внутреннего сопротивления, и будет характеризовать потери. Тогда мы можем записать еще одну формулу для нахождения ЭДС источника тока:

Теперь давайте подставим вместо напряжений полученные формулы через токи и сопротивления и выразим силу тока. Так мы получим закон Ома для полной цепи:

Сила тока в цепи с заданным источником тока (при неизменной ЭДС и с постоянным внутренним сопротивлением) зависит только от сопротивления внешней цепи R.

Самое большое электрическое сопротивление на теле человека — поверхность верхнего рогового слоя кожи человека. Оно может достигать 40000–100000 Ом. Но это не значит, что можно хвататься за оголенные провода голыми руками! Этого сопротивления далеко не достаточно, чтобы защитить человека от опасного электрического тока.

Задачи на данную тему встречаются в №12 ЕГЭ. Давайте рассмотрим один пример.

Задача. Найдите внутреннее сопротивление источника ЭДС, если сопротивление в цепи R = 4 Ом, а ЭДС ε=10 В. Сила тока в цепи 2 А.

Решение.Воспользуемся законом Ома для полной цепи и выразим из него внутреннее сопротивление источника ЭДС:

Ответ: 1 Ом

Короткозамкнутая цепь

Рассмотрим частный случай электрической цепи, в котором источник тока будет подключен сам на себя. Иначе говоря, он будет короткозамкнутым.

В этом случае отсутствует сопротивление внешней цепи и закон Ома для цепи будет выглядеть так:

Короткое замыкание — это такой случай соединения проводов, при котором практически весь ток проходит по пустому проводу и возвращается в источник тока.

Короткое замыкание приводит к сильному нагреву, расплавлению металлов, а иногда и к пожарам.

Если сравнить поток электронов с потоком машин, то ток короткого замыкания – это авария на автодороге. Один поток машин решил влезть в другой. В результате на дороге образовалась авария. Но машины продолжают налетать одна на другую (как в метель в Норильске).

Теперь, когда мы уже рассмотрели основные характеристики источника тока, можем перейти к мощности и КПД источника тока.

Мощность и КПД источника тока

Мы уже не раз говорили о том, что при протекании тока выделяется энергия. Источники тока не исключение. При подключении их к цепи на них выделяется энергия. При этом энергия выделяется и в самой цепи.

Чтобы найти мощность передачи энергии (P), выделяемой источником тока, необходимо умножить силу тока на ЭДС этого источника тока. Тогда получим:

При этом часть этой мощности уходит на элементы внешней цепи, а другая часть – на преодоление внутреннего сопротивления источника тока:

Тогда мощность, выделяемая на внешней цепи:

А мощность, которая теряется на внутреннее сопротивление источника тока:

Теперь давайте рассмотрим коэффициент полезного действия (КПД, ) источника тока. Как мы уже говорили ранее, часть ЭДС источника тока уходит на внутреннее сопротивление, а часть – на внешнюю цепь. При этом вспомним, что КПД – это отношение полезной мощности к затраченной.

Запишем формулы для мощности:

Также задачи на тему ЭДС встречаются и в №16 ЕГЭ. Сложность данных задач заключается в установлении правильной зависимости величин друг от друга.

Задача.Определите, как изменятся сила тока (А) в цепи и сопротивление резистора (Б), если ЭДС источника тока заменить на такую же ЭДС, но с большим внутренним сопротивлением.
1) увеличится
2) уменьшится
3) не изменится

Решение.
Б) Внешнее сопротивление никак не зависит от источника тока. Поэтому оно не изменится — выбираем ответ 3.

А) Запишем закон Ома для полной цепи:
\(I=\frac\)
При увеличении внутреннего сопротивления знаменатель увеличится. Следовательно, сила тока уменьшится, так что вариант 2 тоже нам подходит.

Ответ: 23

Мы с вами выяснили, что источники тока – элементы электрической цепи, без которых самой цепи не существовало бы. Хотя, конечно, она бы существовала, но была бы бесполезной. Однако и они «не без греха», так как существует опасное внутреннее сопротивление, которое является головной болью для многих инженеров. А все потому, что оно снижает КПД источников тока. Дальше вы можете ознакомиться с полноценными электрическими схемами и посмотреть, как ток ведет себя за пределами источника тока.

Термины

Напряжение – произведение сопротивления элемента и протекающего через него тока.

Резистор (или резистивный элемент) – элемент электрической цепи, который может только потреблять энергию и не может ее создавать.

Сторонние силы — это все внешние силы, воздействующие на заряд.

Электростатическое поле — невидимое поле, создаваемое постоянными электрическими зарядами.

Фактчек

  • ЭДС источника тока (ε) — это физический параметр, который характеризует работу, затраченную на перемещение зарядов внутри источника сторонними силами: \(ε =\frac>\).
  • Внутреннее сопротивление (r) — определяет количество потерь энергии при прохождении тока через источник тока.
  • Закон Ома для полной цепи: Сила тока в замкнутой цепи равна отношению ЭДС цепи к ее полному сопротивлению: \(I =\frac\).
  • Предельное значение силы тока для данного источника тока называется током короткого замыкания: \(I_ =\frac\).
  • Полная мощность цепи — это есть мощность источника тока: \(P_ист=εI\).

Проверь себя

Задание 1.
Как рассчитывается ЭДС источника тока?

Задание 2.
Короткое замыкание — это:

  1. Соединение концов участка цепи проводником, сопротивление которого очень мало по сравнению с сопротивлением участка цепи.
  2. Соединение концов участка цепи проводником, сопротивление которого очень велико по сравнению с сопротивлением участка цепи.
  3. Соединение концов участка цепи проводником, сопротивление которого не зависит от сопротивления участка цепи.
  4. Отсутствие электрического тока в цепи.

Задание 3.
Чему равно ЭДС источника тока?

  1. \(ε = U_R- U_r\)
  2. \(ε = U_R+ U_r\)
  3. \(ε = U_R U_r\)
  4. \(ε = U_R\)

Задание 4.
От чего зависит сила тока в цепи с заданным источником тока?

  1. от внутреннего сопротивления цепи
  2. от внутреннего сопротивления источника тока
  3. от внешнего сопротивления цепи
  4. не зависит ни от каких величин

Задание 5.
Где самое большое сопротивление в человеке?

  1. в сердце
  2. в пищеварительной системе
  3. на коже
  4. в голове

Ответы: 1. — 1; 2. — 1; 3. — 2; 4. — 3; 5. — 3.

Физика. 10 класс

§ 26. Закон Ома для полной электрической цепи. КПД источника тока

В 1826 г. немецкий физик Георг Симон Ом ( 1787–1854 ) опытным путём установил, что при постоянной температуре отношение напряжения между концами металлического проводника к силе тока в нём является величиной постоянной. На основании этого был сформулирован закон, названный законом Ома для участка электрической цепи: , где R — сопротивление участка цепи. От чего и как зависит сила тока в замкнутой цепи, содержащей источник тока, т. е. в полной электрической цепи?

Рис.

Закон Ома для полной электрической цепи. Рассмотрим электрическую цепь, состоящую из источника тока (гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R. Известны ЭДС источника тока и его сопротивление r, которое называют внутренним. Схема цепи представлена на рисунке 132. Пусть сила тока в цепи I, а напряжение между концами проводника U.

Закон Ома для полной цепи связывает силу тока I в цепи, ЭДС источника тока и полное сопротивление цепи R + r, которое складывается из сопротивлений внешнего (резистор) и внутреннего (источник тока) участков цепи (сопротивлением соединительных проводов пренебрегаем). Эту связь можно установить теоретически на основании закона сохранения энергии.

Если через поперечное сечение проводника за промежуток времени t проходит заряд q, то работу сторонней силы по перемещению электрического заряда можно определить по формуле

Поскольку сила тока , то

В неподвижных проводниках неизменного химического состава в результате работы сторонних сил происходит увеличение только внутренней энергии внешнего и внутреннего участков цепи. Таким образом, при прохождении электрического тока в резисторе и источнике тока выделяется количество теплоты Q, которое можно определить по закону Джоуля–Ленца:

На основании закона сохранения энергии:

Подставим формулы (26.1) и (26.2) в равенство (26.3) и в результате математических преобразований получим:

Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Поэтому IR = U — падение напряжения (напряжение) на внешнем участке цепи, Ir — падение напряжения на внутреннем участке цепи.

Выражая силу тока из формулы (26.4), получим:

Формула (26.5) является математическим выражением закона Ома для полной электрической цепи , согласно которому сила тока в полной электрической цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи.

От теории к практике

Аккумулятор, внутреннее сопротивление которого r = 0,80 Ом, подсоединён к резистору. Чему равна ЭДС аккумулятора, если напряжение на его полюсах U = 6,0 В, а сила тока в цепи I = 0,50 А?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *