Как определить направление силы, действующей на проводник с током в однородном магнитном поле? Лучший ответ гарантирую!

Правило левой руки
Остальные ответы
Пальцы левой руки направляешь в сторону тока в проводнике, разворачиваешь руку так, чтобы индукция В входила в ладонь. Большой палец руки укажет направление силы, действующей на проводник!
Похожие вопросы
Ваш браузер устарел
Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.
Как определить направление силы действующей на проводник
Азбука физики
Научные игрушки
Простые опыты
Этюды об ученых
Решение задач
Презентации
Книги по физике
Умные книжки
Есть вопросик?
Его величество.
Музеи науки.
Достижения.
Викторина по физике
Физика в кадре
Учителю
Читатели пишут
ОБНАРУЖЕНИЕ МАГНИТНОГО ПОЛЯ ПО ЕГО ДЕЙСТВИЮ НА ПРОВОДНИК С ТОКОМ
На проводник с током, помещенный в магнитное поле, действует сила Ампера.

Вспомни прошлый учебный год:
ПРАВИЛО ЛЕВОЙ РУКИ
для проводника с током
служит для определения направления силы Ампера, действующей на проводник с током
в магнитном поле.

Если ЛЕВУЮ РУКУ расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца были направлены по току , то отставленный на 90 градусов большой палец покажет направление действующей на проводник силы.
ПРАВИЛО ЛЕВОЙ РУКИ
для заряженной частицы
служит также для определения направления силы, действующей на отдельную заряженную частицу, движущуюся в магнитном поле.

Если ЛЕВУЮ РУКУ расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца были направлены по движению положительно заряженной частицы (или против движения отрицательно заряженной частицы) , то отставленный на 90 градусов большой палец покажет направление действующей на частицу силы .
ПОПРОБУЙ СДЕЛАТЬ, ВДРУГ ПРИГОДИТСЯ !
1 .Определите направление силы, действующей на проводник с током со стороны магнитного поля.
2 .В какую сторону отклонится электрон под действием магнитного поля?
3. Укажите направление силы, с которой магнитное поле действует на частицу.
4. Укажите направление магнитных линий магнитного поля.
5. Укажите направление тока в проводнике. 
Учеными из США разработан светочувствительный пластиковый магнит , работающий при температуре — 75 К. Магнитные свойства нового магнита увеличиваются в 1,5 раза при облучении лучами синего цвета. Зеленый цвет производит обратный эффект.
Сила Ампера. Сила Лоренца.
Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.
Сила действия однородного магнитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:
F=B . I . ℓ . sin α — закон Ампера.
![]()
Направление силы Ампера (правило левой руки) Если левую руку расположить так, чтобы перпендикулярная составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник с током.

Действие магнитного поля на движущийся заряд.

Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца:
![]()
Направление силы Лоренца (правило левой руки) Направление F определяется по правилу левой руки : вектор F перпендикулярен векторам В и v ..
Правило левой руки сформулировано для положительной частицы. Сила, действующая на отрицательный заряд будет направлена в противоположную сторону по сравнению сположительным.

Если вектор v частицы перпендикулярен вектору В , то частица описывает траекторию в виде окружности:
Роль центростремительной силы играет сила Лоренца:
При этом радиус окружности: ,
а период обращения
не зависит от радиуса окружности!
Если вектор скорости и частицы не перпендикулярен В, то частица описывает траекторию в виде винтовой линии (спирали).

Действие магнитного поля на рамку с током
На рамку действует пара сил, в результате чего она поворачивается.

Устройство электроизмерительных приборов
1.Магнитоэлектрическая система:
1 — рамка с током; 2 — постоянный магнит; 3 — спиральные пружины; 4 — клеммы;
5 — подшипники и ось; 6 — стрелка; 7 — шкала (равномерная)
Принцип действия: взаимодействие рамки с током и поля магнита.
Угол поворота рамки и стрелки ~ I ..

2. Электромагнитная система:
1 — неподвижная катушка; 2 — щель (магнитное поле); 3 — ось с подшипниками;
4 — сердечник; 5 — стрелка; 6 -шкала; 7 — спиральная пружина
Принцип действия: взаимодействие магнитного поля катушки со стальным сердечником, где Fмаг ~ I .

Использование силы Лоренца
В циклических ускорителях: 1 — вакуумная камера; 2 и 3 – дуанты;
4 — источник заряженных частиц; 5 — мишень.

В циклотроне магнитное поле управляет движением заряженной частицы. Период обращения частицы в циклотроне: .
Т не зависит от R и υ!
Электрическое поле между дуантами разгоняет частицы, а магнитное поворачивает поток частиц. В момент попадания частиц в ускоряющий промежуток направление электрического поля меняется так, чтобы оно всегда увеличивало скорость частиц.


Схема действия масс-спектрографа Для выделения частиц с одинаковой скоростью используют взаимно перпендикулярные магнитные ( B1 ) и электрические ( E ) поля. Тогда .

Т.к. , то удельный заряд , следовательно
можно определить удельный заряд частицы, заряд. массу.

Движение заряженных частиц в магнитном поле Земли. Вблизи магнитных полюсов Земли космические заряженные частицы движутся по спирали (с ускорением) Одно из основных положений теории Максвелла говорит о том, что заряженная частица, движущаяся с ускорением, является источником электромагнитных волн — возникает т.н. синхротронное излучение. Столкновение заряженных частиц с атомами и молекулами из верхних слоев атмосферы приводит к возникновению полярных сияний.
Направление силы Ампера

Опыты показывают, что на проводник с током, помещенный в магнитное поле, со стороны этого поля действует сила, называемая силой Ампера (по имени физика, открывшего ее). Поговорим о направлении силы Ампера.
Закон и сила Ампера
После того как в середине XIX в. Х. Эрстед открыл, что вокруг проводника появляется магнитное поле, многие исследователи стали изучать это явление. Выяснилось, что магнитное поле оказывает силовое действие не только на стрелку компаса, но и на проводник с электрическим током. Однако направление силы, с которой поле действует на проводник, не совпадало по направлению ни с направлением тока в проводнике, ни с направлением вектора магнитной индукции.
Наиболее глубокое исследование силы взаимодействия магнитного поля с электрическим током провел А. Ампер.

Он установил закон, впоследствии названный его именем:
$$F= I |\overrightarrow B| Δl sin \alpha,$$
- $F$ — модуль силы, действующей на проводник;
- $Δl$ — длина проводника;
- $I$ — величина тока в проводнике;
- $\overrightarrow B$ — вектор магнитной индукции;
- $\alpha$ — угол между линиями магнитного поля и направлением тока в проводнике.
Сила, определяемая законом Ампера, также носит имя этого исследователя.
В дальнейшем оказалось, что в основе силы Ампера лежит действие магнитного поля на движущиеся заряды. Если носитель заряда двигается в магнитном поле, то со стороны этого поля на него начинает действовать сила Лоренца. В проводнике множество носителей заряда, и силы Лоренца, действующие на каждый из них, складываются в силу Ампера.
Правило левой руки
В отличие от кулоновских сил, которые направлены вдоль силовых линий поля, сила Ампера направлена иначе. Исследования показывают, что ее направление не совпадает ни с направлением линий магнитной индукции, ни с направлением тока в проводнике. Сила Ампера оказывается перпендикулярна обоим этим направлениям.
То есть, если ток в проводнике течет вперед, а магнитное поле направлено справа налево, то сила Ампера будет направлена вертикально вверх, перпендикулярно обоим направлениям. Если направить вектор магнитной индукции вверх (не меняя направление тока вперед), направление силы Ампера также изменится: она будет направлена слева направо. Наконец, если повернуть проводник так, чтобы ток двигался слева направо (вектор магнитной индукции оставить направленным вверх), то сила Ампера всё равно будет направлена перпендикулярно обоим направлениям, спереди назад.
Для определения направления силы Ампера вывели мнемоническое правило левой руки: если четыре вытянутых пальца левой руки указывают направление тока, а вектор магнитной индукции прокалывает ладонь (входит в ладонь), то отставленный большой палец укажет направление силы Ампера.

Действительно, отставленный большой палец всегда перпендикулярен как остальным четырем пальцам руки, так и направлению «прокола ладони».
При изменении направления движения тока на обратное сила Ампера также поменяет свое направление на обратное. Этим объясняется ориентирующее действие магнитного поля на рамку с током. В двух сторонах рамки ток течет вдоль одной прямой, но в разных направлениях. В результате сила Ампера, порожденная одним и тем же полем, будет также направлена вдоль одной прямой, но в разных направлениях. Следовательно, на рамку начнет действовать вращающий момент, и его действие прекратится лишь тогда, когда прямая действия силы Ампера не окажется в плоскости рамки.

Что мы узнали?
На проводник с током, помещенный в магнитное поле, действует сила Ампера. Ее величина зависит от силы тока, вектора индукции и определяется законом Ампера. Ее направление перпендикулярно и направлению тока в проводнике, и направлению вектора магнитной индукции. Оно определяется специальным мнемоническим правилом левой руки.