Что такое полюс электродвигателя?
Как это у АД нет полюсов? А работает он на внутреннем сгорании, что ли? Понятие полюс АД является величиной расчетной. У асинхронного двигателя число пар полюсов определяется р = (60*f) / n1
или для частоты f = 50 Герц число полюсов соответствует синхронной частоте АД:
•2 полюса = ~ 3000 об/мин
•4 полюса = ~ 1500 об/мин
•6 полюсов = ~ 1000 об/мин
•8 полюсов = ~ 750 об/мин
Конструктивно число полюсов АД формируется исключительно схемой обмотки статора — числом пазов в статоре и количеством слоев в пазе. У трехфазного АД число пазов в статоре всегда кратно 6. Визуально для трехфазного двигателя число пар полюсов определяется так — достаточно подсчитать число пазов на статоре, поделить на три (фазы) , затем на 2 (пары полюсов) и на число катушечных групп (количества обмоток соединенных последовательно и параллельно — для этого необходимо знать схему обмотки) . У двигателей с состредоточенными обмотками все наглядно.
Переключение схем обмоток позволяет изменять число пар полюсов и соответственно скорость двигателя. В последние годы разработаны схемы обмоток, дающие возможность путем переключения катушечных групп изменять числа полюсов и в отношении, отличном от 1:2, с сохранением достаточно высокого обмоточного коэффициента для обеих частот вращения и числа выводных концов обмотки (не более шести) . Особенность этих схем заключается в специфической компоновке катушечных групп из разновитковых катушек, при которой изменение точек подсоединения обмотки к питающей сети приводит не только к изменению полярности отдельных катушечных групп, но и к переключению групп между фазами или даже к отключению отдельных катушек. При переключениях изменяется и амплитуда МДС обмотки при разных числах полюсов, поэтому такой метод построения схем называют полюсно-амплитудной модуляцией (ПАМ) . Для трехскоростных и четырехскоростных асинхронных двигателей используют оба принципа изменения числа полюсов: устанавливают две независимые обмотки, каждая из которых (в четырехскоростных) или одна из них (в трехскоростных двигателях) выполняется полюснопереключаемой.
Сергей ЛитвинУченик (204) 8 лет назад
Спасибо. Очень помог!
Releboy Гений (93141) Я рад.
Остальные ответы
Принцип работы электродвигателя
Unfortunately, you are using an outdated browser. Please update your browser to improve performance, quality of the displayed material, and improve security.
Электрический двигатель (коротко – электродвигатель) преобразует энергию тока в механическое движение. Принцип работы устройства основан на магнетизме, что определяет присутствие в конструкции магнитов (постоянных, электромагнитов, материалов с магнитными свойствами).
Виды электродвигателей
- Синхронные электродвигатели сложнее в плане конструкции. У них есть обмотка ротора, а питание подается через щеточный механизм. Свое название получили благодаря синхронности вращения с магнитным полем, которое его запускает.
- Асинхронные просты в сборке, а потому пользуются самой большой популярностью (нет обмотки, щеток и т. д.). Их роторы двигаются медленнее магнитного поля, что определяет асинхронность вращения электродвигателя и его название.
В быту и промышленности встречаются электрические двигатели различных видов, типов, классов, мощностей. Самыми востребованными остаются простые в конструкции устройства, которые решают задачу преобразования электроэнергии в механическое вращение вала. Но даже в этой группе есть масса нюансов, которые нужно знать, чтобы правильно эксплуатировать оборудование. Начинается такая практика (грамотного использования электродвигателей для любых целей) с понимания того, как оно функционирует (принципов работы).
Принцип работы синхронного электродвигателя на видео
Принцип работы асинхронного электродвигателя на видео
Конструкция электродвигателя
Центральный процесс функционирования электрического двигателя постоянного тока (коротко ДПТ) – нагнетание крутящего момента за счет напряжения, подаваемого на роторные катушки. Процесс становится возможным благодаря 4 конструктивным элементам:
- коллектору;
- щеточному механизму (2 щетки + 2 пластины/ламели);
- ротору электрического двигателя (якорь, в синхронном двигателе имеет 1 обмотку);
- статору, на котором устанавливаются магниты (в электродвигателях постоянного тока – постоянные).
Ротор
Ротор – подвижный элемент электрического двигателя, запускаемый магнитным полем, совершает вращательные движения вместе с валом. Имеет минимум 3 зуба, один из которых стабильно попадает в область подключения.
Коллектор электродвигателя
Ротор переключается автоматически. За эту функцию отвечает коллектор – конструкция из двух ламелей, закрепленных на роторном валу и двух щеток, выполняющих функцию токосъемных контактов (обеспечивают подачу постоянного тока на ламели). Принцип работы такой:
- ротор вращается, меняя направление тока;
- когда якорь совершает поворот на 180 градусов, ламели меняются местами;
- при смене позиций пластин меняется и направление тока, и (соответственно) полюсы магнита;
- одноименные полюсы, подчиняясь законам физики, взаимно отталкиваются – катушка вращается, ее полюсы притягиваются к противоположным полюсам на другой стороне магнита.
Статор электрического двигателя
Статор – стационарный или неподвижный блок электродвигателя. Другое название – индуктор. Он включает несколько обмоток со сменяемой полярностью (при прохождении переменного тока), что и обеспечивает образование магнитного поля. В большинстве случаев статор имеет 2 пары основных полюсов, но может включать и вспомогательные для лучшего переключения ротора на коллекторе.
Принцип работы электрического двигателя
Принцип работы электродвигателя построен на процессах взаимного притяжения и отталкивания одно- и разноименных полюсов магнитов на роторе (находится в движении) и статоре (его магнит неподвижен). В самой простой сборке электродвигателя постоянного тока в роли ротора выступает катушечный узел, а индуктором – сам магнит.
Магнитное поле обеспечивает высокую эффективность работы с одним уточнением, которое формирует сложности устройства механизма. Для обеспечения постоянного движения якоря нужно добиться автоматической смены его полюсов (чтобы притянувшись к противоположному полюсу неподвижного магнита, он сразу менял собственный полюс). Это единственный способ исключить «замирание» якоря и обеспечить его безостановочное движение под действием магнитного поля и инерции.
Магнитное поле электродвигателя
Принцип работы статорного электродвигателя (также называется индукционным) тоже основан на формировании магнитного поля статора. Оно образуется во время прохождения токов через его обмотки. Это поле (вращающееся магнитное) формирует магнитное поле ротора через индукцию токов в обмотках его проводников.
Оно же (статорное поле) создает собственный магнитный поток, при этом наблюдается пропорциональная связь:
- магнитное поле статора пропорционально электронапряжению в сети;
- магнитный поток, создаваемый вращающимся полем, пропорционален току.
Характеристики поля статора зависят от токов, проходящих через обмотки, и числа обмоток фаз. Магнитное поле ротора, в свою очередь, тоже формирует поток, движущийся медленнее потока статора. Оба потока (статора и якоря) взаимно притягиваются, принуждая ротор совершать вращательные движения.
Так возникает крутящий момент – тот самый ключевой процесс, ради которого собирается вся конструкция электродвигателя. Учитывая роль статора и ротора в работе электродвигателя переменного тока, несложно заключить, что именно эти 2 элемента имеют самое большое значение в его сборке.
Электрический двигатель постоянного тока (принцип работы синхронного электродвигателя)
Под синхронными электрическими двигателями понимают устройства постоянного тока. Принцип работы такого устройства можно кратко описать 4 пунктами:
- к обмотке статора (ее еще называют индукторной или обмоткой возбуждения) подается постоянный ток;
- проходя через обмотку, ток образует постоянное магнитное поле возбуждения (используется постоянный магнит);
- к роторной обмотке тоже подается постоянный ток, на который воздействует поле статора, обеспечивая возникновение крутящего момента;
- под действием вращательной силы, ротор поворачивается на 90 градусов.
Это один цикл. После поворота обмотка якоря снова подпадает под влияние статорного магнитного поля, и ротор снова совершает поворот.
Для непрерывной работы электродвигателя полюса постоянного роторного магнита должны сменять друг друга без остановки. Смена происходит, когда полюс пересекает «нейтраль» (ее еще называют магнитной нейтралью). Чтобы ее (смену полюсов) обеспечить, кольцо коллектора разделяют на сектора диэлектрическими ламелями, к которым поочередено присоединяются края роторных обмоток.
Токосъемные щетки, которые представляют собой графитовые стержни с высокой проводимостью и низким коэффициентом трения при скольжении, необходимы для присоединения коллектора к сети. В качестве магнитов могут применяться физически существующие материалы с высокими магнитными свойствами. Но часто из-за их массы в электродвигателях постоянного тока увеличенной мощности магниты заменяют несколькими металлическими штифтами/стержнями. При этом:
- у каждого стержня формируется собственная обмотка из проводника, который подключается к шине питания («+» и «-»);
- включение одноименных полюсов осуществляется последовательно;
- количество пар полюсов – 1 или 4;
- число щеток коллектора должно соответствовать этому количеству пар.
У синхронных электрических двигателей высокой мощности, обслуживаемых постоянным током, есть ряд конструктивных нюансов, ряд из которых проявляется в динамике (во время функционирования устройства). Среди них – смещение щеток роторного коллектора по отношению к валу на определенный угол против его вращения при изменении нагрузки на двигатель. Это необходимо, чтобы компенсировать эффект, называемый реакцией ротора/якоря и предупреждению торможения вала электродвигателя, которое снижает эффективность работы подключенного к нему оборудования.
Способы подключения синхронного электродвигателя
Преимущество синхронных электродвигателей, обеспечиваемое принципом их работы, – поступательное (плавное) регулирование скорости вращения, это обеспечило их высокую эффективность при работе с тягой – на грузоподъемниках и электромашинах. В современной практике применяют 3 схемы подключения электрических двигателей постоянного тока: с параллельным, последовательным и комбинированным возбуждением.
В первом случае вместе (параллельно) с обмоткой ротора запускается дополнительная регулируемая (обычно) обмотка-реостат. Такой вариант эффективен, когда для нормальной работы машины требуется плавная регулировка скоростей вращательного движения и максимальной стабильности количества оборотов в минуту. Примеры – электродвигатели кранов, промышленных станков и линий.
При последовательном подключении вспомогательная роторная обмотка в цепь процессов возбуждения ротора включается последовательно. Это обеспечивает возможность резкого увеличения усилия электрического двигателя в определенные моменты (на старте движения состава, например).
Устройство синхронного электродвигателя на видео
Принцип работы УКД (коллекторных электродвигателей универсального применения)
УКД (двигатели универсального использования) применяются в маломощных устройствах и электроинструментах (бытовых, профессиональных) – везде, где требуется высокий момент вращения на хорошей скорости, плавная регулировка числа оборотов и небольшие пусковые токи. По конструкции УКД повторяют синхронные с последовательнойсхемой электродвигателя.
Принцип работы УКД:
- при подаче напряжения на статоре возникает магнитное поле;
- исполнение магнитного провода в УКД несколько отличается – здесь они сделаны не цельнолитыми, а сборными во избежание перемагничивания и нагрева токами Фуко;
- вспомогательная обмотка ротора (индуктивность) подключается к питанию последовательно, что позволяет настраивать одинаковую направленность магнитных полей статора и ротора в одной фазе;
- магнитные поля индуктора и якоря практически полностью синхронны – электродвигатель набирает скорость вращения при высоких нагрузках, что важно для работы многих инструментов (перфораторов, шуруповертов, пылесосов, точильных аппаратов и т. д.).
При включении в цепь электродвигателя регулируемого трансформатора добавляется еще и возможность плавной регулировки его скорости вращения. А вот изменять вектор магнитного поля, если это коллекторный двигатель переменного тока, невозможно ни при каких обстоятельствах.
Коллекторный электродвигатель общего назначение имеет много плюсов. Он выдает высокий крутящий/вращающий момент, способен развивать высокую вращательную скорость, при этом весит и места занимает немного. Есть и минусы: графитовые щетки имеют низкую износостойкость (быстро стираются на больших скоростях вращения), снижая ресурс всей сборки.
Асинхронные электрические двигатели
Электродвигатель переменного тока (он же асинхронный) тоже использует магнитное поле для создания крутящего момента. Его изобретатель – российский физик-электротехник, Михаил Осипович Доливо-Добровольский. Первый образец асинхронного электрического двигателя появился в 1890-м (с него начались теория и практика применения 3-фазного переменного тока).
Конструкция и устройство электродвигателей переменного тока:
- на каждый статор наматывается 3 обмотки;
- к каждой обмотке подключается 1 из 3 фаз;
- для охлаждения обмоток, которые сильно нагреваются, пропуская через себя переменные токи, на торцовый вал электрического двигателя устанавливается кулер (вентилятор).
Течение токов и напряжения по 3-фазной сети имеет графический вид синусоиды (плавное изменение параметров работы). Мощность в обмотке плавно увеличивается по мере перехода от конца синусоиды к ее пику и снова снижается, «спускаясь» из вершины к другому концу, достигая на обоих концах своего минимума, а на вершине – максимума.
- напряжение, подаваемое с 3 фаз на обмотки статора, образует магнитное поле (частота его вращения равна частоте вращения в сети – 50 Гц);
- ротор располагается внутри индуктора, и в нем тоже возникает свое поле;
- поле ротора отталкивается от поля статора, образуя вращательный момент.
За счет того, что в электрических двигателях переменного тока используется короткозамкнутая система, при взаимодействии магнитного поля статора и обмотки ротора, в последнем образуется очень большой ток. Он и формирует собственное поле якоря. Контактируя по законам взаимного притяжения/отталкивания полюсов с магнитным потоком индуктора, поле ротора приводит в движение вал электродвигателя в направлении, аналогичном направлению этого поля.
Устройство электродвигателя переменного тока на видео
Почему асинхронный?
Скорость магнитных полей ротора и статора аналогична, но первый на 8–100 отстает от второго по фазе, что и обеспечивает асинхронную работу основных элементов (отсюда и название). Особенность таких электрических двигателей – создание очень больших пусковых токов. Это характерно для классических короткозамкнутых устройств (тех самых, при запуске которых мигает свет). Для снижения риска перегрузок при их эксплуатации применяется ряд мер:
- в машинах с высокими показателями мощности используют фазный якорь с тремя соединенными «звездой» обмотками;
- подключение роторных обмоток осуществляется не напрямую к электросети, а через коллектор (щетки, пластины), соединенный с пусковым реостатом.
В результате при старте работы такого электродвигателя происходит соединение с питанием и поступательное снижение активного сопротивления в цепи ротора до нуля. Нет миганий, перегрузок электросети – двигатель переменного тока запускается плавно.
Преимущества электродвигателей переменного тока
Электродвигатели асинхронного типа сделали возможной эксплуатацию 3-фазной сети, которая, по сути, сформирована тремя отдельными цепями с синусоидальными движущими силами (ЭДС) в каждой из них. ЭДС в фазах имеют одинаковую частоту, создаются одним источником (обычно это 3-фазный генератор), но сдвинуты по отношению друг к другу на 120 градусов.
3-фазная сеть – это уравновешенная система с константной мгновенной суммарной мощностью, а электродвигатель переменного тока, который от нее питается, имеет неоспоримые преимущества. Среди них:
- простая эксплуатация;
- низкая цена;
- надежность;
- эффективность в части контроля момента вращения и ее скоростью. Она обеспечивается за счет управляемости электрического двигателя (его динамикой) с помощью сигнала (цифрового или аналогового). Плюс, 3-фазный электродвигатель можно «заставить» вращаться в любом направлении, если изменить направление переменного тока на роторной обмотке.
Однофазные электродвигатели
Наряду с 3-фазным, в практике широко применяются и 1-фазные асинхронные электродвигатели. Они представляют собой электрооборудование, питаемое от бытовой сети с напряжением 220 В (частота – 50 Гц). Как и 3-фазный аналог, он работает на преобразование получаемой электроэнергии в механическое действие – вращение.
Устройство и принцип работы 1-фазного двигателя проще:
- на статоре формируются минимум 2 обмотки – пусковая и рабочая;
- оси обмоток должны быть сдвинуты по отношению друг к другу на 90%;
- в конструкции добавляется еще один элемент – фазосдвигающий (это может быть катушка, конденсатор или резистор);
- питание осуществляется через подачу переменного тока на обмотку.
1-фазные электродвигатели переменного тока устанавливаются на приборах бытового применения (от центрифуг стиральных машин до холодильников) и маломощных станках для обрабатывающих предприятий.
Сравнение одно- и трехфазных электрических двигателей
По сравнению с 3-фазными 1-фазные асинхронные двигатели несколько проигрывают по ряду характеристик:
- мощность первых как минимум на 30% ниже при аналогичных размерах;
- однофазные устройства не способны работать на холостом ходу дольше 5–10 минут;
- перегрузочная способность у трехфазных значительно выше.
УКД
Главный плюс коллекторного электродвигателя общего назначения (который может питаться от постоянного тока и переменного) – экономичность. Максимальный крутящий момент и потребление тока такими устройствами ограничены благодаря индуктивному сопротивлению на малых оборотах.
Двигатели с увеличенным скольжением
В отдельную группу электродвигателей стоит выделить трехфазные устройства с повышенным сопротивлением роторной обмотки, которая обеспечивает критическое скольжение. Оно составляет в механизмах с увеличенным скольжением 40%. Сами они применяются в машинах с высокой инерционностью, работающих в режиме частых кратковременных запусков.
Каталог электродвигателей по цене производителя
В каталоге ООО ПТЦ «Привод» широко представлены электродвигатели для работы в одно- и трехфазной сети. Каждая модель устройства имеет подробное описание (технические характеристики, расшифровка наименования, габариты, данные о производителе и т. д.). В нашем ассортименте легко выбрать и можно выгодно купить электрические двигатели для решения самого широкого спектра задач.
Полюс электродвигателя, генератора
Полюс машины постоянного тока состоит из совокупности катушки (главного или добавочного полюса) и сердечника.
Главный полюс (или основной) служит для создания основного магнитного потока, который взаимодействуя с током обмотки якоря, приводит якорь во вращение. Дополнительный полюс(или добавочный) необходим для создания более равномерного магнитного поля в воздушном зазоре. С его помощью уменьшается воздействие реакции якоря, тем самым предотвращается искрение на коллекторе. Дополнительные полюса устанавливаются между главными полюсами. Для электродвигателей и генераторов малой мощности не устанавливаются. Купить полюс генератора 4ГПЭМ-55, 4ГПЭМ-220, ПЭМ-2000 и др. в Москве по цене от производителя. Доставка транспортными компаниями во все регионы России и страны СНГ. Большое количество моделей в наличии на складе. Возможна частичная/полная отсрочка платежа. Для получения дополнительной информации Вы можете отправить запрос на электронную почту info@energo1.com. Специалисты помогут подобрать наиболее подходящий для Вас вариант!
Описание
Оплата и Доставка
КОНСТРУКЦИЯ ОСНОВНОГО (ГЛАВНОГО) ПОЛЮСА С ОБМОТКАМИ
1 — обмотка главного полюса 2 — сердечник главного полюса (шихтованный) 3 — полюсный наконечник 4 — болт крепления полюса к станине 5 — станина 6 — якорь |
КОНСТРУКЦИЯ ДОПОЛНИТЕЛЬНОГО (ДОБАВОЧНОГО) ПОЛЮСА
1 — сердечник 2 — обмотка 3 — резьбовые отверстия для болтов крепления 4 — стяжные шпильки |
Развернуть
БЕЗНАЛИЧНЫЙ РАСЧЁТ
В нашей компании действует безналичный расчёт. Для того чтобы Вы могли оплатить по безналичному расчету счёт необходимо:
1. Отправить заявку на электронную почту info@energo1.com, приложив реквизиты или продиктовать менеджеру по телефону;
2. После этого менеджер на указанные вами реквизиты выставит счет в соответствии с Вашим запросом;
3. Согласовываете с менеджером условия по оплате:
- частичная предоплата
- предоплата + отсрочка платежа
5. После того как счет оплачен, Вы можете либо скинуть копию платежного поручения для ускорения отгрузки, либо дождаться сообщения от менеджера, что ваша оплата зачислена на наш расчётный счёт;
6. После поступления денежных средств менеджер отдаст ваш заказ на производство (если продукция под изготовление) или будет готовить ваш заказ к отправке (если продукции имеется в наличии на складе).
УСЛОВИЯ ДОСТАВКИ ПРОДУКЦИИ
- транспортная компания
- самовывоз со склада в г. Нижний Тагил или г. Екатеринбург
- самовывоз со склада завода-изготовителя
- КИТ
- Деловые линии
- Первая экспедиционная компания (ПЭК)
- Экспресс-Авто
- РАТЭК
- Авиапартнер
- VST logistic
- Россия
- Казахстан
- Белоруссия
- Украина
САМОВЫВОЗ СО СКЛАДА
Для того чтобы получить товар на складе Вам необходимо иметь доверенность от организации и паспорт на то лицо, которое будет получать товар.
ТРАНСПОРТНАЯ КОМПАНИЯ
При отправке товара через транспортную компанию вам необходимо будет предварительно заполнить бланк заказа, который вам вышлет менеджер на электронную почту.
СРОК ДОСТАВКИ
Срок доставки товара зависит от региона получения, доставка занимает разное время. Сроки доставки уточняйте у менеджера. После отправки товара менеджер скинет вам номер транспортной накладной, по которому можно отслеживать статус вашего отправления через личный кабинет на сайте транспортной компании.
ГЕОГРАФИЯ ПОСТАВОК
Что такое количество полюсов двигателя, как делится количество полюсов?
Что такое количество полюсов двигателя, как делится количество полюсов?
Количество полюсов двигателя является количество полюсов, содержащихся в каждой фазе двигателя. Количество полюсов соответствует скорости. Скорость полюса около 3000 об/мин, полюс полюс-1500 об/мин, и полюс полюс-750 об/мин.
Что такое количество полюсов двигателя
«Полюс номер» трехфазного асинхронного двигателя является количество магнитных полюсов, которые определяют вложенные области. Обмотки статора связаны различными способами в форме различных полюса числа магнитного поля статора. Количество полюсов выбранного двигателя определяется скорость, необходимые нагрузки, и количество полюсов двигателя непосредственно влияет на скорость двигателя.
Скорость двигателя = 60f / p-60 раз Мотор частота, деленное на мотор полюса пары. Согласно формуле, это не трудно увидеть, что больше количество этапов, тем ниже скорость, тем меньше количество полюсов, тем выше скорость.
Каждая группа электродвигатели переменного тока трехфазные генерирует N и S поляков, и количество полюсов каждой фазе каждого двигателя является количество полюсов. Так как магнитные полюса появляются в парах, двигатель имеет 2, 4, 6 и 8 полюсов. В Китае частота-50 Гц, 2-полюсный синхронный скорость-3000r/мин, скорость 4-полюсный синхронный – 1500r/мин, 6-полюсный синхронный скорость-1000r/мин, и 8-полюсный синхронный скорость 750r/мин. Обмотки может быть сформированный один за другим в форме петли, то есть, логарифм магнитных полюсов, которые находятся в парах, и поляки смысли магнитных полюсов. Когда эти обмотки проходят текущие, магнитное поле создается, и соответственно будет магнитных полюсов. Ток двигателя относится только к напряжения и мощности двигателя.
Как делится количество полюсов двигателя?
Два полюса, называются высокоскоростные двигатели, четыре являются средние скорости, шесть являются низкая скорость и восемь или более называются ультра низкая скорость.
Два уровня 2800-3000 об / мин
Квадрупольный 1400-1500 об / мин
Шесть уровней 900-1000 об / мин
Больше или равно восьми поляков менее чем 760 об/мин.
Метод идентификации магнитный полюс
1, посмотрите на скорости как 1430r / мин фактической синхронная скорость 1500 об/мин, скорость формуле: скорость = времени (60 секунд) & TImes; частоты (50 Гц), деленная на число магнитных полюсов пару полюс-2 поляков, которые можно вычислить 3000 ÷ 1500 = 2 полюса пар, который является 4-полюсный двигатель.
2, посмотрите на модель является более прямым: например, мотор модели является Y80M-4Y → трехфазного асинхронного двигателя, которой является код имя продукта трехфазного асинхронного двигателя: YR-это раны типа асинхронного двигателя; YB является взрывозащищенные асинхронного двигателя; YQ это высокий начальный крутящий момент асинхронного двигателя. 80→The высота базы база (мм) M→the длина базового блока 4→the количество магнитных полюсов.
3 асинхронный двигатель начинается с YB, тип Кейдж белка является YR, повышенную безопасность типа является YA, то высота центра и полюс номер, например YR400-45606KV, который является асинхронной белка клетки мотор центр высотой 400 мм и полюс, количество 4 Пол ES. , номинальная мощность 560KW, номинальная напряжение 6кВ