От чего зависит электроемкость проводника
Перейти к содержимому

От чего зависит электроемкость проводника

  • автор:

От чего зависит электроемкость проводника

Рассмотрим уединенный проводник, т. е. проводник, находящийся в однородной изотропной среде вдали от других проводников и заряженных тел. При сообщении такому проводнику избыточного заряда q последний распределяется по поверхности проводника с поверхностной плотностью , которая зависит от размеров и формы проводника.

Выделим на поверхности проводника малый элемент площади dS, полагая, что заряд этого элемента является точечным. В другой точке поверхности этого же проводника, отстоящей от элемента dS на расстояние r, этот заряд создает электрическое поле, потенциал которого равен

,где — относительная диэлектрическая проницаемость среды, в которой находится проводник. Интегрируя это выражение по всей поверхности проводника S, найдем потенциал, создаваемый в рассматриваемой точке всем проводником:

Так как в различных точках на поверхности проводника поверхностная плотность заряда имеет разные значения, то будем полагать, что , где k — некоторая функция координат выбранного элемента поверхности dS. Тогда выражение для потенциала проводника имеет вид

. (3.1)

В полученном выражении интеграл зависит от размеров и формы поверхности проводника, а также от расположения точки, для которой определяется потенциал.

Значения этого интеграла не зависят от величины заряда, сообщенного проводнику, т. е. одинаковы при различных значениях заряда q.

Из формулы (3.1) следует, что потенциал уединенного проводника прямо пропорционален его заряду и отношение заряда q к потенциалу для данного проводника есть величина постоянная. Это отношение называется электрической емкостью, или электроемкостью, проводника:

Электрическая емкость уединенного проводника зависит от его формы и размеров, а также от величины относительной диэлектрической проницаемости среды, в которой он находится. Электроемкость не зависит от материала проводника, его агрегатного состояния, от формы и размеров возможных полостей внутри проводника. Электроемкость не зависит также ни от заряда проводника, ни от его потенциала.

В качестве примера найдем электроемкость уединенного проводящего шара радиуса R, покрытого слоем диэлектрика с относительной проницаемостью и толщиной d. Пусть шар имеет заряд q. Тогда напряженность поля, создаваемого шаром внутри диэлектрического слоя,

За пределами слоя напряженность поля определяется выражением:

Потенциал поверхности шара:

Таким образом, электроемкость шара, покрытого слоем диэлектрика, есть

В случае, если толщина диэлектрического слоя , емкость шара равна . При d=0 она равна .

Из приведенных соотношений следует, что потенциалы одинаково заряженных и геометрически подобных проводников должны быть обратно пропорциональны их линейным размерам, а их электрические емкости прямо пропорциональны этим размерам.

Электроемкость проводника численно равна заряду, который нужно сообщить этому проводнику для изменения его потенциала на единицу. В СИ единица измерения электрической емкости 1 фарада (Ф). Это емкость такого проводника, потенциал которого изменяется на 1 В при сообщении ему заряда в 1 Кл: 1 Ф = 1 Кл / 1 В.

Если вблизи проводника есть другие проводящие незаряженные тела, то при сообщении проводнику некоторого электрического заряда его потенциал будет меньше, чем потенциал уединенного проводника таких же формы и размеров. Это обусловлено тем, что на поверхностях тел, обращенных к заряженному проводнику, будут индуцироваться электрические заряды противоположного знака.

Для наглядности поясним это явление на примере. Пусть на некотором расстоянии от проводящего шара радиуса R расположен незаряженный металлический стержень длиной l так, что его ближний конец находится на расстоянии r от центра шара, а дальний — на расстоянии (r + l). Если шару сообщить положительный электрический заряд Q, то создаваемое шаром поле будет индуцировать на ближнем конце стержня заряд -q, а на дальнем заряд +q. Потенциал шара при этом будет равен

Следовательно, электроемкость проводника возрастает, если недалеко от него находятся другие проводящие тела. В этом случае принято говорить о взаимной электроемкости проводников.

Наибольший интерес представляет взаимная электроемкость системы из двух проводников с равными по величине и противоположными по знаку электрическими зарядами: |+q| = |- q| = q. Их взаимная электрическая емкость определяется как отношение заряда к разности потенциалов ,где разность потенциалов между проводниками.

1) От чего зависит электроемкость проводника
2) Изобразите качественно изменения Е и в плоском, цилиндрическом и сферическом конденсаторах с изменением расстояния от центра симметрии указанных систем
3) Как изменяется емкость проводника, если недалеко от него находятся другие проводящие тела.

От чего зависит электроемкость проводника

Наличие единого (в электростатике!) потенциала во всём проводнике — одно из важнейших его свойств, и именно оно позволяет строго ввести определение электрической ёмкости уединённого проводника по формуле

где `Q` — заряд на проводнике, `varphi` — его потенциал, и ёмкость конденсатора (пары проводников) – по формуле

где `varphi_1` и `varphi_2` — потенциалы отдельных проводников с зарядами `Q` и `-Q`. Не будь этого свойства, было бы непонятно, что именно понимать под `varphi`, `varphi_1` и `varphi_2`. Почему мы, например, не спрашиваем себя, какова ёмкость двух деревяшек? Да потому, что мы не можем говорить о едином потенциале даже одной деревяшки (в разных точках её потенциал будет, вообще говоря, разным).

Электроёмкость измеряется в фарадах: `1` фарад `=1` Ф `=1` Кл/`1`В.

В определение ёмкости конденсатора, т. е. пары проводников, входит один заряд. Дело в том, что наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: `Q_1=-Q_2=Q`.

Хотя в определение электроёмкости входят заряд и потенциал `C=Q//varphi` (или разность потенциалов — для конденсатора `C=Q//(varphi_1-varphi_2)`) фактически ни от заряда, ни от потенциала (разности потенциалов) ёмкость не зависит, а определяется только геометрией проводника (да ещё диэлектрической проницаемостью среды, см. раздел, посвящённый диэлектрикам). Например, ёмкость уединённого проводящего шара радиуса `R` в вакууме равна

`C_»шара»=4pi epsilon_0R` (2.2.3)

(последняя формула получается непосредственно из формулы для потенциала уединённого шара `varphi=Q/(4pi epsilon_0)`), а ёмкость плоского конденсатора (Пример 24)

Последнее связано с тем, что потенциал уединённого проводника всегда пропорционален его заряду (а в конденсаторе разность потенциалов пропорциональна заряду); ёмкость же есть как раз коэффициент пропорциональности `Q=Cvarphi` (или `Q=C(varphi_1-varphi_2)`).

Нетрудно вычислить (воспользовавшись результатом Примера 18) ёмкость сферического конденсатора

`C=4pi epsilon_0(R_1R_2)/(R_2-R_1)`, (2.2.5)

где `R_1` и `R_2` — радиусы внутренней и внешней сфер.

Определить ёмкость шара размером с Землю. Радиус Земли `R=6370` км. Каким должен быть радиус металлического шара, чтобы его электроёмкость была равна `1` фараду?

По формуле (2.2.3) `C=4pi epsilon_0R~~0,71` мФ. Чтобы ответить на 2-ой вопрос, снова воспользуемся формулой (2.2.3), выразив из неё `R=1//4pi epsilon_0C=9*10^6` км, что почти в `13` раз больше радиуса Солнца.

Оценить, какого размера должны быть пластины плоского воздушного конденсатора в форме квадратов, расстояние между которыми `d=1` мм, чтобы его электроёмкость равнялась `1` фараду?

По формуле (2.2.4) имеем `C=epsilon_0L^2//d`, откуда `L~~10,6` км.

Как изменится электроёмкость плоского конденсатора с воздушным зазором между пластинами площади `S` каждая и с расстоянием между пластинами `d`, если между обкладками конденсатора вставить параллельно обкладкам металлическую пластину толщиной `delta

Внутри металлической пластинки напряжённость электрического поля равна нулю, поэтому эта область не вносит вклада в разность потенциалов между обкладками конденсатора. Напряжённость в воздушном промежутке между обкладками конденсатора останется такой же, какой была до внесения пластинки (в целом электрически не заряженная пластинка не изменяет напряжённости поля вне её). Ёмкость конденсатора без пластинки вычислялась бы так:

После внесения пластинки уменьшится ширина области пространства между обкладками конденсатора, занятая полем (от `d` до `d-delta`); в итоге

Результат не зависит от месторасположения пластинки.

что такое электроемкость уединенного проводника и от чего она зависит?

Электроемкость характеризует способность проводников или системы из нескольких проводников накапливать электрические заряды, а следовательно, и электроэнергию, которая в дальнейшем может быть использована, например, при фотосъемке (вспышка) и т. д.

Различают электроемкость уединенного проводника, системы проводников (в частности, конденсаторов) .

Уединенным называется проводник, расположенный вдали от других заряженных и незаряженных тел так, что они не оказывают на этот проводник никакого влияния.

Электроемкость уединенного проводника — физическая величина, равная отношению электрического заряда уединенного проводника к его потенциалу: ~C = \frac. В СИ единицей электроемкости является фарад (Ф) .

1 Ф — это электроемкость такого проводника, потенциал которого изменяется на 1 В при сообщении ему заряда в 1 Кл. Поскольку 1 Ф очень большая единица емкости, применяют дольные единицы: 1 пФ (пикофарад) = 10-12 Ф, 1 нФ (нанофарад) = 10-9 Ф, 1 мкФ (микрофарад) = 10-6 Ф и т. д.

Электроемкость проводника не зависит от рода вещества и заряда, но зависит от его формы и размеров, а также от наличия вблизи других проводников или диэлектриков. Действительно, приблизим к заряженному шару, соединенному с электрометром, незаряженную палочку (рис. 1). Он покажет уменьшение потенциала шара. Заряд q шара не изменился, следовательно, увеличилась емкость. Это объясняется тем, что все проводники, расположенные вблизи заряженного проводника, электризуются через влияние в поле его заряда и более близкие к нему индуцированные заряды противоположного знака ослабляют поле заряда q.
Рис. 1

Если уединенным проводником является заряженная сфера, то потенциал поля на ее поверхности ~\varphi = \frac, где R — радиус сферы, ε — диэлектрическая проницаемость среды, в которой находится проводник. Тогда
~C = \frac = 4 \pi \varepsilon_0 \varepsilon R —

электроемкость уединенного сферического проводника.

Обычно на практике имеют дело с двумя и более проводниками. Рассмотрим систему из двух разноименно заряженных проводников с разностью потенциалов φ1 — φ2 между ними. Чтобы увеличить разность потенциалов между этими проводниками, необходимо совершить работу против сил электростатического поля и перенести добавочный отрицательный заряд -q с положительно заряженного проводника на отрицательно заряженный (или заряд +q с отрицательно заряженного проводника на положительно заряженный) . При этом увеличивается абсолютное значение обоих зарядов: как положительного, так и отрицательного. Поэтому взаимной электроемкостью двух проводников называют физическую величину, численно равную заряду, который нужно перенести с одного проводника на другой, для того чтобы изменить разность потенциалов между ними на 1 В:
~C = \frac.

Взаимная электроемкость зависит от формы и размеров проводников, от их взаимного расположения и относительной диэлектрической проницаемости среды, заполняющей пространство между ними.

Электроемкость. Конденсаторы

Если у нас есть два проводника, изолированных друг от друга, которым мы сообщаем некоторые заряды (обозначим их соответственно q 1 и q 2 ), то между ними возникнет определенная разность потенциалов. Ее величина будет зависеть от формы проводников, а также от исходных величин зарядов. Обозначим такую разность Δ φ . Если мы говорим о разности, возникающей в электрическом поле между двумя точками, то ее обычно обозначают U .

В рамках темы данной статьи нам больше всего интересна такая разность потенциалов между проводниками, когда их заряды противоположны по знаку, но равны друг другу по модулю. В таком случае мы можем ввести новое понятие – электрическая емкость (электроемкость).

Заполнение пространства между проводниками диэлектрическим материалом может увеличить электроемкость плоского конденсатора в число раз, кратное undefined.

Справедливость обеих формул, приведенных выше, не зависит от количества конденсаторов в батарее.

Как рассчитать электроемкость батареи конденсаторов

Рисунок 1 . 6 . 5 . Смоделированное электрическое поле плоского конденсатора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *