Мощность, формула
Мощностью P называется отношение произвольной работы W к времени t, в течение которого совершается работа.
\[ \textit <Мощность>= \frac>> \]Мощность>
Единица СИ мощности
\[ [P] = \text <Ватт>\enspace \text = \frac>> = \text \frac \]Ватт>
Средняя мощность, формула
Если:
P — Средняя мощность (Ватт),
W — Работа (Джоуль),
t — Время затраченное на совершение работы (секунд),
то
Если работа пропорциональна времени, W~t, то мощность постоянна.
Вычислить, найти среднюю мощность по формуле (3)
Мгновенная мощность, формула
В большинстве случаев мощность зависит от времени, P=P(t). Мгновенная мощность есть производная работы по времени:
\[ P = \frac
\[ P = F \frac
Здесь:
F — Мгновенная сила (Ньютон),
u — мгновенная скорость (метр/секунда),
Мгновенная мощность равна произведению мгновенной силы на мгновенную скорость
Формула (6) справедлива в том случае, когда F или u, постоянны. Если и F и u постоянны, то P представляет собой постоянную мощность.
При равномерно ускоренном движении F=const
\[ P_
Мощность
Мощность – одна из самых распространенных физических величин. Она показывает количество работы механизма, выполненной в единицу времени. Определение мощности простыми и научными словами, а также формулы и примеры задач с подробным решением – в материале КП
Мощность – это физическая величина, которой можно охарактеризовать любой механизм или физическую (материальную) систему вообще. Например, мощность есть у двигателя, бытового прибора, лошади и даже человека. Во всех случаях речь идет о вычислении количества полезной работы, которая произведена за определенное время (как правило, в секунду).
Определение мощности простыми словами
Что такое мощность, интуитивно понятно. Например, очевидно, что электрический самокат мощнее обычного, а автомобиль в этом ряду является самым «сильным». Есть и другие наглядные примеры. Допустим, человек уберет гораздо меньше урожая с поля, чем комбайн за то же время.
Исходя из этого, можно упрощенно сказать, что мощность представляет собой количество работы, которая выполняется в единицу времени. Причем это именно полезная работа системы (механизма), которая выполнена за час, минуту, день или другой отрезок времени.
Есть и научное определение: мощность – это скалярная физическая величина, которая равна мгновенной скорости, переданной от одной физической системы другой в процессе использования энергии. Для наглядного объяснения это определение можно разобрать на составляющие.
- Под скалярной имеется в виду величина, которая не имеет направления (в отличие от той же силы, которая его имеет и поэтому является векторной).
- Физическая система – можно сказать, что это механизм, например тот же автомобиль, бытовой прибор или комбайн для уборки урожая.
- Использование энергии – в большинстве случаев имеется в виду определенный искусственный процесс, который выполняется для пользы человека, семьи, общества.
Обычно понятие «мощность» не используют для описания природных объектов и процессов. Нельзя, например, сказать, что град мощнее дождя. Мощность почти всегда связана с определенными механизмами, созданными человеком. Этот показатель характеризует самые разные виды агрегатов и устройств: электроники, механизмов, транспортных средств и многих других. Хотя данное правило нестрогое, потому что можно, например, говорить о мощности излучения солнца.
это интересно
Кинетическая энергия
Какой энергией обладает летящий самолет и можно ли этой энергией зарядить телефон
Полезная информация о мощности
Определения мощности в разных разделах физики, соответствующие формулы, а также распространенные единицы измерения представлены в таблице.
Обозначения мощности | W, P, N |
Мощность в механике | Механическая работа, совершенная в единицу времени: N = A/t |
Мощность в электродинамике | Работа тока, совершенная в единицу времени: P = A/t |
Мощность в термодинамике | Скорость выделившейся теплоты в единицу времени: N = Q/t |
Единица измерения мощности в системе СИ | Вт (ватт) = 1 Дж/с |
Единица измерения мощности в астрофизике | эрг/с |
Единица измерения мощности двигателей | 1 лошадиная сила (л.с.) |
Как обозначается мощность
Есть три варианта обозначения мощности:
- W – в международной системе СИ;
- P – в формулах механики и электродинамики (от англ. power – сила);
- N – в формулах гидродинамики и механики, чаще в русскоязычной литературе (от французского французского nombre — количество [работы за единицу времени]).
Все формулы мощности
Понятие мощности применяется в разных разделах физики, например в механике, термо- и электродинамике. В зависимости от рассматриваемой области мощность можно выразить через разные величины, поэтому формулы будут иметь разный вид.
Например, электрическая мощность определенного участка цепи определяется как произведение силы тока и напряжения на нем:
\(\mathrm P(\mathrm t)\;=\;\mathrm I(\mathrm t)\;\cdot\;\mathrm U(\mathrm t)\)
Буква (t) означает, что речь идет о мгновенной величине, то есть силе, которая проявляется за бесконечно малый промежуток времени (буквально доли секунды).
В термодинамике нередко рассматривают тепловую мощность N. Ее можно определить как скорость выделения тепла (количество теплоты Q) в единицу времени t:
\(\mathrm N\;=\;\frac<\mathrm Q><\mathrm t>\)
С этим тесно связано понятие коэффициента полезного действия (КПД), которое определяется как процент полезной энергии механизма от общего количества затраченной энергии:
\(\mathrm<КПД>\;=\frac<\mathrm><\mathrm
>\;\cdot\;100\%\)КПД>
Формулы механической мощности
Можно отдельно выделить формулы механической мощности. В самом простом случае это количество работы в единицу времени, то есть:
\(\mathrm N\;=\;\frac<\mathrm A><\mathrm t>\)
Рассматривая мощность как силовую величину, получим, формулу произведения силы, приложенной к телу, на скорость его перемещения под воздействием этой силы:
\(\mathrm N\;=\;\mathrm F\;\cdot\;\mathrm v\)
Мощность можно представить и как произведение вектора силы на вектор скорости, то есть значений этих величин на косинус угла между ними:
\(\mathrm N\;=\;\mathrm F\;\cdot\;\mathrm v\;=\;\mathrm F\;\cdot\;\mathrm v\;\cdot\mathrm
Если рассматривать чисто вращательное движение (например, волчок), формула определяется через момент силы М (Н*м), угловую скорость w (рад/с) и количество полных оборотов в минуту (об/мин):
\(\mathrm N\;=\;\mathrm M\;\cdot\;\mathrm w\;=\;\frac<2\mathrm\pi\;\cdot\;\mathrm M\;\cdot\;\mathrm n>\)
Единица измерения
Мощность измеряется в разных единицах:
- система СИ – Вт (ватт), то есть один джоуль работы в секунду (Дж/с);
- астрофизика, теоретическая физика – эрг в секунду (эрг/с);
- в характеристиках двигателей транспортных средств (в том числе авто, локомотивы, корабли) – лошадиная сила (л.с.).
Причем наряду с метрической лошадиной силой, распространенной в большинстве стран, есть также старинная мера английской лошадиной силы. Обычная лошадиная сила соответствует 735,5 Вт, в то время как английская – 745,7 Вт.
В школьном курсе физики и на практике мощность зачастую измеряют по системе СИ, то есть в ваттах (Вт). Именно к Вт применяют производные, например киловатт (кВт). Это обозначение, например, используют для определения расхода электричества бытовых приборов. Так, расход бытового холодильника в зависимости от модели соответствует 200-500 кВт*ч.
это интересно
Закон Кулона
Что это такое и как применяется на практике один из фундаментальных законов физики
Формулы электрической мощности
Есть понятие и электрической мощности. Оно означает скорость передачи электроэнергии либо скорость ее преобразования, например, в тепло. Величина прямо пропорционально зависит от силы тока и напряжения на участке цепи, поэтому формула следующая:
\(\mathrm P\;=\;\mathrm I\;\cdot\;\mathrm U\)
С другой стороны, электрическую мощность можно выразить и через работу электрического поля в единицу времени. Тогда формула будет такой:
\(\mathrm P\;=\;\frac<\mathrm A><\mathrm t>\)
Единица измерения
В системе СИ электрическая мощность измеряется в Вт (ватт), международное обозначение W. Как известно, работу измеряют в джоулях, а время – в секундах. Поэтому один ватт соответствует работе в один джоуль, выполненной за одну секунду, то есть:
\(1\;\mathrm<Вт>\;=\frac<1\;\mathrm<Дж>><1\;\mathrm с>\)Вт>
Такую единицу измерения иногда упрощенно называют «джоуль-секунда». Хотя нужно понимать, что речь идет не о произведении, а именно об отношении работы к единице времени.
С другой стороны, электрическую мощность можно определить как произведение силы тока на напряжение. Исходя из этого единицей измерения является вольт-ампер:
\(1\;\mathrm<Вт>\;=\;1\;\mathrm В\;\cdot\;1\;\mathrm А\)Вт>
Такую единицу упрощенно называют «вольт-ампер». Причем речь идет именно о произведении величин, а не об их отношении.
Задачи на мощность с решением
Можно привести несколько примеров задач на мощность из разных разделов физики.
Задача 1
Человек поднимает ведро с водой из скважины колодца, прикладывая для этого силу 60 Н. Глубина колодца составляет 10 м, а общее время для поднятия на поверхность – 30 секунд. Какова мощность, которую развивает человек для поднятия одного ведра с водой?
Решение
В данном случае речь идет о механической мощности, которая определяется по простейшей формуле N = A/t. Работу можно рассчитать, зная приложенную силу и перемещение ведра воды (в данном случае в вертикальном направлении): A = F • S = 60 • 10 = 600 Дж. Теперь осталось посчитать N = 600 /30 = 20 Вт.
Ответ: Для поднятия одного ведра воды человек развивает мощность 20 Вт.
Задача 2
Комнату освещает лампа, мощность которой составляет 110 Вт. Напряжение в электрической сети квартиры стандартное и соответствует 220 Вт. Какова сила тока, проходящего через лампу?
Решение
По условиям задачи мощность P = 100 Вт, а напряжение U = 220 В. Известно, что P = I • U, откуда следует, что I = P /U. Поэтому I = 100 /220 = 0,45 А.
Ответ: Сила тока, проходящего через лампу, составляет 0,45 А.
Задача 3
Какой должна быть мощность источника тепла, чтобы полностью восполнить теплопотери через кирпичную стену, если ее толщина L = 0,5 м, а общая площадь S = 50 м 2 ? Наружная температура стены составляет T2 = -30 о С, внутренняя температура T1 = +20 о C.
Решение
Через кирпичную стену проходит тепловой поток q, который определяется по формуле q = λ • S • (T1 – T2) /L, где λ – это коэффициент теплопроводности кирпича (табличное значение) 0,56 Вт/(м* о С). Подставляя значения в формулу, получаем: q = 56 • 50 • (20+30) /0,5 = 2800 Дж = 2,8 кДж.
Чтобы компенсировать эту тепловую потерю, необходим источник тепла не меньшей мощности, то есть минимум 2,8 кДж/с.
Ответ: W = 2.8 кДж/с.
Популярные вопросы и ответы
Отвечает Юлия Крутова, учитель физики средней общеобразовательной школы №16 (Московская область, Орехово-Зуевский городской округ):
Как из формулы нахождения мощности получить работу?
Одна из формул определяет мощность как отношение работы ко времени, в течение которого она была выполнена, то есть: N=A/t. Из этого легко выразить: A=N*t.
Пригодятся ли формулы вычисления мощности на ЕГЭ?
Однозначно пригодятся, так как мощность – это универсальное понятие и может встретиться в задаче на любую тему.
Почему в 7 классе на физике начинают изучать мощность?
Потому что энергия – это базовое понятие, на котором строятся все законы физики и описание окружающего мира. А мощность характеризует скорость изменения энергии системы (скорость совершения работы), поэтому понятие мощности вводится в школе одним из первых.
Механическая работа. Мощность.
Например: мы действуем с силой на шкаф, но не можем сдвинуть.
2.Тело перемещается, а сила равна нулю или все силы скомпенсированы.
Например: при движении по инерции работа не совершается.
3. Угол между векторами силы и перемещения (мгновенной скорости) равен 90 0 (cosα=0).
Например: центростремительная сила работу не совершает.
Если вектора силы и перемещения сонаправлены (α=0 0 , cos0=1), то A=Fs
Если вектора силы и перемещения направлены противоположно
(α=180 0 , cos180 0 = -1), то A= -Fs (например, работа силы сопротивления, трения).
Если угол между векторами силы и перемещения 0 0 < α < 180 0 , то работа положительна.
Если угол между векторами силы и перемещения 0 0 < α < 180 0 , то работа положительна.
Если на тело действует несколько сил, то полная работа (работа всех сил) равна работе результирующей силы.
Если тело движется не по прямой, то можно разбить все движение на бесконечно малые участки, которые можно считать прямолинейными, и просуммировать работы.
Графическое представление работы.
Рассмотрим движение тела под действием постоянной силы вдоль прямой Ох. График зависимости силы от координаты изображен на рисунке.
Площадь заштрихованного прямоугольника на рисунке численно равна работе силы Fпри перемещении из точки х1 в точку х2.
Если сила меняется с расстоянием (координатой), то необходимо разбить все движение на такие малые участки, на которых силу можно считать неизменной, сосчитать работы на каждом элементарном участке пути, и сложить все элементарные работы. Таким образом: работа численно равна площади фигуры под графиком зависимости силы от координаты F(x).
Единицы работы.
В международной системе единиц (СИ):
[А] = Дж = Н • м
Механическая работа равна одному джоулю, если под действием силы в 1 Н оно перемещается на 1 м в направлении действия этой силы.
1Дж = 1Н • 1м
Мощность
Мощность — физическая величина, характеризующая скорость совершения работы и численно равная отношению работы к интервалу времени, за который эта работа совершена.
Мощность показывает, какая работа совершается за единицу времени.
Единицы мощности
В международной системе единиц (СИ):
Мощность равна одному ватту, если за 1 с совершается работа 1 Дж.
1 л.с. (лошадиная сила) ≈ 735 Вт
Формула механической мощности — средняя и мгновенная мощность
В общем смысле этим термином обозначают энергетические изменения определенной системы. Классическая формула механической мощности устанавливает связь между работой и временем, которое понадобилось на завершение соответствующего процесса. В этой публикации дополнительно рассмотрены электрические и гидравлические параметры энергии, методики вычислений, измерительные приборы.
Механическая мощность характеризует скорость выполнения работы
Используемые обозначения
В стандартных формулах мощность часто обозначают буквой N без уточнения происхождения. Достаточно часто применяют P. В этом варианте понятен исходный смысл: от латинского слова potestas – действие, мощь, сила. В электротехнике часто применяют W (watt – англ., ватт). Дополнительными символами отмечают специфическое назначение NH – гидравлическая мощность от hydraulics.
Основные формулы
Когда рассчитывается средняя мощность формула содержит значения для определенных промежутков: ΔА (работа) и Δt (время). Мгновенные показатели обозначают dA и dt, соответственно. Чтобы узнать количество потребленной энергии, берут интеграл за необходимый временной интервал.
Единицы измерения
В действующей системе единиц «СИ», утвержденной на международном уровне, мощность предлагается указывать в ваттах (один Вт = работе 1 Джоуль, сделанной за 1 секунду). Устаревшее обозначение «лошадиная сила» рекомендовано изъять из оборота. Для удобства применяют производные значения с определенными приставками (один киловатт (1кВт) = 10 в третьей степени ватт = 1 000 Вт).
Перевод 1 Вт в иные обозначения:
- килограмм-сила-метр в секунду (кгс*м/с) – 0,102;
- эрг в секунду (эрг/с) – 107;
- лошадиная сила (л.с.) метрическая/ английская – 1,36*10-3/ 1,34*10-3.
К сведению. Если в описании автомобиля указано 125 кВт, это равнозначно 170 л.с. (125*1,36=169,95).
Мощность в механике
В ходе исследования механических процессов необходимо учитывать точку приложения усилия и направление действия. Рассчитать мощность можно по формуле (N=F*v) с учетом скорости движения (v) определенного тела. Если направления не совпадают, добавляют корректирующий множитель (cosα).
Электрическая мощность
В этой области не важны тяжесть предметов, сила трения, другие механические термины и определения. Тем не менее, суть рассматриваемой физической величины остается неизменной, подобны принципы отдельных вычислений.
Можно применить для расчета мгновенной мощности формулу:
где:
- (a-b) – обозначают энергию, затраченную на перемещение заряда (q) из одной в другую точку;
- А – выполненная в ходе этого процесса работа.
Если взять все заряды (Q), напряжение в контрольных точках (U), нетрудно вычислить суммарную мощность:
P = (U/ Δt) * Q = U * Q/ Δt = U *I.
Последнее преобразование основано на классическом определении тока (количество зарядов, протекающих по соответствующему проводнику за определенное время).
Для пассивных цепей можно пользоваться законом Ома и соответствующими формулами без дополнительных коррекций. Учитывают (при наличии) источник электродвижущей силы (направление движения токов).
Формулы для расчета мощности и других параметров
При подключении техники к источникам переменного тока вычисления усложняются. Приходится интегрировать мгновенные значения с учетом определенных периодов, частоты и формы сигналов. На практике часто решают задачи по вычислению мощности потребителей, подключенных к источнику питания с синусоидальным током (напряжением).
Активная составляющая энергии в этом случае будет зависеть от фазового сдвига. Значение вычисляют по формуле:
Pa = U * I * cosϕ (для 220V).
При работе с трехфазными источниками пользуются измененным вариантом выражения:
Pa = √3 * U * I * cosϕ = 1,732 * U * I * cosϕ.
Реактивная переменная потребляется и возвращается в источник питания. Для расчета берут следующую зависимость базовых параметров:
Полная мощность:
Приборы для измерения электрической мощности
С учетом основных компонентов формулы несложно понять, что значения необходимых параметров (ток и напряжение) можно узнать с помощью обычного мультиметра. По необходимому уровню точности выбирают методику и класс измерительного прибора.
Современный ваттметр может передавать информацию в режиме онлайн для удаленного контроля телеметрии
Специализированные изделия (ваттметры) способны отображать результаты исследований при работе в сетях постоянного и переменного тока. Специальные модификации (варметры) замеряют реактивную составляющую.
Гидравлическая мощность
Узнать производительность асинхронного электродвигателя насоса можно косвенным методом, по выполненной работе. Для этого умножают перепад измеренных (вход/ выход) давлений (ΔP) на количество перекачанной жидкости (V) в м куб. за секунду.
Пример:
- напор по манометрам – 220 кгс/ см кв.;
- производительность – 65 л/мин. = 3,9 куб. м/ час = 0,001083 куб. м /с.;
- мощность NH = ΔP * V = 220 * 100 (перевод см в м) * 0,001083 = 23,83 кВт.
Мощность силы
Для решения практических задач меняют рассмотренные выражения необходимым образом. Расчет энергетических изменений отображает пример с падающим предметом:
- в исходных данных известны высота и масса тела;
- требуется установить мощность силы формула которой отображает результат на половине пути при свободном падении;
- подставляют вместо базовых компонентов известные величины:
- F = m *g;
- V (скорость в определенной точке) = Vn (начальная скорость) + g*t.
- после завершения преобразований получают:
Мощность вращающихся объектов
Для расчета подобной системы применяют формулу:
N = M * w = (2π * M* n)/60,
где:
- M – момент силы;
- w – угловая скорость, характеризующая вращение;
- n – количество оборотов, которое совершает двигатель или другое устройство за 60 секунд.
Приведенные сведения используют с учетом целевого назначения и реальных условий. Так, в термодинамике необходимо помнить о зависимости эффективности системы от температуры окружающей среды. Тепловые потери нагревателя оценивают по соответствующей мощности на единицу площади поверхности. Аналогичным образом поступают при решении механических задач для расчета тяги, КПД, иных рабочих параметров. Как правило, приходится специальным коэффициентом компенсировать трение.
В электрических цепях ток ограничивает сопротивление проводника. Для небольших расстояний при малой мощности тщательные расчеты не нужны. Однако проект магистральной трассы обязательно содержит соответствующие вычисления. На основе полученных результатов делают выводы о среднегодовых экономических показателях. Следует помнить о необходимости учета искажений, которые добавляют при работе с переменным напряжением реактивные нагрузки.