Отметь лучи которые эта вата отражает
Перейти к содержимому

Отметь лучи которые эта вата отражает

  • автор:

Как мы видим и различаем цвета?

Как мы видим и различаем цвета?

Как мы видим и различаем цвета? Как мы видим и различаем цвета. Цветное зрение помогает нам запомнить объекты и активизирует наши эмоции. Но знаете ли Вы, что объекты не имеют цвета? То, что мы видим на самом деле — это отражения световых волн и наш мозг интерпретирует их как цвет.Видимый спектр для людей включает все цвета от фиолетового до красного. Подсчитано, что люди могут различать до 10 миллионов оттенков.Когда свет попадет на объект, он поглощает часть этого света и отражает остальное, что проходит в наш глаз через роговицу, то есть внешнюю часть глаза. Роговица преломляет этот свет для его прохождения через зрачок, который регулирует количество света, попадающего на хрусталик. Он, в свою очередь, фокусирует свет на сетчатке, на слое нервных клеток, расположенных в глазном дне. Как палочки и колбочки влияют на восприятие цвета? В сетчатке имеются два типа клеток, которые реагируют на свет и поглащают его. Это палочки и колбочки, светочувствительные клетки, известные как фоторецепторы. Колбочки активируются в условиях низкой освещенности. Тем временем как палочки, стимулируются при большей освещённости. У большинства людей есть около 6 миллионов колбочек и 110 миллионов палочек.Колбочки содержат пигменты или молекулы, которые определяют цвет. У людей, как правило, имеются три типа пигментов: красный, зеленый и синий. По чувствительности к свету с различными длинами волн различают три вида колбочек .Наглядный пример того, как мы видим и различаем цвета: при дневном свете отраженный от лимона свет активирует два типа колбочек — красные и зелёные. Колбочки посылают это сигнал через зрительный нерв в зрительную зону коры головного мозга, который обрабатывает количество активированных колбочек и силу посылаемого сигнала. После обработки нервных импульсов клетками головного мозга мы видим цвет, который в данном случае является жёлтым.В темноте, отражённый от лимона свет стимулирует только палочки, поэтому мы не видим цвета, а только оттенки серого.Тем не менее, наш предыдущий визуальный опыт с объектами также влияет на восприятие цвета, известного как постоянство воспринимаемого цвета. Это постоянство гарантируют нам, что восприятие цвета объекта остается неизменным в различных условиях освещения. Даже если мы поместили лимон под красным светом, мы продолжаем воспринимать его как жёлтый. Аномалии цветового зрения Аномалии цветового зрения могут произойти, если один или несколько типов колбочек не воспринимают свет так, как должны. Может быть, что колбочки отсутствуют, не функционируют или не правильно различают цвет. Дальтонизм (не способность различать красный и зеленый цвета) является наиболее распространенной аномалией.Исследователи подсчитали, что почти 12% женщин имеют 4 типа колбочек, вместо 3, что позволяет им различать количество цветов в 100 раз выше, чем те, у кого их только 3.В животном мире, некоторые птицы, насекомые и рыбы также имеют 4 типа колбочек, позволяющие им видеть ультрафиолетовое излучение, не поспринимаемое человеческим глазом. Другие животные, как собаки, имеют меньше типов колбочек, что делает их цветовое зрение ниже, чем у людей.

Как мы видим и различаем цвета?
Как мы видим и различаем цвета. Цветное зрение помогает нам запомнить объекты и активизирует наши эмоции. Но знаете ли Вы, что объекты не имеют цвета? То, что мы видим на самом деле — это отражения световых волн и наш мозг интерпретирует их как цвет.

Видимый спектр для людей включает все цвета от фиолетового до красного. Подсчитано, что люди могут различать до 10 миллионов оттенков.

Когда свет попадет на объект, он поглощает часть этого света и отражает остальное, что проходит в наш глаз через роговицу, то есть внешнюю часть глаза. Роговица преломляет этот свет для его прохождения через зрачок, который регулирует количество света, попадающего на хрусталик. Он, в свою очередь, фокусирует свет на сетчатке, на слое нервных клеток, расположенных в глазном дне.
Как палочки и колбочки влияют на восприятие цвета?
В сетчатке имеются два типа клеток, которые реагируют на свет и поглащают его. Это палочки и колбочки, светочувствительные клетки, известные как фоторецепторы. Колбочки активируются в условиях низкой освещенности. Тем временем как палочки, стимулируются при большей освещённости. У большинства людей есть около 6 миллионов колбочек и 110 миллионов палочек.

Колбочки содержат пигменты или молекулы, которые определяют цвет. У людей, как правило, имеются три типа пигментов: красный, зеленый и синий. По чувствительности к свету с различными длинами волн различают три вида колбочек .

Наглядный пример того, как мы видим и различаем цвета: при дневном свете отраженный от лимона свет активирует два типа колбочек — красные и зелёные. Колбочки посылают это сигнал через зрительный нерв в зрительную зону коры головного мозга, который обрабатывает количество активированных колбочек и силу посылаемого сигнала. После обработки нервных импульсов клетками головного мозга мы видим цвет, который в данном случае является жёлтым.

В темноте, отражённый от лимона свет стимулирует только палочки, поэтому мы не видим цвета, а только оттенки серого.

Тем не менее, наш предыдущий визуальный опыт с объектами также влияет на восприятие цвета, известного как постоянство воспринимаемого цвета. Это постоянство гарантируют нам, что восприятие цвета объекта остается неизменным в различных условиях освещения. Даже если мы поместили лимон под красным светом, мы продолжаем воспринимать его как жёлтый.
Аномалии цветового зрения
Аномалии цветового зрения могут произойти, если один или несколько типов колбочек не воспринимают свет так, как должны. Может быть, что колбочки отсутствуют, не функционируют или не правильно различают цвет. Дальтонизм (не способность различать красный и зеленый цвета) является наиболее распространенной аномалией.

Исследователи подсчитали, что почти 12% женщин имеют 4 типа колбочек, вместо 3, что позволяет им различать количество цветов в 100 раз выше, чем те, у кого их только 3.

В животном мире, некоторые птицы, насекомые и рыбы также имеют 4 типа колбочек, позволяющие им видеть ультрафиолетовое излучение, не поспринимаемое человеческим глазом. Другие животные, как собаки, имеют меньше типов колбочек, что делает их цветовое зрение ниже, чем у людей.

Природа цвета. Рассказываем, что такое цвет и CRI

Природа цвета. Как правильно выбирать светодиодные светильники?

Наши продвинутые заказчики, когда приобретают светильники для личного пользования или для своих любимых сотрудников и беспокоятся о комфорте для глаз, интересуются показателем под названием «CRI», но про него мало кто слышал даже в 2018 году. Мы уже говорили о цветовой температуре, и теперь, продолжая обзор основных характеристик светодиодного освещения, мы расскажем что такое CRI, почему этот параметр так важен, и остановимся на, казалось бы, простом, но очень интересном вопросе: «как видимые и привычные для нас объекты обретают свой цвет?» и как выбрать светильники, чтоб видеть естественные цвета вокруг себя.

Знания из этой статьи помогут вам всегда выбирать качественные и экономичные светильники домой, в офис или на улицу, и навсегда забыть про искажение цветов и усталость глаз. Особенно важно понимание индекса CRI будет для тех людей, чьи профессии напрямую связаны с цветом: художники, колористы, реставраторы кожаных изделий, визажисты или парикмахеры. Но даже в магазине или офисе высокая цветопередача способствует улучшению «картинки» и положительный эффект заметен каждому посетителю, особенно в помещении без окон.

Природа цвета или откуда он вообще берется?

Видимый нами солнечный белый свет, как мы уже говорили ранее, представляет собой спектр различных цветовых тонов. В этом вы можете ещё раз убедиться сами и даже продемонстрировать себе и ребенку такой простой эксперимент: возьмите призму (толстое оргстекло, любую другую толстую прозрачную пластмассу) и поставьте её под солнечные лучи.

Призма и расщепление светового потока на электромагнитные волны

Увидели разноцветные полосы? Это и есть спектр цветовых тонов, из которых состоит солнечный свет. Каждый цвет спектра на самом деле является электромагнитной волной, цвет которой характеризуется таким параметром как длина волны. Длина волны измеряется в нанометрах (нм). Это как миллиметр, только ещё в миллион раз меньше.

Таким образом, видимый свет представляет собой набор таких волн (тот самый спектр) и каждый цвет в спектре – это ни что иное, как электромагнитная волна определенной длины. То есть любое излучение, видимое или невидимое – это электромагнитные волны, а цвет волны определяется ее длиной в диапазоне видимого электромагнитного излучения – 380-780 нанометров.

Например, красный цвет имеет длину волны 640 нм, зеленый – 545 нм, а синий 450 нм. Эти параметры особенно важно учитывать при выборе фитосветильников для ваших растений.

Видимый диапазон электромагнитного излучения

Помимо видимого излучения (полный диапазон – 380-780 нм) существуют также излучения с ещё меньшей длиной волны, такие как рентгеновское и ультрафиолетовое. Они тоже представляют собой электромагнитные волны, только с очень высокой проникающей способностью. Самые длинные – это радиоволны, их длина может достигать десятки и даже сотни метров, они могут распространяться на большие расстояния и предназначены для передачи звуковой и цифровой информации.

Виды электромагнитного излучения

Но откуда появляются цвета?

Теперь снова вернемся к вопросу о цвете окружающих нас объектов. Посмотрите вокруг − рядом с вами множество предметов, освещенных солнечными лучами. Цвет окружающих предметов – это результат отражения определенной длины волны (а длиной волны, как мы уже поняли, измеряется ее цвет). Зелёный газон воспринимается нами именно в зелёном цвете потому, что его поверхность отражает только зелёную (520-580 нм) составляющую спектра светового потока (будь то солнце или лампочка в качестве источника), а остальные цветовые составляющие поглощаются.

Пример отраженного света

Если же при освещении естественным белым светом объект полностью поглощает все световые составляющие спектра, тогда он будет видим для нас в черном цвете. К примеру, черный камень Обсидиан даже при ярком свете остается черным. Кстати, заметьте, что предметы черного цвета нагреваются на солнце сильнее остальных, и это не только от того, что они поглощают весь цветовой спектр солнечных лучей, но ещё и тепловое излучение солнца.

Но если есть полное поглощение света, то имеет место быть и полное отражение. Когда весь спектр светового луча белого света отражается от поверхности предмета, то предмет принимает белый цвет.

Пример полного поглощения и полного отражения света

Пример полного поглощения и полного отражения света

Почему трава зеленая, камень черный, а кружка белая?

Способность тел поглощать и отражать видимый свет обусловлена молекулярной структурой вещества.
Проще осознать это на примере. Листья деревьев летом зелёного цвета, а осенью они уже жёлтые. Спектр светового излучения в данном случае не изменился (солнце, т.е. наш источник света, каким было, таким и осталось) – в разные времена года менялась молекулярная структура вещества листьев, поэтому после того, как они опали, они уже не способны отражать зелёную составляющую спектра и отражают только жёлтую или даже красную составляющие.

Пример изменения молекулярного состава листа

Некоторые представители животного мира способны самостоятельно изменять окраску своего тела, приобретая цвет вне зависимости от источника света. Структура кожи таких животных содержит пигментсодержащие и светоотражающие клетки, которые способны быстро перемешиваться между собой, изменяя молекулярную структуру и образуя различные цветовые сочетания. Такой процесс используется для маскировки и называется физиологической сменой цвета или мимикрией цвета.

Физиологическая смена цвета в природе

В темноте все черное, потому что объектам «нечего отражать»

Но почему же зелёная трава, кроны деревьев или песчаные холмы – все они ночью предстают перед нами в черном цвете? Потому что здесь нет отражения или поглощения цвета. В данном случае наблюдается полное отсутствие света, а отсутствие света – есть чёрный цвет. То есть черный цвет может быть как следствием полного поглощения света (как у камня обсидиан, который черный всегда вне зависимости от того темно или светло), так и результатом полного отсутствия света, когда все окружающие объекты перестают что-либо поглощать или отражать, так как свет попросту отсутствует.

Цвет объекта легко можно изменить

В продаже существуют RGB светильники (от слов red, green, blue) с по канальным ручным управлением цветом, например с помощью протокола DMX, таким образом вы можете полностью выключить красный (red) спектр в вашем светильнике или светодиодной ленте и красная банка Coca-Cola станет для вас полностью черной, такой же, как ее содержимое внутри, так как красного цвета (читай электромагнитной волны длиной ±640 нм) в помещении нет и красный свет попросту от нее не отражается, ведь окрашенная в красный цвет банка из-за своей молекулярной структуры не может отражать ничего, кроме красного цвета, которого нет, потому что мы его выключили, поэтому красный цвет объекта мы не увидим и банка станет черной.

Цвета без света не существует. Все просто – именно свет и его спектр порождает цвет.
Цвет объекта зависит от состава спектра электромагнитного излучения, которое на него излучается, и длины волн, которые в нем содержатся в определенных пропорциях.
И именно от качества света (светового потока) и его уровня CRI зависят цвета вокруг вас.

Свет – физическое явление, а вот цвет – явление физиологическое

Итак, пора разделить понятие «свет» от понятия «цвет». Свет – это видимое электромагнитное излучение, которое испускается источником с определённым спектральным составом (иначе говоря − набором волн разной длины).
Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения (субъективного!). Мы не видим цвет лучей света, мы видим лишь цвет окружающих нас вещей, которые освещаются этим светом. Но и один и тот же цвет разные люди воспринимают по-разному, хотя спектральный состав источника света при этом одинаковый. Объективно будет оценивать цвет длиной волны.

Белый (солнечный) свет является эталоном светового излучения, он содержит в себе весь видимый для наших глаз спектр цветов. В белом свете мощность всех его компонентов (смесь электромагнитных волн) равная. Остальные смеси – объективно не белые.
Как противоположность белому свету можно рассматривать черный цвет, но только при условии отсутствия света вообще. Ведь черный цвет может быть результатом и полного поглощения света, как у камня обсидиан или черного автомобиля – тогда это будет субъективная оценка.

Освещение солнечным светом в полдень дает нам возможность увидеть 100% цвет (истинный цвет) предметов, а наши светильники на 95% соответствуют цветопередаче солнечного излучения. Сегодня это околопредельный для отрасли показатель, но каждый производитель светодиодов грезит полным соответствием истинному цвету. И как только всё это станет доступным к промышленному производству – сразу же появится в нашей линейке светильников.

Цвет объекта не заложен в нем от природы

Если окружающие нас предметы осветить световым источником красного или синего света, то практически все цвета будут видимы для нас в красных или синих цветовых тонах, потому что в спектрах этих двух цветовых источников попросту нет других цветов.

Цвет объекта зависит от света

Таким образом, можно сделать вывод о том, что цвет объекта определяется именно светом, которым этот объект освещается. А способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря – физическими свойствами объекта. Один и тот же объект под разным освещением может выглядеть по-разному – цвет зависит от источника света. Или наоборот, один и тот же объект под одинаковым освещением может выглядеть по-разному – значит изменился его молекулярный состав.

Цвет предмета не заложен в нем от природы! От природы в нем заложены только физические свойства: отражать и поглощать свет.

Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.

  • Первое условие. Свой цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! В темноте красная краска в банке будет выглядеть черной, хотя по своему молекулярному составу она отражает красный свет. В темной комнате мы не видим и не различаем цветов, потому что их нет. Есть только черный цвет всего окружающего пространства и находящихся в нем предметов;
  • Второе условие. Цвет объекта зависит от цветового тона (и как следствие, от цветовой температуры) освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета;
  • И наконец, третье условие. Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект. Также, можно сказать, что цвет зависит от восприятия – разные люди по-разному воспринимают свет одного и того же спектрального состава.

Так а что такое CRI и для чего он нужен?

Простыми словами можно сказать так: CRI (индекс цветопередачи) – это качественная характеристика света (светового потока), излучаемого светильником, которая показывает нам насколько этот самый свет, генерируемый прибором, по своему составу соответствует эталону – истинному солнечному. Индекс цветопередачи следует отличать от цветовой температуры – это разные параметры.

Теперь, прочитав этот материал, вы понимаете природу цвета и какие условия влияют на наше цветовое восприятие окружающих вещей. В предыдущей статье мы рассказывали о понятии цветовой температуры и говорили, что она является характеристикой цветового тона светового потока. Но на практике случается так, что два источника освещения с одинаковыми значениями цветовой температуры дают разные цветовые оттенки. На фото изображена композиция тюльпанов при солнечном свете и при освещении светодиодной лампой.

Сравнение CRI 100 и CRI 75

Как вы видите, даже при одинаковой цветовой температуре источников света, наблюдается различие в цветовом восприятии этих изображений: правое изображение имеет отличительный желтый оттенок. Так случается из-за низкого CRI в светодиодной лампе, показатель которого здесь равен RA 75.

Индекс CRI как критерий оценки качества светильника

Чтобы не допустить искажения цветов и чтобы все цвета максимально соответствовали видимым цветам при солнечном эталонном свете, перед покупкой для оценки качества светодиодных светильников используют понятие CRI (colour rendering index — индекс цветопередачи, обозначается Ra) – параметр, который показывает нам, насколько цвет объекта, освещенного естественным белым светом, соответствует цвету объекта, освещённого искуственным источником света.

Особенно важно обращать внимание на высокие показатели CRI при выборе освещения для дома, детских учебных заведений и детских садов. Это важно, потому что у детей в раннем возрасте формируется цветовосприятие и связанные с ним ассоциации окружающих вещей. Кроме того, качественный свет необходим для учебных и творческих процессов, а также непосредственно влияет на психическое состояние здоровья.

Светильники сертифицированы для школ и учебных заведений

В нашем интернет-магазине «Технологии света» представлены офисные квадратные LED светильники ДВО TL-ЭКО School (современный аналог растровых светильников ЛВО 4х18), которые обладают рекордным для своего ценового сегмента показателем CRI, равным 95.7, и это значит, что цвета максимально соответствуют видимым при освещении того же самого пространства солнечным светом. Это стало возможным благодаря использованию в светильнике светодиодов Osram Duris® S 5 GW PSLR32.CM от лидера в сфере освещения – компании OSRAM OS (подробнее о нашем поставщике светодиодов можете прочитать в нашей публикации). Причем все приведенные выше высокие значения CRI подтверждены сертификатами и протоколами испытаний.

TL-ЭКО и TL-PROM в наличии в TL-SHOP

Светильники TL-ЭКО сертифицированы для применения в образовательных учреждениях и имеют сан-гигиен сертфикиат.

Цвет – это информация

Завершая нашу публикацию, скажем, что любой цвет – это информация. По желтому цвету мы отличаем цитрусовые на прилавке, по зеленому цвету мы сразу видим на том же прилавке петрушку и зелень. По их же цвету мы определяем их свежесть (молекулярную структуру). Художнику, колористу или визажисту нужна будет уже более тонкая и подробная информация – профессионалу нужно видеть все цветовые переходы и градиенты, чтоб качественно выполнять свою работу.

Качество и полнота этой информации зависит от того, какое освещение применяется для того или иного пространства. В крупных ритейлерских сетях даже действуют специальные правила установки светильников в торговых залах: для того, чтобы подчеркнуть аппетитный вид выпечки, фруктов и овощей, их освещают теплым светом 2700K с уровнем CRI не менее Ra 90, а для освещения зон с морепродуктами применяют светильники с цветовой температурой 5000К и индексом цветопередачи не менее 80 – нейтральный белый спектр излучения подчеркивает свежесть рыбы.

Мы рады представить для вас широкий ассортимент по-настоящему качественных светодиодных светильников TL, повышающих комфорт. В нашем самом полном каталоге магазина «Технологии света» вы можете найти и купить по выгодным ценам все виды современной продукции TL-LED:

  • TL-PROM – алюминиевые светильники ДСП с повышенной защитой от воздействия окружающей среды и широкими возможностями применения благодаря вторичной оптике собственного производства TL-Lens Industrial;
  • TL-STREET – всепогодные решения ДКУ с 5 летней гарантией для освещения любых открытых пространств, неотапливаемых помещений, площадей и автомагистралей. Имеют в своем арсенале 3 вида оптики, в том числе TL-Lens Magistral. Разительно превосходят по эффективности свои консольные аналоги ДНаТ/ДРЛ, а также LED светильники конкурентов;
  • TL-ЭКО 236 – пластиковые светильники ДСП (современный LED аналог ЛСП 2х36) с широким светорассеиванием и со светодиодными модулями TL-ЭКО, которые применяются и в офисном освещении. Могут быть изготовлены со светодиодами серии School (позволяют увидеть больше цветов) в рамках программы по изготовлению несерийных светильников по индивидуальному заказу «Особая серия»;
  • TL-PROM FITO – светильники для досветки или 100% искусственного освещения различных овощных культур, ягод и цветов. Наши фитосветильники применяются в зимних садах, в уютных домашних и даже промышленных теплицах;
  • TL-PROM TRADE – линейные светодиодные светильники с тремя типами креплений и рассеивателей и возможностью заказа светильника в нужном вам цвете. Широко применяются в торговых залах, салонах красоты. Благодаря своей защите IP65 могут использоваться для освещения органов управления станками или подсветкой над рабочими столами в запыленном цеху наряду с тем, что изящно впишутся в лофт пространство.

И можно не выбегать на улицу со свежеокрашенной деталью, сверяясь с солнцем!
21 век в самом своем разгаре.

Какие делаем выводы?

Для кого-то из вас понимание того, что цвета не существует, оказалось открытием, но мы привели множество доказательств и примеров, чтобы вы смогли это осознать и убедиться в этом сами. Понимание природы цвета даст вам возможность грамотно подбирать необходимые для ваших задач светодиодные светильники.

Монах производит песочную мандалу

Конкретно для него очень важно качественное освещение рабочей зоны

  • Всегда обращайте внимание на цветовую температуру и на показатели цветопередачи CRI (Ra)
  • Перед покупкой смотрите на тесты и протоколы испытаний светильников
  • Всем нашим заказчикам мы рекомендуем ознакомиться с такими важными показателями светильников и всей осветительной установки, как экономичность и окупаемость, и почему именно наши таганрогские светильники признаны лучшими по этим критериям и рекомендованы для бизнеса (подробности читайте здесь)

Остались вопросы или ничего не поняли?

Если у вас возникли трудности при выборе или вы не хотите углубляться в теоретические знания, или может быть просто хотите пообщаться с нами – обращайтесь к нам или пишите в онлайн поддержку и мы ответим на все ваши вопросы и поможем с выбором освещения, а при необходимости составим светотехнический проект, применяя весь накопленный опыт наших специалистов в технологиях экономичного света 21 века.

Свет и цвет: основы основ

Piccy.info - Free Image Hosting

Мы часто говорим о таком понятии как свет, источниках освещения, цвете изображений и объектов, но не совсем хорошо себе представляем, что такое свет и что такое цвет. Пора разобраться с этими вопросами и перейти от представления к понимаю.

Мы окружены

Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение — это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1).

Piccy.info - Free Image Hosting

Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.

На Рисунке 1 видимое излучение представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это спектр. Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет — всего лишь звено одной очень длинной электромагнитной волны.

От света к цвету и обратно

Ещё со школы вы знаете, что если на пути луча солнечного света поставить стеклянную призму, то большая часть света пройдет через стекло, и вы сможете увидеть разноцветные полосы на другой стороне призмы. То есть изначально был солнечный свет — луч белого цвета, а после прохождения через призму разделился на 7 новых цветов. Это говорит о том, что белый свет состоит из этих семи цветов. Помните, я только что говорил, что видимый свет (видимое излучение) — это электромагнитная волна, так вот, те разноцветные полосы, которые получились после прохождения солнечного луча через призму – есть отдельные электромагнитные волны. То есть получаются 7 новых электромагнитных волн. Смотрим на рисунок 2.

Piccy.info - Free Image Hosting

Рисунок 2 – Прохождение луча солнечного света через призму.

Каждая из волн имеет свою длину. Видите, вершины соседних волн не совпадают друг с другом: потому что красный цвет (красная волна) имеет длину примерно 625-740nm, оранжевый цвет (оранжевая волна) – примерно 590-625nm, синий цвет (синяя волна) – 435-500nm., не буду приводить цифры для остальных 4-х волн, суть, я думаю, вы поняли. Каждая волна – это излучаемая световая энергия, то есть красная волна излучает красный свет, оранжевая – оранжевый, зеленая – зеленый и т.д. Когда все семь волн излучаются одновременно, мы видим спектр цветов. Если математически сложить графики этих волн вместе, то мы получим исходный график электромагнитной волны видимого света – получим белый свет. Таким образом, можно сказать, что спектр электромагнитной волны видимого света – это сумма волн различной длины, которые при наложении друг на друга дают исходную электромагнитную волну. Спектр «показывает из чего состоит волна». Ну, если совсем просто сказать, то спектр видимого света – это смесь цветов, из которых состоит белый свет (цвет). Надо сказать, что и у других видов электромагнитного излучения (ионизирующего, рентгеновского, инфракрасного, ультрафиолетового и т.д.) тоже есть свои спектры.

Любое излучение можно представить в виде спектра, правда таких цветных линий в его составе не будет, потому, как человек не способен видеть другие типы излучений. Видимое излучение – это единственный вид излучений, который человек может видеть, потому-то это излучение и назвали – видимое. Однако сама по себе энергия определенной длины волны не имеет никакого цвета. Восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.

Но только ли путем сложения семи основных цветов мы можем получить белый цвет? Отнюдь. В результате научных исследований и практических экспериментов было установлено, что все цвета, которые способен воспринимать человеческий глаз, можно получить смешиванием всего лишь трех основных цветов. Три основных цвета: красный, зеленый, синий. Если с помощью смешивания этих трех цветов можно получить практически любой цвет, значит можно получить и белый цвет! Посмотрите на спектр, который был приведен на рисунке 2, на спектре четко просматриваются три цвета: красный, зеленый и синий. Именно эти цвета лежат в основе цветовой модели RGB (Red Green Blue).

Проверим как это работает на практике. Возьмем 3 источника света (прожектора) — красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга, как показано на рисунке 3.

Piccy.info - Free Image Hosting

Рисунок 3 — Результат наложения красного, зеленого и синего цветов.

Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный — пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще. То есть там, где нет света — там мрак, там всё становится черным. Пример тому — иллюстрация 4.

Piccy.info - Free Image Hosting

Рисунок 4 – Отсутствие светового излучения

Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом. Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения. Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга. Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.

Piccy.info - Free Image Hosting

Рисунки 5 и 6– Зависимость параметров цвета от источника излучения

Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).

Цветовой тон (hue)

Piccy.info - Free Image Hosting

– Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.

Яркость (Brightness)

Piccy.info - Free Image Hosting

– Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.). А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии — нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом. Например, цепочка снижения яркости красного цвета: красный — алый — бордовый — бурый — черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».

Светлость (Lightness)

Piccy.info - Free Image Hosting

– Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный — малиновый — розовый — бледно-розовый — белый.

Piccy.info - Free Image Hosting

– Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%. Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%. Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.

Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV).

Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop.

Piccy.info - Free Image Hosting

Рисунок 7 – Палитра цветов Adobe Photoshop

Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка. Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов. Следующая буква – S (saturation, насыщенность). У нас указано значение 100% — это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета. Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) — это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале. Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255. Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 — это код цвета. У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах, в которой автор рассказывает как определять цвет по шестнадцатеричному коду.
На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства, по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB.
Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.

Цвет объектов

Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.

Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет. А когда объект отражает почти весь падающий свет, он принимает белый цвет. Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света, которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря — физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.

Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.

Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.

Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.

И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.

Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну (Рисунок 8).

Piccy.info - Free Image Hosting

Рисунок 8 – Отражение зеленой волны спектра

Бананы на рисунке 9 выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.

Piccy.info - Free Image Hosting

Рисунок 9 – Отражение желтой волны спектра

Собачка, та что изображена на рисунке 10 – белая. Белый цвет – результат отражения всех волн спектра.

Piccy.info - Free Image Hosting

Рисунок 10 – Отражение всех волн спектра

Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.

В следующей статье речь пойдет о новой характеристике цвета — цветовой температуре.

Страсть к цвету

Около 80% всей входящей информации мы получаем визуально
Мы познаем окружающий мир на 78% благодаря зрению, на 13% — слуху, на 3% — тактильным ощущениям, на 3% — обонянию и на 3% — вкусовым рецепторам.
Мы запоминаем 40% увиденного и только 20% услышанного*
*Источник: R. Bleckwenn & B. Schwarze. Учебник дизайна (2004)

Физика цвета. Цвет мы видим только благодаря тому, что наши глаза способны регистрировать электромагнитное излучение в оптическом его диапазоне. А электромагнитное излучение это и радиоволны и гамма излучение и рентгеновское излучение, терагерцевое, ультрафиолетовое, инфракрасное.

Цвет — качественная субъективная характеристика электромагнитного излучения оптического диапазона, определяемая на основании возникающего
физиологического зрительного ощущения и зависящая от ряда физических, физиологических и психологических факторов.
Восприятие цвета определяется индивидуальностью человека, а также спектральным составом, цветовым и яркостным контрастом с окружающими источниками света,
а также несветящимися объектами. Очень важны такие явления, как метамерия, индивидуальные наследственные особенности человеческого глаза
(степень экспрессии полиморфных зрительных пигментов) и психики.
Говоря простым языком цвет — это ощущение, которое получает человек при попадании ему в глаз световых лучей.
Одни и те же световые воздействия могут вызвать разные ощущения у разных людей. И для каждого из них цвет будет разным.
Отсюда следует что споры «какой цвет на самом деле» бессмысленны, поскольку для каждого наблюдателя истинный цвет — тот, который видит он сам

Человеческий глаз – это орган, дающий нам возможность видеть окружающий мир.
Зрение дает нам информации об окружающей действительности больше, чем другие органы чувств: самый большой поток информации в единицу времени мы получаем именно глазами.

Каждое новое утро мы просыпаемся и открываем глаза — наша деятельность не возможна без зрения.
Зрению мы доверяем больше всего и его больше всего используем для получения опыта («не поверю, пока сам не увижу!»).
Мы говорим «с широко открытыми глазами», когда открываем разум навстречу чему-то новому.
Глаза используются нами постоянно. Они позволяют нам воспринимать формы и размеры объектов.
И, что самое главное для колориста, они позволяют нам видеть цвет.
Глаз является очень сложным по своему строению органом. Для нас важно понять, как мы видим цвет и как воспринимаем полученные оттенки на волосах.
Восприятие глаза основывается на светочувствительном внутреннем слое глаза, именуемом сетчаткой.
Отраженные от объектов лучи попадают через зрачок на сетчатку, которая представляет собой прозрачный шарообразный экран толщиной 0.1 — 0.5 мм, на который проецируется окружающий мир. Сетчатка содержит 2 типа фоточувствительных клеток: палочки и колбочки.
Эти клетки являются своего рода датчиками, которые реагируют на падающий свет, преобразовывая его энергию в сигналы, передаваемые в мозг. Мозг переводит эти сигналы в образы, которые мы «видим».

Цвет происходит из света
Чтобы видеть цвета, необходим источник света. В сумерках мир теряет свою цветность. Там, где нет света, возникновение цвета невозможно.

Учитывая огромное, многомиллионное количество цветов и их оттенков, колористу нужно обладать глубокими, полноценными знаниями о цветовосприятии и происхождении цвета.
Все цвета представляют собой часть луча света – электромагнитных волн, исходящих от солнца.
Эти волны являются частью спектра электромагнитного излучения, в который входят гамма-излучение, рентгеновское излучение, ультрафиолетовое излучение, оптическое излучение (свет), инфракрасное излучение, электромагнитное терагерцевое излучение,
электромагнитные микро- и радиоволны. Оптическое излучение – это та часть электромагнитного излучения, которую способны воспринимать наши глазные сенсоры. Мозг обрабатывает полученные от глазных сенсоров сигналы и интерпретирует их в цвет и форму.

Видимое излучение (оптическое)
Видимое, инфракрасное и ультрафиолетовое излучение составляет так называемую оптическую область спектра в широком смысле этого слова.
Выделение такой области обусловлено не только близостью соответствующих участков спектра, но и сходством приборов, применяющихся для её исследования и разработанных исторически главным образом при изучении видимого света (линзы и зеркала для фокусирования излучения, призмы, дифракционные решётки, интерференционные приборы для исследования спектрального состава излучения и пр.).
Частоты волн оптической области спектра уже сравнимы с собственными частотами атомов и молекул, а их длины — с молекулярными размерами и межмолекулярными расстояниями. Благодаря этому в этой области становятся существенными явления, обусловленные атомистическим строением вещества.
По этой же причине, наряду с волновыми, проявляются и квантовые свойства света.

Самым известным источником оптического излучения является Солнце. Его поверхность (фотосфера) нагрета до температуры 6000 градусов по Кельвину и светит ярко-белым светом (максимум непрерывного спектра солнечного излучения расположен в «зелёной» области 550 нм, где находится и максимум чувствительности глаза).
Именно потому, что мы родились возле такойзвезды, этот участок спектра электромагнитного излучения непосредственно воспринимается нашими органами чувств.
Излучение оптического диапазона возникает, в частности, при нагревании тел (инфракрасное излучение называют также тепловым) из-за теплового движения атомов и молекул.
Чем сильнее нагрето тело, тем выше частота, на которой находится максимум спектра его излучения (см.: Закон смещения Вина). При определённом нагревании тело начинает светиться в видимом диапазоне (каление), сначала красным цветом, потом жёлтым и так далее. И наоборот, излучение оптического спектра оказывает на тела тепловое воздействие (см.: Болометрия).
Оптическое излучение может создаваться и регистрироваться в химических и биологических реакциях.
Одна из известнейших химических реакций, являющихся приёмником оптического излучения, используется в фотографии.
Источником энергии для большинства живых существ на Земле является фотосинтез — биологическая реакция, протекающая в растениях под действием оптического излучения Солнца.

Цвет играет огромную роль в жизни обычного человека. Жизнь колориста посвящена цвету.

Заметно, что цвета спектра, начинаясь с красного и проходя через оттенки противоположные, контрастные красному (зелёный, циан), затем переходят в фиолетовый цвет, снова приближающийся к красному. Такая близость видимого восприятия фиолетового и красного цветов связана с тем, что частоты, соответствующие фиолетовому спектру, приближаются к частотам, превышающим частоты красного ровно в два раза.
Но сами эти последние указанные частоты находятся уже вне видимого спектра, поэтому мы не видим перехода от фиолетового снова к красному цвету, как это происходит в цветовом круге, в который включены неспектральные цвета, и где присутствует переход между красным и фиолетовым через пурпурные оттенки.

При прохождении луча света через призму различные по длине волны, его составляющие, преломляются под разными углами. В результате мы можем наблюдать спектр света. Этот феномен очень похож на феномен радуги.

Следует различать солнечный свет и свет, исходящий от искусственных источников освещения. Только солнечный свет можно считать чистым светом.
Все остальные искусственные источники освещения будут влиять на восприятие цвета. Например, лампы накаливания являются источниками теплого (желтого) света.
Флуоресцентные лампы, чаще всего, дают холодный (синий) свет. Для корректной диагностики цвета необходим дневной свет или же источник освещения, максимально к нему приближенный.
Только солнечный свет можно считать чистым светом. Все остальные искусственные источники освещения будут влиять на восприятие цвета.

Многообразие цветов: Цветовосприятие основывается на способности различать изменения в направлении тона, светлоте/яркости и насыщенности цвета в оптическом диапазоне с длинами волн от 750 нм (красный) до 400 нм (фиолетовый).
Изучив физиологию восприятия цвета, мы можем лучше понять, как формируется цвет, и использовать эти знания на практике.

Мы воспринимаем все многообразие цветов только при наличии и нормальном функционировании всех конусных сенсоров.
Мы способны различать тысячи различных направлений тона. Точное количество зависит от способности глазных сенсоров улавливать и различать световые волны. Эти способности можно развивать тренировками и упражнениями.
Цифры, приведенные ниже, звучат невероятно, но это реальные способности здорового и хорошо подготовленного глаза:
Мы можем различать около 200 чистых цветов. Меняя их насыщенность, мы получаем приблизительно по 500 вариаций каждого цвета. Меняя их светлоту, получаем еще по 200 нюансов каждой вариации.
Хорошо подготовленный человеческий глаз способен различать до 20 миллионов цветовых нюансов!
Цвет субъективен, поскольку мы все воспринимаем его по-разному. Хотя, пока наши глаза здоровы, эти отличия незначительны.

Мы можем различать 200 чистых цветов
Меняя насыщенность и светлоту этих цветов, мы можем различать до 20 миллионов оттенков!

“You only see what you know. You only know what you see.”
«Вы видите только ведомое. Вы ведаете только видимое ».
Марсель Пруст (французский романист), 1871-1922.

Восприятие нюансов одного цвета не одинаково для разных цветов. Тоньше всего мы воспринимаем изменения в зеленом спектре — достаточно изменения длины волны всего на 1 нм, чтобы мы могли увидеть отличие. В красном и синем спектрах необходимо изменение длины волны на 3-6 нм, чтобы отличие стало заметно для глаза. Возможно, отличие в более тонком восприятии зеленого спектра было связано с необходимостью отличать съедобное от несъедобного во времена зарождения нашего вида (профессор, доктор археологии, Герман Крастел BVA).

Цветные картинки, возникающие в нашем сознании, – это кооперация глазных сенсоров и мозга. Мы «ощущаем» цвета, когда конические сенсоры, находящиеся в сетчатке глаза, генерируют сигналы под воздействием попадающих на них волн определенной длины и передают эти сигналы в мозг. Поскольку в цветовосприятии задействованы не только глазные сенсоры, но и мозг, то в результате мы не только видим цвет, но и получаем на него определенный эмоциональный отклик.

Наше уникальное цветоощущение никоим образом не меняет наш эмоциональный отклик на определенные цвета., отмечают ученые. Независимо от того, каков для человека голубой цвет, он всегда становится немного более спокойным и расслабленным, смотря на небо. Короткие волны голубого и синего цветов успокаивают человека, тогда как длинные волны (красный, оранжевый, желтый) наоборот – придают активности и живости человеку.
Эта система реакции на цвета присуща каждому живому организму на Земле – от млекопитающих до одноклеточных (например, одноклеточные «предпочитают» обрабатывать рассеянный свет желтого цвета в процессе фотосинтеза). Считается, что данная взаимосвязь цвета и нашего самочувствия, настроения обуславливается дневным/ночным циклом существования. Например, на рассвете все окрашено в теплые и яркие цвета – оранжевый, желтый – это сигнал каждому, даже самому маленькому существу, что начался новый день и пора приниматься за дела. Ночью и в полдень, когда течение жизни замедляется, вокруг доминируют синие и фиолетовые оттенки.
В своих исследованиях Джей Нейц и его коллеги из Университета штата Вашингтон отметили, что изменение цвета рассеянного света может изменить суточный цикл рыб, в то время как изменение интенсивности этого света не имеет решающего влияния. На этом эксперименте и базируется предположение ученых, что именно благодаря доминированию синего цвета в ночной атмосфере (а не просто темнота), живые существа чувствуют усталость и желание спать.
Но наши реакции не зависят от цветочувствительных клеток сетчатки. В 1998 году ученые обнаружили совершенно отдельный набор цветовых рецепторов – меланопсинов – в человеческом глазу. Эти рецепторы определяют количество синего и желтого цветов в окружающем нас пространстве и отправляют эту информацию в участки мозга, отвечающие за регулирование эмоций и циркадного ритма. Ученые считают, что меланопсины – очень древняя структура, отвечавшая за оценку количества цветов еще в незапамятные времена.
«Именно благодаря этой системе, наше настроение и активность поднимаются, когда вокруг преобладают оранжевый, красный или желтый цвета», — считает Нейц. «Но наши индивидуальные особенности восприятия различных цветов – это совсем другие структуры – синие, зеленые и красные колбочки. Поэтому, тот факт, что у нас одинаковые эмоциональные и физические реакции на одни и те же цвета не может подтвердить, что все люди видят цвета одинаково».
Люди, которые в силу некоторых обстоятельств имеют нарушения в цветовосприятии, часто не могут видеть красный, желтый или синий цвет, но, тем не менее, их эмоциональные реакции не разнятся с общепринятыми. Для вас небо всегда голубое и оно всегда дарит ощущение умиротворенности, даже если для кого-то ваш «голубой» является «красным» цветом.

Три характеристики цвета.

Светлота — степень близости цвета к белому называют светлотой.
Любой цвет при максимальном увеличении светлоты становится белым
Другое понятие светлоты относится не к конкретному цвету, а к оттенку спектра, тону. Цвета, имеющие различные тона при прочих равных характеристиках, воспринимаются нами с разной светлотой. Жёлтый тон сам по себе — самый светлый, а синий или сине-фиолетовый — самый тёмный.

Насыщенность – степень отличия хроматического цвета от равного ему по светлоте ахроматического, «глубина» цвета. Два оттенка одного тона могут различаться степенью блёклости. При уменьшении насыщенности каждый хроматический цвет приближается к серому.

Цветовой тон — характеристика цвета, отвечающая за его положение в спектре: любой хроматический цвет может быть отнесён к какому-либо определённому спектральному цвету. Оттенки, имеющие одно и то же положение в спектре (но различающиеся, например, насыщенностью и яркостью), принадлежат к одному и тому же тону. При изменении тона, к примеру, синего цвета в зеленую сторону спектра он сменяется голубым, в обратную — фиолетовым.
Иногда изменение цветового тона соотносят с «теплотой» цвета. Так, красные, оранжевые и жёлтые оттенки, как соответствующие огню и вызывающие соответствующие психофизиологические реакции, называют тёплыми тонами, голубые, синие и фиолетовые, как цвет воды и льда — холодными. Следует учесть, что восприятие «теплоты» цвета зависит как от субъективных психических и физиологических факторов (индивидуальные предпочтения, состояние наблюдателя, адаптация и др.), так и от объективных (наличие цветового фона и др.). Следует отличать физическую характеристику некоторых источников света — цветовую температуру от субъективного ощущения «теплоты» соответственного цвета. Цвет теплового излучения при повышении температуры проходит по «тёплым оттенкам» от красного через жёлтый к белому, но максимальную цветовую температуру имеет цвет циан.

Человеческий глаз – это орган, дающий нам возможность видеть окружающий мир.
Зрение даёт нам информации об окружающей действительности больше, чем другие органы чувств: самый большой поток информации в единицу времени мы получаем именно глазами.

Каждое новое утро мы просыпаемся и открываем глаза — наша деятельность не возможна без зрения.
Зрению мы доверяем больше всего и его больше всего используем для получения опыта («не поверю, пока сам не увижу!»).
Мы говорим «с широко открытыми глазами», когда открываем разум навстречу чему-то новому.
Глаза используются нами постоянно. Они позволяют нам воспринимать формы и размеры объектов.
И, что самое главное для колориста, они позволяют нам видеть цвет.
Глаз является очень сложным по своему строению органом. Для нас важно понять, как мы видим цвет и как воспринимаем полученные оттенки на волосах.
Восприятие глаза основывается на светочувствительном внутреннем слое глаза, именуемом сетчаткой.
Отражённые от объектов лучи попадают через зрачок на сетчатку, которая представляет собой прозрачный шарообразный экран толщиной 0.1 — 0.5 мм, на который проецируется окружающий мир. Сетчатка содержит 2 типа фоточувствительных клеток: палочки и колбочки.
Эти клетки являются своего рода датчиками, которые реагируют на падающий свет, преобразовывая его энергию в сигналы, передаваемые в мозг. Мозг переводит эти сигналы в образы, которые мы «видим».

Человеческий глаз представляет из себя сложную систему, главной целью которой является наиболее точное восприятие, первоначальная обработка и передача информации, содержащейся в электромагнитном излучении видимого света. Все отдельные части глаза, а также клетки, их составляющие, служат максимально полному выполнению этой цели.
Глаз — это сложная оптическая система. Световые лучи попадают от окружающих предметов в глаз через роговицу. Роговица в оптическом смысле — это сильная собирающая линза, которая фокусирует расходящиеся в разные стороны световые лучи. Причём оптическая сила роговицы в норме не меняется и дает всегда постоянную степень преломления. Склера является непрозрачной наружной оболочкой глаза, соответственно, она не принимает участия в проведении света внутрь глаза.
Преломившись на передней и задней поверхности роговицы, световые лучи проходят беспрепятственно через прозрачную жидкость, заполняющую переднюю камеру, вплоть до радужки. Зрачок, круглое отверстие в радужке, позволяет центрально расположенным лучам продолжить свое путешествие внутрь глаза. Более периферийно оказавшиеся лучи задерживаются пигментным слоем радужной оболочки. Таким образом, зрачок не только регулирует величину светового потока на сетчатку, что важно для приспособления к разным уровням освещённости, но и отсеивает боковые, случайные, вызывающие искажения лучи. Далее свет преломляется хрусталиком. Хрусталик тоже линза, как и роговица. Его принципиальное отличие в том, что у людей до 40 лет хрусталик способен менять свою оптическую силу — феномен, называемый аккомодацией. Таким образом, хрусталик производит более точную до фокусировку. За хрусталиком расположено стекловидное тело, которое распространяется вплоть до сетчатки и заполняет собой большой объем глазного яблока.
Лучи света, сфокусированные оптической системой глаза, попадают в конечном итоге на сетчатку. Сетчатка служит своего рода шарообразным экраном, на который проецируется окружающий мир. Из школьного курса физики мы знаем, что собирательная линза дает перевёрнутое изображение предмета. Роговица и хрусталик — это две собирательные линзы, и изображение, проецируемое на сетчатку, также перевёрнутое. Другими словами, небо проецируется на нижнюю половину сетчатки, море — на верхнюю, а корабль, на который мы смотрим, отображается на макуле. Макула, центральная часть сетчатки, отвечает за высокую остроту зрения. Другие части сетчатки не позволят нам ни читать, ни наслаждаться работой на компьютере. Только в макуле созданы все условия для восприятия мелких деталей предметов.
В сетчатке оптическая информация воспринимается светочувствительными нервными клетками, кодируется в последовательность электрических импульсов и передается по зрительному нерву в головной мозг для окончательной обработки и сознательного восприятия.

Конусные сенсоры (0,006 мм в диаметре) способны различать малейшие детали, соответственно активными они становятся при интенсивном дневном или искусственном освещении. Они гораздо лучше, чем палочки, воспринимают быстрые движения и дают высокое визуальное разрешение. Но их восприятие снижается при уменьшении интенсивности света.

Самая высокая концентрация колбочек находится в середине сетчатки, в точке называемой центральной ямкой. Здесь концентрация колбочек достигает 147,000 на квадратный миллиметр, обеспечивая максимальное визуальное разрешение картинки.
Чем ближе к краям сетчатки, тем ниже концентрация конусных сенсоров (колбочек) и тем выше концентрация цилиндрических сенсоров (палочек), отвечающих за сумеречное и периферийное зрение. В центральной ямке палочки отсутствуют, что объясняет нам, почему ночью мы лучше видим тусклые звезды, когда смотрим на точку рядом с ними, а не на них самих.

Существует 3 типа конусных сенсоров (колбочек), каждый из которых отвечает за восприятие одного цвета:
Чувствительный к красному (750 нм)
Чувствительный к зеленому (540 нм)
Чувствительный к синему (440 нм)
Функции колбочек: Восприятие в условиях интенсивной освещенности (дневное зрение)
Восприятие цветов и мелких деталей. Количество колбочек в человеческом глазе: 6-7 миллионов

Эти 3 типа колбочек позволяют нам видеть все многообразие цветов окружающего мира. Поскольку все остальные цвета являются результатом сочетания сигналов, поступающих от этих 3 видов колбочек.

Например: Если объект выглядит желтым – это означает, что отраженные от него лучи стимулируют чувствительные к красному и чувствительные к зеленому колбочки. Если цвет объекта оранжево-желтый – это означает, что чувствительные к красному колбочки были простимулированы сильнее, а чувствительные к зеленому – слабее.
Белый мы воспринимаем в тех случаях, когда все три типа колбочек простимулированы одновременно в равной интенсивности. Такое трехцветное зрение описывается в теории Юнга-Гельмгольца.
Теория Юнга—Гельмгольца объясняет восприятие цвета только на уровне колбочек сетчатки, не раскрывая все феномены цветоощущения, такие как цветовой контраст, цветовая память, цветовые последовательные образы, константность цвета и др., а также некоторые нарушения цветового зрения, например, цветовую агнозию.

Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Существует т.н. цветоведение — анализ процесса восприятия и различения цвета на основе систематизированных сведений из физики, физиологии и психологии. Носители разных культур по-разному воспринимают цвет объектов. В зависимости от важности тех или иных цветов и оттенков в обыденной жизни народа, некоторые из них могут иметь большее или меньшее отражение вязыке. Способность цветораспознавания имеет динамику в зависимости от возраста человека. Сочетания цветов воспринимаются гармоничными (гармонирующими) либо нет.

Тренировка цветовосприятия.

Изучение теорие цвета и тренировка цветовосприятия важны в любой профессии работающей с цветом.
Глаза и разум нужно тренировать для постижения всех тонкостей цвета, также как тренируются и оттачиваются навыки стрижки или иностранные языки: повторение и практика.

Эксперимент 1: Выполняйте упражнение ночью. Выключите свет в комнате – вся комната мгновенно погрузится во мрак, вы ничего не будете видеть. Через несколько секунд глаза привыкнут к низкой освещенности и начнут все четче выявлять контрасты.
Эксперимент 2: Положите перед собой два чистых белых листа бумаги. На середину одного из них положите квадратик красной бумаги. В середине красного квадратика нарисуйте маленький крестик и в течение нескольких минут смотрите на него, не отрывая взора. Затем переведите взгляд на чистый белый лист бумаги. Почти сразу вы увидите на нем образ красного квадратика. Только цвет у него будет другой — голубовато-зеленый. Через несколько секунд он начнет бледнеть и вскоре исчезнет. Почему это происходит? Когда глаза были сфокусированы на красном квадрате, интенсивно возбуждался соответствующий этому цвету тип колбочек. При переводе взгляда на белый лист интенсивность восприятия этих колбочек резко падает и более активными становятся два других типа колбочек – зелено- и синечувствительных.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *