Вихревые токи
В электрических аппаратах, приборах и машинах металлические детали иногда движутся в магнитном поле или неподвижные металлические детали пересекаются силовыми линиями меняющегося по величине магнитного поля. В этих металлических деталях индуктируется ЭДС самоиндукции.
Под действием этих э. д. с. в массе металлической детали протекают вихревые токи (токи Фуко) , которые замыкаются в массе, образуя вихревые контуры токов.
Вихревыми токами (также токами Фуко) называются электрические токи, возникающие вследствие электромагнитной индукции в проводящей среде (обычно в металле) при изменении пронизывающего ее магнитного потока.
Вихревые токи порождают свои собственные магнитные потоки, которые, по правилу Ленца, противодействуют магнитному потоку катушки и ослабляют его. Кроме того, они вызывают нагрев сердечника, что является бесполезной тратой энергии.
Пусть имеется сердечник из металлического материала. Поместим на этот сердечник катушку, по которой пропустим переменный ток. Вокруг катушки окажется переменный магнитный ток, пересекающий сердечник. При этом в сердечнике станет наводиться индуцированная ЭДС, которая, в свою очередь, вызывает в сердечнике токи, называемые вихревыми. Эти вихревые токи нагревают сердечник. Так как электрическое сопротивление сердечника невелико, то наводимые в сердечниках индуцированные токи могут оказываться достаточно большими, а нагрев сердечника — значительным.
Возниконвение токов Фуко (вихревых токов)
Впервые вихревые токи были обнаружены французским учёным Д.Ф. Араго (1786 — 1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции.
Вихревые токи были подробно исследованы французским физиком Фуко (1819 — 1868) и названы его именем. Он назвал явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.
В качестве примера на рис унке показаны вихревые токи, индуктируемые в массивном сердечнике, помещенном в катушку, обтекаемую переменным током. Переменное магнитное поле индуктирует токи, которые замыкаются по путям, лежащим в плоскостях, перпендикулярных направлению поля.
Вихревые токи: а — в массивном сердечнике, б — в пластинчатом сердечнике
Способы уменьшения токов Фуко
Мощность, затрачиваемая на нагрев сердечника вихревыми токами, бесполезно снижает КПД технических устройств электромагнитного типа.
Чтобы уменьшить мощность вихревых токов, увеличивают электрическое сопротивление магнитопровода, для этого сердечники набирают из отдельных тонких (0,1- 0,5 мм) пластин, изолированных друг от друга с помощью специального лака или окалины.
Магнитопроводы всех машин и аппаратов переменного тока и сердечники якорей машин постоянного тока собирают из изолированных друг от друга лаком или поверхностной непроводящей пленкой (фосфатированных) пластин, выштампованных из листовой электротехнической стали. Плоскость пластин должна быть параллельна направлению магнитного потока.
При таком делении сечения сердечника магнитопровода вихревые токи существенно ослабляются, так как уменьшаются магнитные потоки, которыми сцепляются контуры вихревых токов, а следовательно, понижаются и индуктируемые этими потоками э. д. с, создающие вихревые токи.
В материал сердечника также вводят специальные добавки, также увеличивающие его электрическое сопротивление. Для увеличения электрического сопротивления ферромагнетика электротехническую сталь приготовляют с присадкой кремния.
Шихтованный магнитопровод трансформатора
Сердечники некоторых катушек (бобин) набирают из кусков отожженной железной проволоки. Полоски железа располагают параллельно линиям магнитного потока. Вихревые же токи, протекающие в плоскостях, перпендикулярных направлению магнитного потока, ограничиваются изолирующими прокладками. Для магнитопроводов приборов и устройств, работающих на высокой частоте, применяют магнетодиэлектрики. Чтобы снизить вихревые токи в проводах, последние изготавливают в виде жгута из отдельных жил, изолированных друг от друга.
Лицендрат — это система переплетенных медных проводов, в которой каждая жила изолирована от соседних. Лицендрат предназначен для использования на высокочастотных токах для предотвращения возникновения паразитных токов и токов Фуко.
Применение токов Фуко
В ряде случаев вихревые токи используются в технике, например для торможения вращающихся массивных деталей. Электродвижущая сила, наводимая в элементах детали при пересечении магнитного поля, вызывает в ее толще замкнутые токи, которые, взаимодействуя с магнитным полем, создают значительные противодействующие моменты.
Широко применяется также такое магнитоиндукционное торможение для успокоения движения подвижных частей электроизмерительных приборов, в частности для создания противодействующего момента и торможения подвижной части электрических счетчиков.
В этих приборах диск, укрепленный на оси счетчика, вращается в зазоре постоянного магнита. Наводимые в массе диска при этом движении вихревые токи, взаимодействуя с потоком того же магнита, создают противодействующий и тормозящий моменты.
Например, вихревые токи нашли в устройстве магнитного тормоза диска электрического счетчика. Вращаясь, диск пересекает магнитные силовые линии постоянного магнита. В плоскости диска возникают вихревые токи, которые, в свою очередь, создают свои магнитные потоки в виде трубочек вокруг вихревого тока. Взаимодействуя с основным полем магнита, эти потоки тормозят диск.
В ряде случаев, применяя вихревые токи, можно использовать технологические операции, которые невозможно применить без токов высокой частоты. Например, при изготовления вакуумных приборов и устройств из баллона необходимо тщательно откачать воздух и иные газы. Однако в металлической арматуре, находящейся внутри баллона, имеются остатки газа, которые можно удалить только после заваривания баллона.
Для полного обезгаживания арматуры вакуумный прибор помещают в поле высокочастотного генератора, в результате действия вихревых токов арматура нагревается до сотен градусов, остатки газа при этом нейтрализуются.
Использование вихревых токов при индукционной закалке металлов
Примером полезного применения вихревых токов, вызываемых переменным полем, могут служить электрические индукционные печи. В них магнитное поле высокой частоты, создаваемое обмоткой, которая окружает тигель, наводит вихревые токи в металле, находящемся в тигле. Энергия вихревых токов трансформируется в тепло, плавящее металл.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Что такое Токи Фуко простыми словами
Токи Фуко (альтернативное название — вихревые токи) представляют собой замкнутые контуры (петли) электрического тока, возникающие внутри проводников, помещенных в изменяющийся во времени магнитный поток. Токи Фуко (ТФ) появляются вследствие электромагнитной индукции — физического эффекта, обнаруженного британским физиком М. Фарадеем. В некоторых случаях вред от вихревых токов требуется минимизировать. Например, определенные меры борьбы с ними используют, если возникают потери полезной мощности в электрических трансформаторах. В то же время имеется ряд инженерно-технических устройств, где ТФ полезны и выполняют ключевую роль. Их используют в системах торможения, при получении вакуума, в индукционных печах-нагревателях.
Историческая справка
Первооткрывателем необычного явления был французский исследователь Д. Араго (1786–1853). На картинке ниже показана схема его эксперимента, в котором вращение медного диска 1, закрепленного на стеклянной пластине 2, происходит, когда начинает двигаться расположенный снизу магнит N-S (Араго использовал магнитную стрелку).
Тайну возникновения данного явления удалось разгадать М. Фарадею благодаря открытому им закону электромагнитной индукции. Вращение магнита создает изменяемый магнитный поток, способствующий возникновению ЭДС самоиндукции в металлическом диске. Из-за воздействия ЭДС в толще металла появляются вихревые токи.
Изучением свойств этих токов занимался французский естествоиспытатель Ж. Фуко (1819–1868), имя которого сейчас используется в их названии. Ученый также выяснил, почему появляется эффект нагрева металлических объектов вихревыми токами и описал его.
Правило Ленца
Вихревые электрические токи Фуко всегда текут таким образом, чтобы оказывать действие обратное причине, спровоцировавшей их появление. Направление индуцированного тока определяется по правилу, сформулированному российским учёным Л. Ленцом.
Движение проводников в магнитном поле встречает противодействие, вызванное реакцией токов Фуко на внешнее магнитное поле. Этот эффект нашёл своё применение в устройствах торможения (успокоения) подвижных деталей в различных приборах (гальванометрах, сейсмографах и даже в системах тормозов железнодорожного транспорта) без привлечения традиционных тормозных приспособлений, использующих силу трения.
Способы уменьшения токов Фуко
В трансформаторе часть полезной мощности уходит в тепло из-за нагрева сердечника токами Фука, в результате чего снижается КПД устройства. Для подсчета количества утраченной мощности используется следующая формула:
Чтобы уменьшить потери от влияния токов Фуко, необходимо увеличить сопротивление магнитопровода. Эту задачу решают, применяя для изготовления сердечника не цельный кусок металла, а набор тонких пластин, которые изолируют друг от друга, используя слой диэлектрических покрытий.
Аналогично магнитопроводы электродвигателей переменного и постоянного электротока изготавливают из набора пластинок, покрытых изолирующей плёнкой или лаком. Такое «дробление» сердечника существенно снижает вихревые токи, поскольку резко уменьшаются величины магнитных потоков, вызывающие ЭДС самоиндукции. Кроме этого в исходный материал сердечника вносят специальные примеси, увеличивающие электрическое сопротивление.
Полезные применения токов Фуко
Физические свойства этих токов находят своё применение в различных аппаратах и приспособлениях.
Сейчас массово стали пользоваться бытовыми индукционными плитами, в которых также применяется эффект вихретокового нагрева. Они существенно ускоряют процесс приготовления пищи ввиду меньшей инерционности по сравнению с традиционными электроплитами.
Еще одним примером использования вихревых токов, является обработка металлов. Джоулевое тепло, выделению которого способствуют блуждающие токи Фуко, применяют в технологиях, требующих нагрева. Так плавка металла этим способом оказывается более экономичной по сравнению с иными способами нагрева.
Индукционная печь представляет собой катушку, через которую пропускают значительный по величине переменный ток. Внутрь катушки помещается проводящая заготовка. Регулируя амплитуду тока, можно проводить либо плавку, либо закалку исходного материала. С помощью данной технологии производится плавка в условиях высокого вакуума, позволяющая получать сверхчистые материалы.
На свойствах ТФ строятся методы бесконтактного контроля целостности трубопроводов и бесконтактного очищения металлических деталей вакуумных установок.
Еще один пример применения токов Фуко — отделение бытовых отходов из алюминия от изделий из других металлов в специальном сепараторе. Так как черные металлы притягиваются магнитом, а алюминий нет, это позволяет сортировать отходы на металлолом с алюминием и прочими металлами.
Как влияют вихревые токи КПД электромагнитных механизмов?
Вихревые токи — это так называемые «потери в стали». Чем больше потерь, тем ниже КПД. В электротехнике, применительно к электромагнитным механизмам (двигателям, трансформаторам, индукторам и т. д.) , с вихревыми токами борются всеми возможными способами. В основном это шихтование, т. е. массив железа разбивается на множество пластин, причем изолированных слоем лака.
Плохо влияют. Чем они больше, тем ниже КПД, часть энергии уходит в нагрев магнитовода, в котором они и возникают.
это вихревые токи Фуко. электромагнитное поле «сьедается» на образование этих токов и кпд падает плюс к этому эти токи нагревают проводник в котором они создаются что является дополнительной нагрузкой на механизм, прибор и так далее. нивелируются как указанно в первом комментарии
Закалка токами высокой частоты
В настоящее время появились достаточно доступные установки для обработки металлов токами высокой частоты, открывающие возможности, которые ещё совсем недавно были недоступны. Однако мало иметь такую установку, необходимо ещё и понимать суть процессов, протекающих при обработке металлов подобными токами.
Небольшой спойлер от автора: дальше последует некоторый результат моих исследований этой темы. Суждения в тексте ниже могут быть где-то верны, где-то ошибочны, а где-то недостаточно подробны. В любом случае, надеюсь, что будет интересно!
▍ Введение
Металлы широко используются в нашей повседневной жизни и отличаются высокой теплопроводностью, электропроводностью и рядом других отличающих их свойств. Закалка возможна для разных металлов, однако ниже мы будем говорить только о соединениях железа с другими компонентами. В чистом виде железо редко используется, так как оно обладает слишком большой мягкостью, поэтому в промышленности используют сплавы, которые зачастую отличаются более низкой температурой плавления и более высокой твёрдостью.
Например, сплав железа с углеродом называется сталью. Будучи обработан термически, он приобретает новые свойства — большую жёсткость, упругость и прочность.
В зависимости от содержания углерода, стали могут разделяться на три группы:
- до 0.8%: доэвтектоидные,
- 0.8%: эвтектоидные,
- более 0.8%: заэвтектоидные.
Далее, если обеспечить максимальную скорость охлаждения (другими словами, от скорости охлаждения зависит жёсткость получаемого конечного вещества), то можно получить так называемый мартенсит, представляющий собой перенасыщенный раствор углерода в железе, у которого концентрация углерода сохраняется такой же, как и в полученном при нагреве аустените:
Картинка: Диаграмма изотермического превращения аустенита для стали, содержащей 0,8% углерода / Николаев Е.Н., Коротин И.М. — «Термическая обработка токами высокой частоты»
Мартенсит обладает самой высокой твёрдостью среди всех структур, и его жёсткость зависит от количества углерода в стали. Например, для стали с содержанием углерода в 0,4% твёрдость получаемого мартенсита будет лежать в пределах 52-54 HRC. Если же сталь содержит углерод в пределах 1%, то получаемый мартенсит уже будет иметь твёрдость порядка 62-64 HRC.
Также можно сказать, что особенностью мартенсита является его образование не в процессе выдержки при определённой температуре, а при её падении.
Переход аустенита в мартенсит всегда сопровождается увеличением объёма (что стоит учитывать как закладываемый допуск при проектировании устройств).
▍ Закалка токами высокой частоты
Обработка с применением таких токов имеет преимущество перед обычным нагревом, так как приводит к уменьшению деформаций, почти полностью удаляется окисная плёнка и происходит обезуглероживание (выгорание углерода с поверхности детали, которое обычно происходит при возникновении окисления; это явление приводит к резкому снижению прочности и возможности появления трещин и коробления).
Кроме того, преимуществом подобного нагрева является отсутствие необходимости прогревать деталь на полную глубину, так как за короткое время прогревается только поверхностный слой.
Ещё одним важным фактором является то, что для такой поверхностной закалки могут применяться более дешёвые углеродистые стали (например, 40, 45), в отличие от альтернативных способов, например, цементации поверхности, где желательно использование легированных сталей (хромистой или хромоникелевой). Тем не менее, следует отметить, что твёрдость цементированных слоёв (58-62 HRC) зачастую превосходит твёрдость слоёв, закалённых с помощью токов высокой частоты (50-54 HRC).
Скорость же нагрева с применением индукционных токов превосходит обычный нагрев в печах. Так как концентрация энергии в зоне возникновения нагрева достаточно велика и обычно находится в пределах от 0,5 до 1,5 кВт/м2, это приводит к достаточно быстрому нагреву, при котором рост температуры может происходить со скоростью до 300 градусов в секунду (при правильном подборе параметров деталей и частоты тока можно добиться скорости нарастания до температуры закалки в течение периода в пределах десятых долей секунд).
Нагрев производится за счёт индуцированного тока в нагреваемой детали, которая была помещена в изменяющееся магнитное поле.
Для осуществления этого процесса деталь помещается внутрь индуктора, который представлен рядом витков (или даже одного), выполненных из медной трубки или цельного проводника. Тут следует сказать, что обычно для отвода тепла от индуктора он выполняется в виде полой трубки, через которую в процессе работы прокачивается охлаждающая вода.
Картинка: Схема нагрева токами высокой частоты, где 1 — деталь, 2 — индуктор, 3 — силовые линии / Зуев В. М. — «Термическая обработка металлов»
После чего через индуктор пропускается электрический ток, который приводит к возникновению переменного магнитного поля, у которого силовые линии проходят сквозь обрабатываемую деталь. Это приводит к тому, что в самом верхнем слое детали возникают вихревые токи, также называемые токами Фуко, которые вызывают нагрев детали.
Нагрев происходит из-за наличия сопротивления у обрабатываемых деталей, и он тем больше, чем больший ток протекает через деталь.
Распределение токов по объёму детали неодинаково и они в основном сконцентрированы в поверхностном слое, что называется скин-эффектом.
Таким образом, больше всего нагревается поверхностный слой, а сердцевина изделия нагревается за счёт теплопроводности материала.
Толщина этого поверхностного нагревающегося слоя зависит от того, какая частота переменного тока применяется, каково удельное сопротивление металла, а также его магнитной проницаемости.
В общем случае можно сказать, что чем больше частота тока, тем меньше толщина этого слоя.
Например, чтобы получить слой, имеющий толщину в 1 мм, необходимо использовать частоту в 60 кГц; для слоя толщиной в 2 мм – использовать 15 кГц; для слоя в 4 мм — 4 кГц.
Ещё одна зависимость заключается в том, что чем выше температура, тем более глубоко проникновение поверхностных токов в деталь, и оно достигает максимального значения при температуре выше точки Кюри (768 градусов).
Также наблюдается и ещё одна зависимость, заключающаяся в том, что если температура находится ниже точки Кюри, то нагрев осуществляется быстрее, после же перехода через неё нагрев замедляется:
Картинка: График индукционного нагрева / Зуев В. М. — «Термическая обработка металлов»
После того как была произведена индукционная закалка, деталь подвергают отпуску при температуре 160-200°. Здесь под отпуском понимается операция нагрева закалённой стали до определённой температуры с целью понижения твёрдости, увеличения пластичности, вязкости, а также для уменьшения внутренних напряжений.
Для закалки с применением токов высокой частоты используются конструкционные стали, под которыми понимаются стали, широко использующиеся в машиностроении для изготовления деталей механизмов и конструкций. У них содержание углерода не превышает 0,5-0,6% и они могут быть как углеродистыми, так и легированными:
Картинка: Головин Г. Ф., Замятнин М. М. — «Высокочастотная термическая обработка: вопросы металловедения и технологии»
До того, как производить закалку, выполняют предварительную термическую обработку, называемую нормализацией, которая позволяет устранить внутренние механические напряжения, наклёп, а также подготавливает всю структуру для дальнейшей обработки.
Нормализация представляет собой нагрев металла и последующее его охлаждение на воздухе. Температура, до которой нагреваются детали при выполнении нормализации, превышает ту, которой подвергаются детали при отжиге. В качестве примера можно сказать, что изделия из стали 45 отжигаются при температуре 820-840° С, при нормализации же они нагреваются до 850-870°С.
Нормализация, осуществляющаяся с применением индукционного нагрева, может быть реализована даже для отдельных зон детали (здесь можно сказать, что проявляется плюс гибкого индукционного нагрева, который может быть осуществлён для любой зоны детали).
Говоря же о методах осуществления индукционной закалки, можно перечислить:
- полный нагрев всей поверхности и последующее её охлаждение (используются в случаях, когда деталь имеет небольшой размер);
- нагрев отдельных требующихся участков детали по очереди;
- непрерывный нагрев, совмещённый с охлаждением: в процессе такой обработки деталь вращается, а по ней перемещается индуктор, следом за которым идёт охлаждающее устройство (например, разбрызгиватель воды). Может быть использован и обратный вариант, когда индуктор и охлаждающее устройство являются неподвижными, в то время как деталь вращается и перемещается из одной стороны в другую.
В описанных выше вариантах вращение используется для того, чтобы компенсировать неоднородность нагрева поверхности детали, вызванную так называемым эффектом близости, суть которого заключается в том, что если ток протекает в двух проводниках в разных направлениях, то его плотность будет выше в тех участках проводников, которые расположены наиболее близко друг к другу.
Для достижения стабильной глубины закалённого слоя стараются применять стали с пониженной прокаливаемостью. Подробно в литературе этот момент не поясняется, однако я предполагаю, что здесь подразумевается следующее: благодаря использованию таких сталей все фазовые преобразования внутри происходят только в тонком поверхностном слое, который нагревается до высоких температур. Все нижележащие слои, даже несмотря на то, что они тоже нагреваются, хотя и в меньшей степени благодаря теплопроводности, не закаливаются. Это приводит к тому, что закалённая деталь имеет жёсткую износоустойчивую поверхность и вязкую гибкую сердцевину, что весьма позитивно сказывается на её прочности в целом, так как деталь успешно сопротивляется излому. То есть, другими словами, используя подобные стали, борются с паразитной прокаливаемостью, чтобы в процессе закалки поверхностного слоя попутно не закаливался нижележащий объём детали.
Если же у вас нет устройства для закалки токами высокой частоты, то можно воспользоваться, например, более простым способом — цементацией поверхности (насыщение поверхностного слоя углеродом).
В своё время меня впечатлил следующий ролик, хотя, если вдуматься, удивляться здесь нечему:
Подытоживая, можно сказать, что закалка токами высокой частоты предоставляет уникальные возможности, позволяющие использовать более простые и дешёвые стали, но в то же время придавать им значительную прочность и износоустойчивость. Этот процесс отличается достаточной энергоэффективностью, так как не требует прокаливать всю деталь на полную глубину (хотя и существуют варианты закалки с прокаливанием на полную глубину), большой скоростью протекания процессов, что позволяет с успехом использовать этот метод для конвейерного производства. А широкое распространение аппаратов для индукционного нагрева (на всем известном китайском сайте даже за 2000 руб., с питанием 12-48V) делает эту технологию доступной практически каждому – скажем, вырезать деталь лазерной резкой из стали с соответствующими допусками и закалить.
▍ Список использованной литературы
- Головин Г. Ф., Замятнин М. М. — «Высокочастотная термическая обработка: вопросы металловедения и технологии».
- Зуев В. М. — «Термическая обработка металлов».
- Николаев Е. Н., Коротин И. М. — «Термическая обработка токами высокой частоты».