Любое нагретое тело испускает какие лучи
Любое нагретое тело излучает электромагнитные волны. Чем выше температура тела, тем более короткие волны оно испускает. Тело, находящееся в термодинамическом равновесии со своим излучением, называют абсолютно черным (АЧТ). Излучение абсолютно черного тела зависит только от его температуры. В 1900 году Макс Планк вывел формулу, по которой при заданной температуре абсолютно черного тела можно рассчитать величину интенсивности его излучения.
Австрийскими физиками Стефаном и Больцманом был установлен закон, выражающий количественное соотношение между полной излучательной способностью и температурой черного тела:
Модель 2.7. Излучение абсолютно черного тела
Этот закон носит название закон Стефана–Больцмана . Константа = 5,67•10 –8 Вт/(м 2 •К 4 ) получила название постоянной Стефана–Больцмана .
Все планковские кривые имеют заметно выраженный максимум, приходящийся на длину волны
Этот закон получил название закон Вина . Так, для Солнца 0 = 5 800 К, и максимум приходится на длину волны max ? 500 нм, что соответствует зеленому цвету в оптическом диапазоне.
С увеличением температуры максимум излучения абсолютно черного тела сдвигается в коротковолновую часть спектра. Более горячая звезда излучает большую часть энергии в ультрафиолетовом диапазоне, менее горячая – в инфракрасном.
любые нагретые тела испускают (какое излучение)
Тепловое излучение тел
Испускаемый источником свет уносит с собой энергию. Существует много различных механизмов подвода энергии к источнику света. В тех случаях, когда необходимая энергия сообщается нагреванием, то есть подводом тепла, излучение называется тепловым или температурным. Этот вид излучения представлял для физиков конца XIX века особый интерес, так как в отличие от всех других видов люминесценции, тепловое излучение может находиться в состоянии термодинамического равновесия с нагретыми телами.
Изучая закономерности теплового излучения тел, физики надеялись установить мост между термодинамикой и оптикой.
Если в замкнутую полость с зеркально отражающими стенками поместить несколько тел, нагретых до различной температуры, то, как показывает опыт, такая система с течением времени приходит в состояние теплового равновесия, при котором все тела приобретают одинаковую температуру. Тела обмениваются энергией только путем испускания и поглощения лучистой энергии. В состоянии равновесия процессы испускания и поглощения энергии каждым телом в среднем компенсируют друг друга, и в пространстве между телами плотность энергии излучения достигает определенного значения, зависящего только от установившейся температуры тел. Это излучение, находящееся в термодинамическом равновесии с телами, имеющими определенную температуру, называется равновесным или черным излучением. Плотность энергии равновесного излучения и его спектральный состав зависят только от температуры.
Если через малое отверстие заглянуть внутрь полости, в которой установилось термодинамическое равновесие между излучением и нагретыми телами, то глаз не различит очертаний тел и зафиксирует лишь однородное свечение всей полости в целом.
Пусть одно из тел в полости обладает свойством поглощать всю падающую на его поверхность лучистую энергию любого спектрального состава. Такое тело называют абсолютно черным. При заданной температуре собственное тепловое излучение абсолютно черного тела, находящегося в состоянии теплового равновесия с излучением, должно иметь тот же спектральный состав, что и окружающее это тело равновесное излучение. В противном случае равновесие между абсолютно черным телом и окружающем его излучением не могло бы установиться. Поэтому проблема сводится к изучению спектрального состава излучения абсолютно черного тела. Решить эту проблему классическая физика оказалась не в состоянии.
Инфракрасное тепло
Инфракрасное тепло это тот же вид тепла, который получает человек от солнца, русской печи, батарей центрального отопления и других подобных источников.
Что такое инфракрасное тепло
Инфракрасное излучение более известно как тепловое излучение или в простонародий инфракрасное тепло. Большая часть Солнечной энергии поступает на Землю в виде инфракрасного излучения. Солнце находящееся в зените обеспечивает освещённость на уровне моря чуть более 1 кВт. на один квадратный метр. При этом 523 Вт приходится на инфракрасное излучение, 445 Вт. — на видимый свет, 32 Вт.- на ультрафиолетовое излучение.
Инфракрасное тепло это электромагнитные волны, излучающиеся в диапазоне меньшем, чем 0,005м, но большем чем 770 нм. Всё пространство вокруг нас заполнено электромагнитными волнами, которые в зависимости от частоты колебаний подразделяются на: рентгеновские лучи, видимый свет, инфракрасное излучение и радиоволны. Такой нескончаемый поток энергии происходит в результате колебаний электрических зарядов атомов и молекул. Излучение видимого света, которое мы воспринимаем глазами, отличается длинной волны от рентгеновского излучения, излучения радио или инфракрасного излучения. Все они имеют одинаковые свойства распространения со скоростью света, то есть около 300000 км/сек. Любое нагретое тело излучает электромагнитные волны. Это излучение получается в результате преобразования энергии теплового движения частиц в электромагнитную волну и называется тепловым излучением или инфракрасным теплом. Инфракрасное излучение отличается от остальных видов тем, что энергия, посылаемая им на необходимое место, в то же время осуществляет и его нагрев. Все объекты с температурой поверхности большей абсолютного нуля (-273 °С) испускают инфракрасное тепло. Любое нагретое твёрдое тело испускает непрерывный инфракрасный спектр с волнами, имеющими все частоты излучения в широком диапазоне длин волн. Поэтому выделить какую-то определённую частоту из данного спектра и организовать работу с её применением на данном этапе практически не возможно. При этом температура объекта, а также его физические свойства определяют эффективность и длину излучаемой инфракрасной волны. Так при температурах ниже 450 °С излучение исходящее от твёрдого тела полностью расположено в инфракрасной области спектра — такое тело не испускает видимых глазом лучей и кажется тёмным. С повышением температуры нагрева повышается, и доля излучения в видимом спектре тело приобретает сначала тёмно-красный свет затем ярко красный, желтый и наконец, белый. При достижении температуры 1000 °С и выше тело испускает ультрафиолетовое излучение.
Закон теплового излучения открытый Планком устанавливает зависимость мощности интенсивности излучения твёрдого тела от длины волны и температуры. График, представляющий данный закон для двух различных длин волн и температур нагрева представлен на рисунке. Из данного графика видно, что поверхность под кривой с определённой температурой нагрева даёт возможность определить интенсивность излучения в зависимости от длинны волны. Отсюда вывод, что площадь интенсивности излучения возрастает с увеличением температуры нагрева тела и уменьшением длинны волны.
Диапазон волны инфракрасного излучения делится на три составляющих: коротковолновая (λ = 0,74-2,5 мкм.), средневолновая (λ = 2,5-50 мкм.), длинноволновая (λ = 50-2000 мкм.). Длинноволновая область излучения инфракрасного тепла не оказывает вредного влияния на организм человека, и являются самым благоприятным диапазоном волн передающих тепловую энергию. Чем выше температура излучателя, тем короче (жёстче) длинна испускаемой волны. Исследования учёных доказали, что лучшим диапазоном волн для человека является средневолновый. Причём не вся его часть, а та, которая лежит в интервале 5 — 15 мкм. Тепловое излучение самого человека составляй 9,6 мкм. то есть оно находится как раз в этом интервале. Средний диапазон волн наиболее перспективен и в промышленном производстве, так как большинство оптимальных процессов сушки материалов находятся в интервале длин волн 2,5 — 10 мкм.
Вредно ли инфракрасное тепло
» Инфракрасное излучение » не имеет ничего общего с «Рентгеновским или Ультрафиолетовым излучением», которые находятся за пределами видимой области спектра и ни как не связаны с восприятием тепла в организме человека. Но так как слово «излучение» относится ко всем выше перечисленным видам, то это вызывает у простого человека синдром опасности получения им вредного излучения вызывающего неизлечимые болезни. Инфракрасное тепло это тоже тепло, которое человек получает от солнца, печки, горячей батарей. Мы воспринимаем тепло, когда поглощаем инфракрасное излучение и чувствуем холод при излучении его в окружающее пространство. При этом наше восприятие тепла не имеет ничего общего с окружающей температурой воздуха. Данный вид тепла является для нас естественным и совершенно безопасным видом излучения кроме того он может оказать существенную пользу в лечении многих заболеваний.
Как говорилось выше, в инфракрасном спектре есть область с длинами волн порядка от 5 до 10 мкм. которая способна оказывать на человека общеукрепляющее и оздоравливающе действие. На этой основе строятся инфракрасные сауны, в которых инфракрасная энергия, передаваемая волновым способом, проникает глубоко в ткани организма и эффективно их прогревает. В результате расширяются кровяные сосуды, ускоряется поток крови и других жидкостей, что приводит к снижению давления на сердце, улучшается обмен веществ, повышается процесс доставки питательных веществ и кислорода к клеткам организма.
Инфракрасное тепло может оказывать и вредное влияние на организм. Так если спектр излучения сдвинут в более короткую область (с длиной волны 0,78. 1,4 мкм., тепловое излучение мартеновской печи) то проникновение лучей в тело человека может достигать порядка до 4 см. Если же такому излучению подвергаться довольно длительное время, то можно получить тепловой удар. Поэтому при выборе инфракрасного обогревателя следует обращать внимание на частотный спектр его излучения. Чем он короче, тем менее полезным он будет для здоровья. В обычных условиях приобретения такого обогревателя грубо его частотные характеристики можно определить по интенсивности свечения нагревательного элемента. Если он испускает видимый свет даже в затемнённом помещений, то такой обогреватель излучает более короткий диапазон волн и его лучше не приобретать. В тоже время абсолютно тёмный нагревательный элемент говорит о том, что данный обогреватель относится к классу длинноволновых, и выбор его более предпочтителен.
Инфракрасное тепло — улучшение экологии в помещениях
Системы конвекционного отопления (центрального отопления) создают идеальные условия для образования конденсата. Это происходит, потому что данная система отопления в первую очередь нагревает воздух и практически не нагревает стеновые панели здания. В таких условиях температура воздуха может составлять +21 ° C при влажности воздуха 70%, а стены прогреты до +15 ° C. Так как тёплый воздух проходит над холодной поверхностью (окна, стены, двери) то возникает точка росы (температура выпадения конденсата) и на стенах либо внутри их (в зависимости от разницы температур на поверхности) появляется конденсат. При этом тёплый, влажный воздух и конденсат создают идеальные условия для размножения бактерий, плесени и грибков. Однако это не все неприятности конвекционного отопления. Воздушный поток, который непременно возникает при данной системы топления, является идеальным транспортным механизмом для разноса этих организмов по всему помещению.
Инфракрасное тепло, создаваемое инфракрасными обогревателями при отоплении бытовых и производственных помещений имеет то преимущество перед конвекционным, что оно прогревает окружающую среду, экономически, без излишнего подогрева воздуха. В тоже время часть инфракрасного тепла попадает на стены и окна, повышая их температуру и значительно сдвигая точку росы. Таким образом, воздух остаётся сухим, но прохладным и люди чувствуют себя более комфортно. Такая технология применения инфракрасного тепла позволяет значительно улучшить экологию в обогреваемых помещениях на производстве . и предотвратить распространение таких неприятных заболеваний как простуды, кашель, озноб, а также появления на стенах плесени.
Инфракрасное тепло влияние на человека
Инфракрасное тепло позволяет человеку комфортно чувствовать себя при довольно низких температурах окружающей его среды. Отдача тепловой энергии телом человека в окружающую среду должна по возможности находится в равновесии с образованием её в процессе обмена веществ в самом организме. Организм человека производит в среднем 100 ккал/ч. тепла. Это число увеличивается при увеличении обмена веществ, например при мышечной работе. Сколько тепла вырабатывает организм, столько же он должен и отдать в окружающую среду. Если он отдаёт больше, чем вырабатывает, то возникает опасность замерзания, если он отдаёт слишком мало, то наступает тепловой удар. С помощью одежды и отопления мы стараемся выровнять разницу между производством тепла организмом и отдачей её. Отдача тепла происходит в первую очередь путём излучения и конвекции. Чем больше скорость воздуха и разница температуры между телом человека и окружающим воздухом, тем больше отдача. Во время езды на мотоцикле вследствие большой скорости воздуха излучаемое тепло отдаётся больше, чем во время прогулки пешком, при которой благодаря мышечной работе вырабатывается больше тепла.
Инфракрасное тепло отдаётся в основном путём излучения и определяется изменением температуры окружающих стен и мебели. Мы не находим комфортных условий в квартире с высокой температурой воздуха, когда её стены очень холодные (здание стоящее на открытом месте), потому, что мы отдаём очень много тепла путём излучения. И, наоборот, несмотря на довольно низкую температуру воздуха можно себя чувствовать довольно хорошо при соответственно высокой температуре стен. Задачей отопления является не содержание помещения при определённой температуре, а поддержание теплового равновесия человеческого организма.
На самом деле температура, которую ощущает человек (так называемая температура ощущения То) складывается из температуры воздуха Тв и инфракрасного тепла Ит . То приближенно равна (Тв+Ит)/2. Поэтому одно и то же значение То можно получить при разных значениях Тв, даже отрицательных. Например, на склоне снежной горы под ярким солнцем можно с комфортом загорать.
Воздух обладает низкой теплоемкостью, поэтому для нагрева воздуха до нормативной температуры по всему объему помещения требуются большие затраты энергии. Однако, рабочая зона, в которой находятся люди, как правило, располагается на высоте до 2-х метров — все, что выше этой зоны, по существу обогревается впустую. Теплый воздух поднимается вверх, скапливаясь под потолком и увеличивает непроизводительные потери на отопление. Дополнительные потери приходятся на нагретый воздух, удаляемый из производственного помещения системой вентиляции находящейся как правило в его верхней части. Отопление производства инфракрасными обогревателями это не простой процесс, требующий учёта различных нюансов. Поэтому перед установкой системы отопления в обязательном порядке необходимо произвести её расчёт. Что позволит экономно расходовать энергоресурсы и при этом обеспечить комфортную температуру в помещении для человека.
Человек чувствует себя довольно хорошо, когда воспринимает на себя инфракрасные лучи, несмотря на холодные стены и низкую внешнюю температуру, куда он отдаёт много тепла. Кожа человека очень хорошо воспринимает инфракрасное тепло.
Данные о восприятии инфракрасного тепла кожей человека
Сила облучения в ккал/мин* см 2 | Ощущения |
0,0015 | Ощущение боли |
0,0002 | Горячо, жжёт, напряжение лица |
0,00005 | Ощущение тепла |
0,000015 | После некоторого действия лёгкое ощущение тепла |
Инфракрасное излучение это тот же вид тепла, который мы получаем от солнца, русской печки, батареи центрального отопления и т.д. Это излучение, которое подчинятся тем же законам физики, что и видимый свет. Спектральная область, находится между красным видимым светом и коротковолновым излучением. Оно присуще всем нагретым телам при этом длина волны, излучаемая им, зависит от температуры самого тела, чем она выше, тем короче волна и выше интенсивность самого излучения. Так земная поверхность нагретая солнечными лучами сама является источником излучения с интервалом длин волн 7 — 14 мкм. (микрометров) с максимумом 10 мкм. Человек так же излучает и поглощает инфракрасное излучение с пиком 9,6 мкм. Тепло с такой длинной волн глубоко проникает в тело человека, интенсивно прогревая его благоприятно действуя на внутренние органы.
Об этом хорошо знали наши предки и нередко прибегали к лечению теплом определённых заболеваний посредством прогревания тела в парилках. Температура воздуха у потолка парилки достигает порядка +100°С, при этом кожа человека нагревается до +39 — 40°С. Человек начинает интенсивно потеть и дальнейший рост температуры замедляется. Достигнув +41°С градуса, температура кожи опускается. Внутренние органы начинают постепенно прогреваться и достигают температуры +38 — 39°С. В результате чего в организме человека резко возрастают обменные процессы, что соответствует лихорадочному состоянию. При этом значительно повышается сопротивляемость организма действию вирусов и бактерий, улучшается здоровье. Древнегреческий врач Пемендидес писал в своё время «Дайте мне способ вызвать лихорадку, и я излечу любую болезнь».
Влияние инфракрасного излучения на человека было изучено японским врачом Тадаши Ишикава в 60-х годах прошлого столетия. Он установил что инфракрасный луч может проникать в тело человека на большую глубину вызывая аналогичный эффект получаемый человеком в парилке. Но в этом случае потоотделение кожи начинается уже при температуре +50 — 60°С и внутренние органы прогреваются значительно глубже, чем в парилке. Инфракрасные волны, проникая вглубь тела человека, прогревают все его органы и усиливают кровообращение. Физическая терморегуляция перестраивается на увеличение теплоотдачи, в тоже время химическая терморегуляция приводит к уменьшению теплопродукции. Что ведёт к расширению сосудов кожи, подкожной клетчатки и органов дыхания которые в свою очередь улучшают питание мышц и резко повышают снабжение тканей кислородом. Результатом этих работ стало создание инфракрасных кабин, в котором основным элементом обогрева были длинноволновые инфракрасные обогреватели.
Длительные исследования учёных по влиянию инфракрасного излучения на человека показали, что инфракрасное тепло оказывает положительное воздействие на его здоровье. При этом поглощённое телом излучение согревает человека, преобразуясь в тепло, а излишки тепла отдаются прохладному воздуху, действуя освежающе на него. Но не следует забывать и о том, что длительное пребывание под интенсивным инфракрасным излучением может спровоцировать тепловой удар.
Подведя итоги, приходим к заключению: инфракрасное излучение это естественный природный вид излучения на земле; человек постоянно подвергается действию инфракрасных лучей это его нормальное состоянии; кратковременное воздействие в небольших дозах инфракрасного тепла на человека благотворно влияет на его здоровье; длительное пребывание под мощным источником инфракрасного излучения может привести к тепловому удару.
Обогреватели для дома . — Инфракрасные обогреватели для дома, принципы их применения, достоинства, преимущество перед другими видами обогрева.
Обогреватели для дачи . — Обогреватели для дачи, принципы их применения, преимущество перед масляными конвекционными обогревателями.
Любое нагретое тело испускает какие лучи
Тепловое излучение было открыто ученым Э. Беккерелем в 1869 году. Тепловые лучи принято называть инфракрасным излучением, охватывающим достаточно широкую область спектра оптического излучения в пределах от 0,78 до 1000 мкм. Важно понимать характер и неоднозначность воздействия инфракрасного излучения на организм человека. При превышении пределов физиологической компенсации теплообмена наступает перегрев или переохлаждение.
Тепловое излучение было открыто ученым Э. Беккерелем в 1869 году. Тепловые лучи принято называть инфракрасным излучением, охватывающим достаточно широкую область спектра оптического излучения в пределах от 0,78 до 1000 мкм. Важно понимать характер и неоднозначность воздействия инфракрасного излучения на организм человека. При превышении пределов физиологической компенсации теплообмена наступает перегрев или переохлаждение.
Инфракрасные лучи представляют собой поток материальных частиц, который характеризуется наличием выраженных волновых и квантовых свойств. Инфракрасное излучение рассматривается как совокупность периодических электромагнитных колебаний, а также по своей физической природе является потоком квантовых фотонов.
ВОПРОС:
Какие элементы производственной среды являются источниками инфракрасного излучения?
ОТВЕТ:
Любые нагретые тела являются источниками инфракрасного излучения. Нейтральными являются только такие тела, которые имеют температуру, при которой устанавливается радиационное равновесие с равным приходом и расходом радиации. К источникам положительной инфракрасной радиации относятся те, которые имеют температуру ниже 600 °С (температура «красного» каления), к источникам, одновременно излучающим также видимые и ультрафиолетовые лучи ― имеющие более высокую температуру.
Наибольшим тепловым эффектом обладают инфракрасные лучи (далее ― ИК-лучи). Однако, видимые и отчасти длинноволновые ультрафиолетовые лучи также в какой-то степени являются тепловыми. Источники отрицательной радиации ограничены, в том числе по диапазону минимальных температур (ниже абсолютного нуля ― -273 °С). Область положительных температур практически не ограничена.
По своему происхождению источники большинства излучений делятся на естественные и искусственные. Самым большим источником инфракрасного излучения является Солнце. В летнее время солнечная радиация в околополуденные часы могла бы достигать 1147 Вт/м2, в условиях же реальной атмосферы на поверхности Земли наибольшая измеренная величина составляет 1049 Вт/м2.
Например, в Якутске, Москве, Евпатории эти величины соответственно составляют 797, 812 и 776 Вт/м2. Доля инфракрасной радиации составляет не менее 50%. Среди источников искусственного излучения наиболее высокими температурами обладают электрические дуги (2000-4000 °С).
Сверхвысокие температуры до 20000 °С могут быть достигнуты в лабораторных условиях при применении ртутных ламп сверхвысокого давления. Однако обычно температура общеупотребительных источников радиации не превышает 3000 °С. Причем максимальная длина волны (0,99 мкм) лежит в пределах инфракрасной радиации. Большая часть температурных источников радиации, применяемых в производстве и в быту, включая источники лучистого отопления, излучают в основном ИК-лучи.
В комфортных метеорологических условиях теплоотдача излучения лежит в пределах от 43,8 до 59% по отношению к общей величине теплопотерь. Если в производственном помещении имеются ограждения с температурой более низкой, чем температура воздуха, то удельный вес теплопотерь человека возрастает и может достигать 71%. Было показано, что поверхность человеческого тела, участвующая в лучистом теплообмене, лежит в пределах от 71 до 95 %.
Нагревающий микроклимат в цехах предприятий многих отраслей промышленности характеризуется преобладанием лучистого тепла, являющегося основным климатообразующим фактором.
ВОПРОС:
Как меняется интенсивность теплового излучения в зависимости от характера протекания технологических процессов производственных предприятий отдельных отраслей промышленности?
ОТВЕТ:
Спектр излучения включает как длинноволновые, так и коротковолновые инфракрасные лучи. Применение высокотемпературных процессов в металлургии, машиностроении, сварочном производстве способствует увеличению в спектре излучения коротковолновых лучей, в частности появлению ультрафиолетового излучения. Это требует применения дополнительных мероприятий по профилактике неблагоприятного воздействия излучения этой части оптического спектра на здоровье работников.
Интенсивность инфракрасного излучения может находиться в пределах от 2100 до 4900 Вт/м2 в кузнечных и литейных цехах, от 3500 до 7000 Вт/м2 ― в цехах выработки стекла; от 7000 до 14000 Вт/м2 ― в мартеновских, электросталеплавильных, доменных цехах металлургических производств.
Инфракрасное излучение оказывает на организм человека преимущественно тепловое воздействие. Поглощение тепловой энергии ик-лучей происходит преимущественно в эпидермисе человека.
ВОПРОС:
Каково биологическое воздействие оказывает инфракрасное излучение?
ОТВЕТ:
Учеными-гигиенистами доказано различие в восприятии биологическими организмами радиационного и конвективного тепла. Согласно имеющимся данным наблюдается более слабая реакция терморецепторов кожи на радиационный нагрев или охлаждение (по сравнению с конвекционным), что, возможно, связано с трансформацией теплового излучения в более глубоких слоях кожи, в которых плотность терморецепторов ниже.
У человека два органа являются главными приемниками теплового излучения ― глаза и кожные покровы. Действие на данные органы проявляется в случае, когда происходит поглощение тепловой энергии. В свою очередь коэффициент поглощения ИК-лучей, и, следовательно, эффект их воздействия на организм человека действия связаны с длиной волны, которая обуславливает глубину их проникновения. Необходимо четко понимать, что ключевое значение с точки зрения оценки воздействия ИК-излучения на организм человека играют оптические свойства кожи и одежды.
При непосредственном облучении кожи в организме возникает ряд сложных биохимических процессов.
Первой в промышленной гигиене была выдвинута концепция о качественных различиях действия на организм конвекционного и лучистого тепла. В частности специфичность действия инфракрасного излучения на человека обуславливается проницаемостью поверхностных тканей для тепловых лучей и трансформацией их в тепловую энергию в более глубоко расположенных тканях. Такое тепловое воздействие сопровождается активизацией биохимических процессов и повышением тонуса тканей.
Учеными был описан биохимический эффект от воздействия ИК-лучей фотохимическим действием, которое проявляется при поглощении белками кожи и активацией ферментативных процессов.
Было доказано наличие разнообразных реакций под влиянием инфракрасного облучения, например, уменьшение лейкоцитов и тромбоцитов, более высокий титр и более раннее появление агглютининов в крови иммунизированных животных. Под воздействием инфракрасного излучения понижается тонус вегетативной нервной системы и повышается содержание кальция в крови. Увеличение после теплового воздействия (для всех длин волн) концентрации кальция в плазме крове характерно при интенсивности инфракрасного излучения 350 Вт/м2 и выше.
Инфракрасное излучение также способствует нарушению проницаемости клеточных мембран, что было зарегистрировано по изменению соотношения электролитов в плазме крови. После облучения у испытуемых уменьшалась концентрация клеточного калия и натрия.
Выраженность физико-химических процессов (изменение активности свободно-радикальных и антиокислительных систем организма) и тепловых реакций организма зависит от интенсивности и спектрального состава излучения, определяющего глубину проникновения и поглощения структурными элементами тканей. Увеличение интенсивности свободно-радикальных процессов наблюдалось при воздействии потоков энергии величиной от 70 до 100 Вт/м2. Наиболее выраженным воздействие на организм человека было у ИК-лучей с длиной волны 1,5 и 6,0 мкм, а наименьшее воздействие было зафиксировано ― при длине волны излучения 4,5 мкм.
Специалисты установили, что при облучении поверхности кожи интенсивностью до 175 Вт/м2 создаются предпосылки для денатурации белковых молекул, которые зависят как от специфического действия этого фактора, так и от тепловых процессов.
Экспертами отмечено наличие денатурационных процессов в молекулах белка в сочетании с нарушением проницаемости клеточных мембран, что, вероятно, может быть причиной изменения мембранного потенциала клеток крови, появление аутоантигенных свойств, что, в свою очередь, может способствовать развитию аутоиммунных процессов.
При интенсивности облучения обнаженной поверхности тела площадью 0,2 м2 (область груди), равной 70-100 Вт/м2, преобладает оптимизирующий эффект, сопровождающийся возбуждением свободно-радикальных процессов и высоким уровнем антиоксидантной защиты, а также повышением антимикробной резистентности. При интенсивности 175 Вт/м2 и выше имеет место снижение активности антиоксидантных систем, ферментов. Это сопровождается выраженным снижением антимикробной резистентности организма.
Многочисленные исследования указывают на значимое участие сердечно-сосудистой системы в ответной реакции на воздействие инфракрасного излучения. Организм отвечает на данное воздействие учащением сердцебиения, повышением систолического и понижением диастолического артериального давления.
ВОПРОС:
У работников каких профессий были выявлены случаи профессиональной заболеваемости, связанной с вредным воздействием инфракрасного излучения?
ОТВЕТ:
Учеными-профпатологами отмечается значительная заболеваемость сердечно-сосудистой системы и органов пищеварения среди рабочих горячих цехов, в которых наблюдается высокая интенсивность инфракрасного излучения. У работников «горячих» выявляются дистрофические изменения миокарда в 2-2,5 раза чаще, гипертензия ― в 1,5-1,7 раза, артериальная гипертония в 7-8 раз, чем у работающих в условиях, приближенным к допустимым значениям по фактору микроклимата. Удельный вес болезней системы кровообращения среди причин инвалидности рабочих металлургов составляет.
Отмечается выраженная «стажевость» в развитии профессиональных заболеваний. Так спустя уже 1 год от начала работы в горячих цехах, наблюдается снижение иммунной реактивности организма работников. Соответственно процесс приспособления организма работников к повышенной внешней температуре воздуха сопровождается нарушениями белкового обмена.
У работников, которые на протяжении длительного времени работали в «горячих» цехах, по результатам обследования выявляются ярко выраженные и стойкие сдвиги в иммунной реактивности организма. Звенья имунной системы таких работников находятся в постоянном функциональном напряжении, что неизбежно выражается в увеличении случаев заболеваний органов дыхания простудного характера. Полученные данные показывают, что у рабочих в нагревающем микроклимате с преобладанием радиационной составляющей не развивается адекватная адаптация.
На сталелитейных производствах по результатам проведенных ретроспективных эпидемиологических исследований было показано, что в цехах, в которых микроклимат характеризуется высоким уровнем ИК-излучения (до 1568 ± 240 Вт/м2) и высокой температурой воздуха (32,5 ± 2,0°С) у работников был зарегистрирован рост относительного риска смерти от ишемической болезни сердца, гипертонической болезни, болезней артерий, артериол и капилляров.
Проведение исследований вредного воздействия инфракрасного излучения на здоровье работников значительно осложняется тем, что имеются большие сложности в оценке интенсивности и нормирования теплового облучения человека, непосредственно связанные с определением фактической поглощенной дозы. Подобные сложности и погрешности в исследованиях часто определяются фактическими защитными свойствами одежды по тепловому критерию, площадью облучаемой поверхности тела и облучаемым участком, геометрической характеристикой падающего потока и другими факторами. Нельзя сбрасывать со счетов и влияние конвективной составляющей теплообмена человека с окружающей средой при оценке неблагоприятного влияния перегревания, обусловленного инфракрасным излучением.
Главную опасность на здоровье работников оказывает воздействие инфракрасного излучения, выражающееся в термальном поражении сетчатой оболочки глаз, травмах хрусталика глаза, приводящих к стойкому прогрессированию катаракты.
ВОПРОС:
Какими физическими характеристиками определяется вредное воздействие инфракрасного излучения на зрительный анализатор человека?
ОТВЕТ:
Важнейшей физической характеристикой вредного воздействия инфракрасного излучения на орган зрения является величина порогового предела инфракрасного излучения (ВПП), которая зависит от большого количества факторов. В основе действия инфракрасной радиации на орган зрения лежит главным образом тепловой эффект. Применительно к отдельным частям глаза было обнаружено, что они пропускают разное количество падающего потока, а именно:
― роговица ― 20-25% от всего потока;
― внутрикамерная влага глазного яблока ― 20-30% от всего потока;
― хрусталик ― до 30% потока;
― стекловидное тело ― до 60% потока.
До сетчатки доходят лучи спектрального состава от 0,34 до 1,23 мкм. Наиболее частым и тяжелым поражением глаза вследствие воздействия инфракрасных лучей является катаракта. Характерной чертой является локализация катаракты. Она всегда начинается в центре задней поверхности хрусталика, затем распространяется во все стороны. Начало заболевания больные, как правило, не замечают. Эта область является оптическим центром, где лучи света, не преломляясь через хрусталик, соединяются все вместе и обуславливают наиболее интенсивное нагревание.
Помутнение хрусталика отмечается у стеклодувов, а также других категорий рабочих, подвергающихся воздействию теплового излучения от открытого пламени или раскаленного металла (литейщики, кузнецы, прокатчики, сталевары и др.). Согласно результатам обобщенных исследований почти все заболевания катарактами профессионального характера надают на рабочих старше 40 лет с производственным стажем около 20 лет.
Проведенный спектральный анализ теплового излучения и его интенсивности на различных рабочих местах показал, что наибольшему воздействию тепла подвергаются работающие у плавильных печей. Важным критерием для определения помутнения хрусталика, вызванного воздействием тепла, является средняя величина силы облучения за рабочую смену. Это та доза, которую рабочий получает длительное время. Но помутнение хрусталика может быть обусловлено и непосредственно термическим эффектом. В этом случае имеет значение максимальная сила облучения, и заболевание может не зависеть от общей дозы облучения.
Следует отметить, что при длинноволновом облучении повышение температуры конъюнктивы выражено больше, чем при коротковолновом. Эта зависимость тем больше выражена, чем выше интенсивность теплового облучения. Передняя камера глаза, напротив, нагревается в большей степени при коротковолновом облучении. Доказано, коротковолновые инфракрасные лучи глубоко проникают в глазные среды, а длинноволновые поглощаются поверхностными тканями.
Имеющиеся в настоящее время данные исследований свидетельствуют о неблагоприятном биологическо воздействии инфракрасного излучения на организм человека. Поэтому особое значение приобретают специальные профилактические мероприятия, направленные на эффективное снижение термической нагрузки производсвенной среды на организм работников. Необходимо учитывать различия в характере воздействия на человека конвекционного тепла и инфракрасного излучения, что требует обеспечить дифференцированный подход к профилактике перегревания человека. Особое внимание должно уделяться защите органа зрения.
ВОПРОС:
Какие меры профилактики перегревания работающего персонала наиболее эффективны при воздействии на работников инфракрасного излучения?
ОТВЕТ:
Меры профилактики неблагоприятного воздействия инфракрасного излучения включают:
― меры, направленные на недопущение инфракрасного облучения человека на рабочем месте;
― меры, направленные па снижение интенсивности ИК-облучения, а также и температуры воздуха на рабочем месте;
― меры, направленные па нормализацию (улучшение) теплового состояния работающих в нагревающей среде и профилактику неблагоприятного действия инфракрасного излучения па кожные покровы (ожоги) и глаза.
Повсеместное внедрение новых технологических процессов и оборудования, автоматизация производства могут исключить неблагоприятное воздействие инфракрасного излучения на человеческий организм. Например, автоматизация и дистанционное управление процессом непрерывной разливки и прокатки стали позволило практически полностью ликвидировать целый ряд «горячих» профессий металлургического производства. На рабочих местах операторов теперь обеспечивается комфортный микроклимат.
Снижение температурной нагрузки достигается также соответствующей планировкой и размещением оборудования в производственных помещениях, уменьшением времени пребывания работающих в нагревающей среде. Для локализации тепловыделений от открытых проемов, нагретых поверхностей оборудования используются специальные отражающие, поглощающие и отводящие экраны. В результате применения таких экранов достигается десятикратное снижение интенсивности теплового излучения на рабочих местах.
Теплоизоляция нагретого оборудования (минеральная стекловата, стекловолокно, пенопласт и др.) может снизить температуру оборудования, а также интенсивность теплового излучения до величии, регламентированных санитарным законодательством («СанПиН 2.2.4.548-96. 2.2.4. Физические факторы производственной среды. Гигиенические требования к микроклимату производственных помещений. Санитарные правила и нормы», утв. Постановлением Госкомсанэпиднадзора РФ от 1 октября 1996 года № 21, далее ― СанПиН 2.2.4.548-96).
В производственных помещениях, в которых на рабочих местах не представляется возможным установить регламентируемые интенсивности теплового облучения работающих из-за технологических требований к производственному процессу, экономической нецелесообразности или технической недостижимости необходимо использовать средства, направленные на увеличение теплопотерь организма либо радиацией, либо конвекцией.
В данном случает эффективно применение особых экранов с охлаждающей поверхностью, а также устройств для увеличения подвижности воздуха. В отдельных случаях может быть эффективным увеличение скорости движения воздуха выше нормируемых величин.
Большое практические значение имеет использование для целей защиты человека от воздействия инфракрасного излучения эффективных срдств индивидуальной защиты поверхности тела и органов зрения.
ВОПРОС:
Применение каких средств индивидуальной защиты работников от вредного воздействия инфракрасного излучения получило наибольшее распространение?
ОТВЕТ:
В зависимости от облучаемого участка поверхности тела и его площади могут использоваться костюмы, накладки, фартуки, отдельно куртки или брюки и другие средства защиты. Например, сталевары (особенно при выпуске металла) должны быть обеспечены защитным комплектом, в состав которого входят защитный костюм, спецобувь, головной убор, рукавицы, средства защиты лица и глаз. Для защиты работающих в кузнечно-прессовых цехах может быть достаточным фартук, изготовленный из материала с металлизированным покрытием.
Практикуется дифференцированный подход к выбору СИЗ. Это связано с тем, что материалы, используемые для изготовления средств защиты могут быть воздухо- и влагонепроницаемыми (например, с металлизированным покрытием). Это является препятствием к обеспечению должного тепло-массо-обмена человека с окружающей средой и одной из причин ухудшения самочувствия работника.
Следует очень тщательно подходить к выбору средств индивидуальной защиты работников от вредного воздействия инфракрасного излучения. Важно иметь ввиду, что, несмотря на наличие технических требований к защитным показателям СИЗ, многие из представленных на рынке средств защиты не могут в должной степени снимать термическую нагрузку на организм работающих. В частности, одним из важных критериев выбора СИЗ является наличие таких защитных свойств, которые позволяют избежать поражения кожных покровов из-за нагрева внутренней поверхности одежды свыше 40°С.
Источники инфракрасного излучения могут быть применены в системах лучистого отопления и обогрева для компенсации повышенных теплопотерь человека в условиях пониженной температуры воздуха.
ВОПРОС:
Как на практике исключить вредное воздействие инфракрасного излучения на организм работников при его использовании в локальных системах лучистого отопления и обогрева?
ОТВЕТ:
При применении инфракрасных излучателей в качестве источников тепла в локальных системах отопления производственных помещений должны быть соблюдены требования к интенсивности теплового излучения, исключающие его неблагоприятное влияние па человека. Кроме того, во избежание локального охлаждения, должно быть регламентировано и допустимое снижение температуры воздуха в помещении по отношению к нормируемым величинам.
В производственных помещениях, оборудованных системами лучистого отопления (обогрева), температура воздуха не должна быть ниже, чем на 4 °С от нормативных величин применительно к холодному периоду года, предусмотренных СанПиН 2.2.4.548-96. При этом относительная влажность и скорость движения воздуха, перепад температуры воздуха но высоте рабочей зоны должны соответствовать требованиям, указанным в СанПиН 2.2.4.548-96.
Для предупреждения неблагоприятного воздействия инфракрасного излучения на организм человека интенсивность облучения незащищенных участков поверхности головы должна быть не выше 15 Вт/м2 при температуре воздуха, соответствующей нижней границе допустимых величин, приведенных в СанПиН 2.2.4.548-96.
При пониженной температуре воздуха интенсивность инфракрасного облучения незащищенных участков головы должна увеличиваться на 15 Вт/м2 на каждый градус снижения температуры, начиная от нижней границы нормативных величин, указанных в СанПиН 2.2.4.548-96.
Инфракрасные излучатели не должны размещаться в зоне прямого воздействия инфракрасного излучения па глаза человека.
Интенсивность инфракрасного облучения поверхности туловища, рук и ног человека должна быть не выше 25 Вт/м2 при температуре воздуха, соответствующей нижней границе оптимальных величин, и не выше 50 Вт/м2 при температуре воздуха, соответствующей нижней границе допустимых величин, указанных в СанПиН.
При пониженной температуре воздуха интенсивность инфракрасного облучения поверхности туловища, руки ног должна повышаться на 25 Вт/м2 на каждый градус снижения температуры, начиная от нижней границы нормативных величин. При этом максимальная интенсивность инфракрасного облучения поверхности туловища, рук и ног не должна превышать 150 Вт/м2 на постоянных и 250 Вт/м2 на непостоянных рабочих местах.