Электризация тел. Два вида электрических зарядов. Взаимодействие электрических зарядов. Закон сохранения электрического заряда
1. Если стеклянную палочку потереть о шёлк или бумагу, то она приобретёт способность притягивать лёгкие тела, например бумажки, волосы и пр. Тот же эффект можно наблюдать, если поднести к лёгким предметам эбонитовую палочку, потертую о мех. Тела, которые в результате трения приобретают способность притягивать другие тела, называют наэлектризованными или заряженными, а явление приобретения телами электрического заряда называют электризацией.
Подвесив на двух нитях лёгкие шарики из фольги и коснувшись каждого из них стеклянной палочкой, потёртой о шёлк, можно увидеть, что шарики оттолкнутся друг от друга. Если потом коснуться одного шарика стеклянной палочкой, потёртой о шёлк, а другого эбонитовой палочкой, потёртой о мех, то шарики притянутся друг к другу. Это означает, что стеклянная и эбонитовая палочки при трении приобретают заряды разных знаков, т.е. в природе существуют два рода электрических зарядов, имеющих противоположные знаки: положительный и отрицательный. Условились считать, что стеклянная палочка, потёртая о шёлк, приобретает положительный заряд, а эбонитовая палочка, потёртая о мех, приобретает отрицательный заряд.
Из описанного опыта также следует, что заряженные тела взаимодействуют друге другом. Такое взаимодействие называют электрическим. При этом одноимённые заряды, т.е. заряды одного знака, отталкиваются друг от друга, а разноимённые заряды притягиваются друг к другу.
На явлении отталкивания одноимённо заряженных тел основано устройство электроскопа — прибора, позволяющего определить, заряжено ли данное тело (рис. 77), и электрометра, прибора, позволяющего оценить значение электрического заряда (рис. 78).
Если заряженным телом коснуться стержня электроскопа, то листочки электроскопа разойдутся, поскольку они приобретут заряд одного знака. То же произойдёт со стрелкой электрометра, если коснуться заряженным телом его стержня. При этом, чем больше заряд, тем на больший угол отклонится стрелка от стержня.
2. Из простых опытов следует, что сила взаимодействия между заряженными телами может быть больше или меньше в зависимости от величины приобретённого заряда. Таким образом, можно сказать, что электрический заряд, с одной стороны, характеризует способность тела к электрическому взаимодействию, а с другой стороны, является величиной, определяющей интенсивность этого взаимодействия.
Заряд обозначают буквой \( q \) , за единицу заряда принят кулон: \( [q] \) = 1 Кл.
Если коснуться заряженной палочкой одного электрометра, а затем этот электрометр соединить металлическим стержнем с другим электрометром, то заряд, находящийся на первом электрометре, поделится между двумя электрометрами. Можно затем соединить электрометр с ещё несколькими электрометрами, и заряд будет делиться между ними. Таким образом, электрический заряд обладает свойством делимости. Пределом делимости заряда, т.е. наименьшим зарядом, существующим в природе, является заряд электрона. Заряд электрона отрицателен и равен 1,6·10 -19 Кл. Любой другой заряд кратен заряду электрона.
3. Электрон — частица, входящая в состав атома. В истории физики существовало несколько моделей строения атома. Одна из них, позволяющая объяснить ряд экспериментальных фактов, в том числе явление электризации, была предложена Э. Резерфордом. На основании проделанных опытов он сделал вывод о том, что в центре атома находится положительно заряженное ядро, вокруг которого по орбитам движутся отрицательно заряженные электроны. У нейтрального атома положительный заряд ядра равен суммарному отрицательному заряду электронов. Ядро атома состоит из положительно заряженных протонов и нейтральных частиц нейтронов. Заряд протона по модулю равен заряду электрона. Если из нейтрального атома удалены один или несколько электронов, то он становится положительно заряженным ионом; если к атому присоединяются электроны, то он становится отрицательно заряженным ионом.
Знания о строении атома позволяют объяснить явление электризации трением. Электроны, слабо связанные с ядром, могут отделиться от одного атома и присоединиться к другому. Это объясняет, почему на одном теле может образоваться недостаток электронов, а на другом — их избыток. В этом случае первое тело становится заряженным положительно, а второе — отрицательно.
4. Если потереть незаряженные стеклянную и эбонитовую пластинки друг о друга и затем внести их по очереди в полый шар, надетый на стержень электрометра, то электрометр зафиксирует наличие заряда и у стеклянной, и у эбонитовой пластинки. При этом можно показать, что пластинки будут иметь заряд противоположных знаков. Если в шар внести обе пластины стрелка электрометра останется на нуле. Подобное можно обнаружить, если потереть эбонитовую палочку о мех: мех, так же как и палочка, будет заряжен, но зарядом противоположного знака.
В результате трения электроны перешли со стеклянной пластины на эбонитовую, и стеклянная пластина оказалась заряженной положительно (недостаток электронов), а эбонитовая отрицательно (избыток электронов). Таким образом, при электризации происходит перераспределение заряда, электризуются оба тела, приобретая равные по модулю заряды противоположных знаков.
При этом алгебраическая сумма электрических зарядов до и после электризации остаётся постоянной: \( q_1+q_2+…+q_n=const \) .
В описанном опыте \( q_n \) алгебраическая сумма зарядов пластин до и после электризации равна нулю.
Записанное равенство выражает фундаментальный закон природы — закон сохранения электрического заряда. Как и любой физический закон, он имеет определённые границы применимости: он справедлив для замкнутой системы тел, т.е. для совокупности тел, изолированных от других объектов.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Если массивную гирю поставить на пластину из изолятора и соединить с электрометром, а затем несколько раз ударить по ней куском меха, то гиря приобретёт отрицательный заряд и стрелка электрометра отклонится. При этом кусок меха приобретёт заряд
1) равный нулю
2) положительный, равный по модулю заряду гири
3) отрицательный, равный заряду гири
4) положительный, больший по модулю заряда гири
2. Два точечных заряда будут притягиваться друг к другу, если заряды
1) одинаковы по знаку и любые по модулю
2) одинаковы по знаку и обязательно одинаковы по модулю
3) различны по знаку, но обязательно одинаковы по модулю
4) различны по знаку и любые по модулю
3. На рисунках изображены три пары одинаковых лёгких заряженных шариков, подвешенных на шёлковых нитях. Заряд одного из шариков указан на рисунках. В каком(-их) случае(-ях) заряд второго шарика может быть отрицателен?
1) только А
2) А и Б
3) только В
4) А и В
4. Ученик во время опыта по изучению взаимодействия металлического шарика, подвешенного на шёлковой нити, с положительно заряженным пластмассовым шариком, расположенным на изолирующей стойке, зарисовал в тетради наблюдаемое явление: нить с шариком отклонилась от вертикали на угол \( \alpha \) . На основании рисунка можно утверждать,что металлический шарик
1) имеет положительный заряд
2) имеет отрицательный заряд
3) не заряжен
4) либо не заряжен, либо имеет отрицательный заряд
5. Отрицательно заряженное тело отталкивает подвешенный на нити лёгкий шарик из алюминиевой фольги. Заряд шарика:
A. положителен
Б. отрицателен
B. равен нулю
Верными являются утверждения:
1) только Б
2) Б и В
3) А и В
4) только В
6. Металлический шарик 1, укреплённый на длинной изолирующей ручке и имеющий заряд \( +q \) , приводят поочерёдно в соприкосновение с двумя такими же изолированными незаряженными шариками 2 и 3, расположенными на изолирующих подставках.
Какой заряд в результате приобретёт шарик 2?
7. От капли, имеющей электрический заряд \( -2e \) , отделилась капля с зарядом \( +e \) . Каков электрический заряд оставшейся части капли?
8. Металлическая пластина, имевшая отрицательный заряд \( -10e \) , при освещении потеряла четыре электрона. Каким стал заряд пластины?
9. К водяной капле, имевшей электрический заряд \( +5e \) присоединилась кайля с зарядом \( -6e \) . Каким станет заряд объединенной капли?
10. На рисунке изображены точечные заряженные тела. Тела А и Б имеют одинаковый отрицательный заряд, а тело В равный им по модулю положительный заряд. Каковы модуль и направление равнодействующей силы, действующей на заряд Б со стороны зарядов А и В?
1) \( F=F_А+А_В \) ; направление 2
2) \( F=F_А-А_В \) ; направление 2
3) \( F=F_А+А_В \) ; направление 1
4) \( F=F_А-А_В \) ; направление 1
11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.
1) Сила взаимодействия между электрическими зарядами тем больше, чем больше расстояние между ними.
2) При электризации трением двух тел их суммарный заряд равен нулю.
3) Сила взаимодействия между электрическими зарядами тем больше, чем больше заряды.
4) При соединении двух заряженных тел их общий заряд будет меньше, чем алгебраическая сумма их зарядов до соединения.
5) При трении эбонитовой палочки о мех заряд приобретает только эбонитовая палочка.
12. В процессе трения о шёлк стеклянная линейка приобрела положительный заряд. Как при этом изменилось количество заряженных частиц на линейке и шёлке при условии, что обмен атомами при трении не происходил? Установите соответствие между физическими величинами и их возможными изменениями при этом. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) количество протонов на шёлке
Б) количество протонов на стеклянной линейке
B) количество электронов на шёлке
ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась
Закон Кулона и его применение в электротехнике
Закон Кулона — это один из основных законов электростатики, который описывает силу взаимодействия между двумя неподвижными точечными электрическими зарядами в вакууме.
Сила прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними. Сила притяжения или отталкивания направлена вдоль прямой, соединяющей заряды.
Закон Кулона был экспериментально установлен французским физиком Шарлем Кулоном в 1785 году.
Так же как в ньютоновой механике гравитационное взаимодействие всегда имеет место между телами обладающими массами, аналогичным образом в электродинамике электрическое взаимодействие свойственно телам, обладающим электрическими зарядами. Обозначается электрический заряд символом «q» или «Q».
Можно даже сказать, что понятие электрического заряда q в электродинамике чем-то схоже с понятием гравитационной массы m в механике. Но в отличие от гравитационной массы, электрический заряд характеризует свойство тел и частиц вступать в силовые электромагнитные взаимодействия, и эти взаимодействия, как вы понимаете, не являются гравитационными.
Человеческий опыт исследования электрических явлений содержит множество экспериментальных результатов, и все эти факты позволили физикам прийти к следующим однозначным выводам относительно электрических зарядов:
1. Электрические заряды бывают двух родов — условно их можно разделить на положительные и отрицательные.
2. От одного заряженного предмета к другому электрические заряды можно передавать: допустим, путем соприкосновения тел друг с другом — заряд между ними можно разделить. При этом электрический заряд вовсе не является обязательной составной частью тела: в различных условиях один и тот же предмет может обладать разным по величине и по знаку зарядом, либо заряд может отсутствовать. Таким образом, заряд не является чем-то неотъемлемым для носителя, и в то же самое время заряд не может существовать без носителя заряда.
3. В то время как гравитирующие тела всегда притягиваются друг к другу, электрические заряды могут как взаимно притягиваться, так и взаимно отталкиваться. Разноименные заряды взаимно притягиваются, одноименные — друг от друга отталкиваются.
Носителями зарядов являются электроны, протоны и другие элементарные частицы. Различают два рода электрических зарядов — положительные и отрицательные. Положительными называются заряды, возникающие на стекле, натертом кожей. Отрицательными — заряды, возникающие на янтаре, натертом мехом. Тела, заряженные одноименными зарядами, отталкиваются. Тела, имеющие разноименные заряды, притягиваются друг к другу.
Закон сохранения электрического заряда — фундаментальный закон природы, он звучит так: «алгебраическая сумма зарядов всех тел внутри изолированной системы остается постоянной». Это значит, что внутри замкнутой системы невозможно появление или исчезновение зарядов лишь одного знака.
Алгебраическая сумма зарядов в изолированной системе сохраняется постоянной. Носители зарядов могут перемещаться от одного тела к другому или смещаться внутри тела, в молекуле, атоме. Заряд не зависит от системы отсчета.
Сегодня научная точка зрения такова, что изначально носители заряда — это элементарные частицы. Элементарные частицы нейтроны (электрически нейтральные), протоны (положительно заряженные) и электроны (заряженные отрицательно) образуют атомы.
Из протонов и нейтронов состоят ядра атомов, а электроны образуют оболочки атомов. Модули зарядов электрона и протона равны по величине элементарному заряду е, но по знаку заряды этих частиц противоположны между собой.
Взаимодействие электрических зарядов — Закон Кулона
Что касается непосредственно взаимодействия электрических зарядов друг с другом, то в 1785 году французский физик Шарль Кулон экспериментально установил и описал этот основной закон электростатики, фундаментальный закон природы, ни из каких других законов не вытекающий. Ученый в своей работе изучал взаимодействие неподвижных точечных заряженных тел, и измерял силы их взаимного отталкивания и притяжения.
Кулон экспериментально установил следующее: «Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей и обратно пропорциональны квадрату расстояния между ними».
Это и есть формулировка Закона Кулона. И хотя точечных зарядов в природе не существует, только применительно к точечным зарядам и можно говорить о расстоянии между ними, в рамках данной формулировки Закона Кулона.
На самом же деле, если расстояния между телами сильно превосходят их размеры, то ни размер, ни форма заряженных тел, особо не повлияют на их взаимодействие, а значит тела для данной задачи справедливо можно будет считать точечными.
Рассмотрим такой пример. Подвесим на нитках пару заряженных шаров. Поскольку они как-то заряжены, то станут либо отталкиваться друг от друга, либо притягиваться друг к другу. Так как силы направлены вдоль прямой, соединяющей данные тела, — силы эти центральные.
Для обозначения сил, действующих со стороны каждого из зарядов на другой, запишем: F12 – сила действия второго заряда на первый, F21 – сила действия первого заряда на второй, r12 – радиус-вектор от второго точечного заряда к первому. Если заряды имеют одинаковый знак, то сила F12 будет сонаправлена радиусу-вектору, если же у зарядов разные знаки — F12 будет направлена противоположно радиусу-вектору.
При помощи закона взаимодействия точечных зарядов (Закона Кулона) можно теперь находить силу взаимодействия для любых точечных зарядов или точечных заряженных тел. Если же тела не точечные, то их мысленно разбивают на мелке элементы, каждый из которых можно было бы принять за точечный заряд.
После нахождения сил, действующих между всеми мелкими элементами, силы эти геометрически складывают, — находят результирующую силу. Элементарные частицы тоже взаимодействуют друг с другом согласно Закону Кулона, и по сей день не замечено никаких нарушений этого фундаментального закона электростатики.
Применение Закона Кулона в электротехнике
Закон Кулона находит применение во многих областях электротехники, таких как:
- Расчет электрического поля и потенциала, создаваемого различными распределениями зарядов, например, точечными, линейными, поверхностными или объемными.
- Расчет напряженности и силы, действующей на заряженные тела в электрическом поле, например, на конденсаторы, диэлектрики, электростатические генераторы или электрофоры.
- Расчет емкости и энергии электрических конденсаторов, состоящих из двух проводников с разноименными зарядами, разделенных диэлектриком или вакуумом.
- Расчет силы и момента, действующих на токоведущие элементы в магнитном поле, создаваемом другими токами, например, на катушки, соленоиды, трансформаторы или электромагниты.
- Расчет индуктивности и энергии магнитных контуров, состоящих из проводников с токами, например, из катушек, соленоидов, тороидов или магнитопроводов.
Закон Кулона также является основой для вывода других фундаментальных законов электротехники, таких как закон Гаусса, закон Био-Савара, закон Ампера, закон Фарадея, закон Ленца и уравнения Максвелла.
Можно сказать, что в современной электротехнике нет области, где в том или ином виде не работал бы Закон Кулона. Начиная с электрического тока, заканчивая просто заряженным конденсатором. Особенно те области, которые касаются электростатики, — они на 100% связаны с Законом Кулона.
Рассмотрим только несколько примеров.
Простейший случай — введение диэлектрика. Сила взаимодействия зарядов в вакууме всегда больше силы взаимодействия тех же зарядов в условиях, когда между ними расположен какой-то диэлектрик.
Диэлектрическая проницаемость среды — это как раз та величина, которая позволяет количественно определить значения сил, независимо от расстояния между зарядами и от их величин. Достаточно силу взаимодействия зарядов в вакууме разделить на диэлектрическую проницаемость внесенного диэлектрика — получим силу взаимодействия в присутствии диэлектрика.
Сложное исследовательское оборудование — ускоритель заряженных частиц. Базируется работа ускорителей заряженных частиц на явлении взаимодействия электрического поля и заряженных частиц. Электрическое поле совершает в ускорителе работу увеличивая энергию частицы.
Если рассмотреть здесь ускоряемую частицу как точечный заряд, а действие ускоряющего электрического поля ускорителя — как суммарную силу со стороны других точечных зарядов, то и в этом случае полностью соблюдается Закон Кулона. Магнитное поле лишь направляет частицу силой Лоренца, но не изменяет её энергии, только задаёт траекторию для движения частиц в ускорителе.
Защитные электротехнические сооружения. Важные электроустановки всегда оснащаются такой простой на первый взгляд вещью, как молниеотвод. А молниеотвод в своей работе тоже не обходится без соблюдения Закона Кулона. Во время грозы на Земле появляются большие индуцированные заряды — согласно Закону Кулона притягиваются в направлении грозового облака. На поверхности Земли возникает в результате сильное электрическое поле.
Напряжённость этого поля особенно велика возле острых проводников, и поэтому на заостренном конце молниеприемника зажигается коронный разряд — заряд из Земли стремится, повинуясь Закону Кулона, притянуться к противоположному заряду грозового облака.
Воздух вблизи молниеотвода в результате коронного разряда сильно ионизируется. Вследствие этого напряжённость электрического поля вблизи острия уменьшается (как и внутри любого проводника), индуцированные заряды не могут накапливаться на здании и вероятность возникновения молнии снижается. Если же молния, так случится, ударит в молниеотвод, то заряд просто уйдет в Землю, не повредит установку.
Молниеотводы бывают разных типов, в зависимости от их конструкции, материала и способа заземления. Самые распространенные молниеотводы — это простые металлические стержни, установленные на крышах зданий, высоких сооружений или отдельно стоящих опорах. Они соединяются с заземляющим устройством, которое может быть выполнено в виде земляной петли, земляного электрода или земляной шины. Заземление обеспечивает безопасный отвод заряда в Землю и защиту от перенапряжения.
Существуют также более современные молниеотводы, которые используют активные или пассивные элементы для усиления эффекта коронного разряда и создания ионизированного канала между молниеотводом и облаком. Такие молниеотводы называются ионизирующими, искровыми или нелинейными. Они позволяют сократить высоту молниеотвода и увеличить радиус защиты. Однако они также требуют более сложного обслуживания и контроля.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Fizika_с ответами
S: Модуль напряженности электрического поля, созданного точечным зарядом, при увеличении расстояния от этого заряда до точки наблюдения в k раз:
-: увеличится в k раз
-: уменьшится в k раз
-: увеличится в k 2 раз
+: уменьшится в k 2 раз
S: Сила F = qE, действующая в поле на заряд в 4·10 –6 Кл, равна 20 Н. Напряженность поля в этой точке равна:
S: Модуль напряженности поля, созданного в точке А положительным зарядом q1 равен Е1, модуль напряженности поля, созданного в той же точке положительным зарядом q2, равен Е2. Модуль напряженности поля, созданного двумя зарядами в точке А:
+: может быть различным в зависимости от расположения зарядов относительно точки А
S: В электростатическом ноле работа сил, действующих на пробный заряд со стороны поля при его перемещении по замкнутому контуру:
-: зависит от знака пробного заряда
-: зависит от формы контура
-: равна нулю только в однородном поле
+: всегда равна нулю
S: В однородном электростатическом поле заряд перемещается по прямой ABC (AB = ВС). Работа, совершенная полем на участке АВ, равна 100 Дж. Работа на участке ВС:
-: зависит от взаимного расположения прямой АВ и линий напряженности поля
S: Электрон перемещается под действием сил поля из точки с меньшим потенциалом в точку с большим потенциалом. Его скорость при этом:
-: зависит от направления начальной скорости
S: Абсолютная величина работы электрического поля F = qU по перемещению электрона из одной точки поля в другую при увеличении разности потенциалов между точками в 3 раза:
-: уменьшится в 9 раз
-: уменьшится в 3 раза
+: увеличится в 3 раза
S: Разность потенциалов U = Ed между точками, расположенными на одной силовой линии однородного электрического поля, напряженность которого 50 В/м, равна 10 В. Расстояние между этими точками равно:
S: Легкий незаряженный шарик из металлической фольги подвешен на тонкой шелковой нити. К шарику поднесли (без прикосновения) сначала стержень с положительным электрическим зарядом, а затем стержень с отрицательным зарядом. Шарик:
+: притягивается к стержням в обоих случаях
-: отталкивается от стержней в обоих случаях
-: не испытывает ни притяжения, ни отталкивания в обоих случаях
-: притягивается к стержню в первом случае, отталкивается от стержня во втором случай
S: Незаряженное металлическое тело внесено в однородное электростатическое поле, а затем разделено на части А и В (рис.).
После разделения эти части будут обладать электрическими зарядами:
-: А – положительным, В – отрицательным
+: А – отрицательным, В – положительным
-: обе части останутся нейтральными
-: обе части – положительными
S: Емкость конденсатора – это:
-: объем пространства между пластинами
-: суммарный объем его пластин.
-: отношение суммарного заряда на пластинах к разности потенциалов между пластинами
+: отношение модуля заряда на одной пластине к разности потенциалов между пластинами
S : Зависимость электроемкости
плоского конденсатора от расстояния между пластинами показана на графике:
S: Если разность потенциалов между пластинами конденсатора увеличить в 3 раза, то его электроемкость :
-: увеличится в 3 раза
-: уменьшится в 3 раза
-: уменьшится в 9 раз
S: Электроемкость плоского конденсатора с квадратными пластинами со стороной 10 см., расположенными на расстоянии 1 мм. друг от друга, в воздухе примерно равна:
S: Если раздвигать пластины конденсатора, присоединенного к клеммам гальванического элемента:
-: его энергия уменьшается, так как увеличивается расстояние между положительными и отрицательными зарядами на пластинах
-: его энергия увеличивается, так как сила, раздвигающая пластины, совершает работу
+: его энергия уменьшается, поскольку при неизменной разности потенциалов между пластинами емкость конденсатора уменьшается
-: его энергия увеличивается, поскольку при неизменном заряде на пластинах конденсатора его емкость уменьшается
S: Зависимость энергии плоского конденсатора от заряда на его пластине при неизменной электроемкости отражает на графике кривая:
S: Плоский воздушный конденсатор зарядили и отключили от источника тока. Как изменится энергия
электрического поля внутри конденсатора, если расстояние между пластинами конденсатора уменьшить в 3 раза:
-: увеличится в 3 раза
+: уменьшится в 3 раза
-: увеличится в 9 раз
-: уменьшится в 9 раз
S: Сила электростатического взаимодействия между двумя одинаковыми зарядами по 1 мкКл на расстоянии 10 см. друг от друга равна:
S: Пылинка, заряженная отрицательно, в начальный момент времени покоится в однородном электрическом поле, напряженность которого направлена слева направо. Куда и как начнет двигаться пылинка, если силой тяжести можно пренебречь:
S: Если заряд на конденсаторе постоянной емкости увеличить в 2 раза, то энергия электрического поля конденсатора:
-: уменьшится в 2 раза
-: увеличится в 2 раза
+: увеличится в 4 раза
S: Капля, имеющая отрицательный заряд (-е), при освещении потеряла электрон. Каким стал заряд капли?
S: Два точечных заряда притягиваются друг к другу только в том случае, если заряды:
-: одинаковы по знаку и по модулю
-: одинаковы по знаку, но обязательно различны по модулю
+: различны по знаку и любые по модулю
-: различны по знаку, но обязательно одинаковы по модулю
S: К стержню положительно заряженного электроскопа поднесли, не касаясь его, стеклянную палочку. Листочки электроскопа опали, образуя гораздо меньший угол. Такой эффект может наблюдаться, если палочка:
-: имеет заряд любого знака
S: Если площадь обкладок плоского воздушного конденсатора и расстояние между ними уменьшить в 2 раза, то его емкость:
-: увеличится в 4 раза
-: уменьшится в 2 раза
-: уменьшится в 4 раза
S: Если площадь обкладок плоского воздушного конденсатора уменьшить в 2 раза, а расстояние между ними увеличить в 2 раза, то его емкость:
-: увеличится в 2 раза
-: уменьшится в 2 раза
+: уменьшится в 4 раза
S: На рисунке изображено сечение уединенного заряженного проводящего полого шара. I – область полости, II – область проводника, III – область вне проводника. Напряженность электрического поля, созданного этим шаром, равна нулю:
-: только в области I
-: только в области II
+: в областях I и II
-: в областях II и III
S: Два точечных заряда действуют друг на друга с силой 12 Н. Какой будет сила взаимодействия между ними, если уменьшить величину каждого заряда в 2 раза, не меняя расстояния между ними:
V2: 5.2. Законы постоянного тока
S: Электрическим током можно назвать:
-: движение молоточка в электрическом звонке перед ударом о звонковую чашу
-: поворот стрелки компаса на север при ориентировании на местности
-: полет молекулы водорода между двумя заряженными шариками
+: разряд молнии во время грозы
S: На рисунке показана зависимость силы тока в проводнике от времени. По проводу за 8 с. прошел заряд:
S: Время разряда молнии равно 3 мс. Сила тока в канале молнии около 3·10 4 А. По каналу молнии проходит заряд:
S: Для измерения напряжения на источнике тока (см. рис.) вольтметр следует подключить к точкам:
S: Если напряжение между концами проводника и его длину увеличить в 3 раза, то сила тока, идущего через проводник:
-: уменьшится в 3 раза
-: увеличится в 3 раза
-: уменьшится в 9 раз
S: При напряжении 2 В сила тока, идущего через металлический проводник длиной 2 м., равна 1 А. Сила тока через такой же проводник длиной 1 м. при напряжении на нем 4 В равна:
S: Правильно отражает зависимость электрического сопротивления длинного провода от его диаметра при постоянной температуре график:
S: Медная проволока имеет электрическое сопротивление =1,2 Ом. Электрическое сопротивление другой медной проволоки, у которой в 4 раза больше длина и в 6 раз больше площадь поперечного сечения равно:
S: ЭДС источника тока – это:
-: модуль сторонней силы, действующей на электрические заряды в источнике тока
-: работа сторонней силы, действующей на электрические заряды в источнике тока
-: отношение работы электростатической силы к заряду, перемещаемому внутри источника тока
+: отношение работы сторонней силы к заряду, перемещаемому внутри источника тока
S: При внешнем сопротивлении цепи, равном внутреннему сопротивлению источника, сила тока равна . Если внешнее сопротивление цепи увеличить в 2 раза, сила тока:
+: уменьшится в 1,5 раза
-: увеличится в 2 раза
-: уменьшится в 2 раза
S: При подключении к источнику тока с ЭДС, равной 20 В резистора сопротивлением 8 Ом, сила тока в электрической цепи равна 2 А. Внутреннее сопротивление источника равно:
S: В электрической цепи, изображенной на рисунке, ползунок реостата перемещают влево. Показания вольтметра при этом:
-: может как увеличиваться, так и уменьшаться
S: В электрической цепи, изображенной на рисунке, ползунок реостата перемещают влево. Показания амперметра при этом:
-: может как увеличиваться, так и уменьшаться
S: Отношение сил тока в двух параллельно соединенных резисторах с различным сопротивлением:
-: пропорционально отношению их сопротивлений
+: обратно пропорционально отношению их сопротивлений
-: зависит от силы тока на участке перед этими резисторами
S: Сопротивление между точками А и В электрической цепи, представленной на рисунке, равно:
S: Одинаковые лампочки соединены по схеме (рис.). Из них горит ярче остальных лампочка:
S: Два резистора, имеющие сопротивления R1=1 Ом и R2 = 2 Ом, включены в цепь постоянного тока параллельно друг другу. Отношение мощностей электрического тока
на этих резисторах равно:
S: При силе тока в электрической цепи 0,6 А сопротивление лампы равно 5 Ом. Мощность электрического тока , выделяющаяся на нити лампы, равна:
S: Ток в металлах создается движением:
-: только положительных ионов
-: отрицательных и положительных ионов
-: только отрицательных ионов
S: Источник тока присоединили к двум пластинам, опущенным в раствор поваренной соли. Сила тока в цепи =0,2 А. Между пластинами в ванне за 2 мин. проходит заряд:
S: Ток в полупроводниках, не содержащих примесей, создаётся:
-: электронами и ионами
+: электронами и дырками
S: Стержни из металла и полупроводника нагревают на T градусов каждый. При этом:
-: сопротивление обоих стержней уменьшится
-: сопротивление обоих стержней увеличится
-: сопротивление металлического стержня уменьшится, а сопротивление стержня из полупроводника увеличится
+: сопротивление металлического стержня увеличится, а сопротивление стержня из полупроводника уменьшится
S: При нагревании на несколько градусов сопротивление полупроводника без примесей уменьшилось в 100 раз. Это объясняется тем, что:
-: примерно в 100 раз увеличилась скорость направленного движения свободных носителей заряда
+: примерно в 100 раз увеличилась концентрация свободных носителей заряда
-: примерно в 10 раз увеличились и концентрация свободных носителей заряда, и скорость их направленного движения
-: примерно в 1000 раз увеличилась концентрация свободных носителей и в 10 раз уменьшилась скорость их направленного движения
S: В четырехвалентный кремний добавили в первом опыте трехвалентный химический элемент, а во втором – пятивалентный элемент. Полупроводник будет обладать проводимостью:
+: в первом случае – дырочной, во втором случае – электронной
-: в первом случае – электронной, во втором случае – дырочной
-: в обоих случаях электронной
-: в обоих случаях дырочной
S: Концентрацию донорной примеси в полупроводнике увеличивают в два раза. При этом примерно в 2 раза:
+: увеличивается электронная проводимость
-: уменьшается электронная проводимость
-: увеличивается дырочная проводимость
-: уменьшается дырочная проводимость
S : Из представленных на рисунке, соответствует вольт-амперной характеристике полупроводникового диода, включенного в прямом направлении график:
S: Как изменилась сила тока в цепи, если скорость направленного дрейфа электронов увеличилась в 2 раза:
+: увеличилась в 2 раза
-: увеличилась в 4 раза
-: уменьшилась в 2 раза
S: Дискретность электрического заряда проявляется в явлении:
-: излучения электромагнитных волн.
S: Как изменится сопротивление проводника, если его разрезать на три равные части и соединить их параллельно:
-: уменьшится в 3 раза
+: уменьшится в 9 раз
-: увеличится в 9 раз
S: Каково должно быть сопротивление спирали электроплитки, чтобы при ее включении в сеть напряжением 220 В она потребляла мощность 800 Вт:
S: Как изменится сила тока, протекающего по проводнику, если напряжение между его концами и площадь сечения проводника увеличить в 2 раза:
-: уменьшится в 4 раза
-: увеличится в 2 раза
+: увеличится в 4 раза
S: Через участок цепи (рис.) течет постоянный ток I = 4 А. Сопротивлением амперметра пренебречь. Что показывает амперметр:
S: Сила тока , текущего по проводнику, равна 2 А. Какой заряд пройдет по проводнику за 10 с:
S: Электровоз развивает мощность 2400 кВт при КПД 80 %. Какой ток протекает через мотор электровоза, если напряжение в цепи 6 кВ:
V2: 5.3. Электромагнетизм
S: Направление вектора индукции магнитного поля в данной точке пространства совпадает с направлением:
-: силы, действующей на неподвижный заряд в этой точке
-: силы, действующей на движущийся заряд в этой точке
+: северного полюса магнитной стрелки, помещенной в эту точку
-: южного полюса магнитной стрелки, помещенной в эту точку
S: Электромагнит представляет собой медный провод, намотанный на стальной сердечник. При силе тока I в сердечнике электромагнит удерживает гирю массой ХХ т. Для увеличения массы удерживаемого груза следует, не меняя формы сердечника:
-: уменьшить число витков
+: увеличить силу тока
-: заменить стальной сердечник на медный
-: изменить направление намотки провода на сердечник
S: На рисунке изображен проводник, через который идет электрический ток. Направление тока указано стрелкой. Вектор магнитной индукции в точке С направлен:
-: в плоскости чертежа вверх
-: от нас перпендикулярно плоскости чертежа
-: к нам перпендикулярно плоскости чертежа
+: вектор магнитной индукции в точке С равен нулю
S: Максимальная сила F = IBl, действующая в однородном магнитном поле на проводник с током длиной 10 см. равна 0,02 Н. Сила тока равна 8 А. Модуль вектора магнитной индукции этого поля равен:
S: Как взаимодействуют два параллельных друг другу проводника, если в первом случае электрический ток в них идет в одном направлении, а во втором случае – в противоположных направлениях:
-: в обоих случаях притягиваются друг к другу
-: в обоих случаях отталкиваются друг от друга
+: в первом случае притягиваются, а во втором случае отталкиваются друг от друга
-: в первом случае отталкиваются, а во втором случае притягиваются друг к другу
S: В однородном магнитном поле в плоскости его силовых линий находится рамка, по которой идет ток (рис.). Сила, действующая на нижнюю сторону рамки, направлена:
-: из плоскости листа на нас
+: в плоскость листа от нас
S: Выражению для модуля силы Лоренца соответствует формула:
+: F = qvB sin
-:
-: F = IBl sin
S: Магнитный поток, пронизывающий плоское проволочное проводящее кольцо в однородном поле, нельзя изменить:
-: вытянув кольцо в овал
+: повернув кольцо вокруг оси, перпендикулярной плоскости кольца
-: повернув кольцо вокруг оси, проходящей в плоскости кольца
S: Контур ABCD находится в однородном магнитном поле, линии индукции которого направлены перпендикулярно плоскости контура от наблюдателя (рис.). Магнитный поток через контур будет меняться, если контур:
-: движется поступательно в направлении от наблюдателя
-: движется поступательно в направлении к наблюдателю
+: поворачивается вокруг стороны DC
-: движется поступательно в плоскости рисунка
S: При увеличении в 2 раза индукции однородного магнитного поля и площади неподвижной рамки поток вектора магнитной индукции :
-: увеличится в 2 раза
+: увеличится в 4 раза
-: уменьшится в 4 раза
S: Явлением электромагнитной индукции объясняется:
-: взаимодействие двух проводов с током
+: возникновение электрического тока в замкнутой катушке при изменении силы тока в другой катушке, находящейся рядом с ней
Закон сохранения заряда выполняется в. Смотреть что такое «Закон сохранения электрического заряда» в других словарях
— один из фундаментальных законов природы. Закон сохранения заряда был открыт в 1747 г. Б. Франклином.
Электрон — частица, входящая в состав атома. В истории физики существовало несколько моделей строения атома. Одна из них, позволяющая объяснить ряд экспериментальных фактов, в том числе явление электризации , была предложена Э. Резерфордом . На основании проделанных опытов он сделал вывод о том, что в центре атома находится положительно заряженное ядро, вокруг которого по орбитам движутся отрицательно заряженные электроны. У нейтрального атома положительный заряд ядра равен суммарному отрицательному заряду электронов. Ядро атома состоит из положительно заряженных протонов и нейтральных частиц нейтронов. Заряд протона по модулю равен заряду электрона. Если из нейтрального атома удалены один или несколько электронов, то он становится положительно заряженным ионом; если к атому присоединяются электроны, то он становится отрицательно заряженным ионом.
Знания о строении атома позволяют объяснить явление электризации трением . Электроны, слабо связанные с ядром, могут отделиться от одного атома и присоединиться к другому. Это объясняет, почему на одном теле может образоваться недостаток электронов , а на другом — их избыток . В этом случае первое тело становится заряженным положительно , а второе — отрицательно .
При электризации происходит перераспределение заряда , электризуются оба тела, приобретая равные по модулю заряды противоположных знаков. При этом алгебраическая сумма электрических зарядов до и после электризации остаётся постоянной:
q 1 + q 2 + … + q n = const.
Алгебраическая сумма зарядов пластин до и после электризации равна нулю. Записанное равенство выражает фундаментальный закон природы — закон сохранения электрического заряда .
Как и любой физический закон, он имеет определённые границы применимости: он справедлив для замкнутой системы тел , т.е. для совокупности тел, изолированных от других объектов.
При электризации тел выполняется закон сохранения электрического заряда . Этот закон справедлив для замкнутой системы. В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной . Если заряды частиц обозначить через q 1 , q 2 и т.д., то
q 1 + q 2 + q 3 + … + q n = const.
Основной закон электростатики – закон кулона
Если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно не влияют на взаимодействия между ними. В таком случае эти тела можно рассматривать как точечные.
Сила взаимодействия заряженных тел зависит от свойств среды между заряженными телами.
Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними. Эту силу называют кулоновской.
|q 1 | и |q 2 | — модули зарядов тел,
r – расстояние между ними,
k – коэффициент пропорциональности.
F — сила взаимодействия
Силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела.
Единица электрического заряда
Единица силы тока – ампер.
Один кулон (1 Кл) – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А
е=1,610 -19 Кл
-электрическая постоянная
БЛИЗКОДЕЙСТВИЕ И ДЕЙСТВИЕ НА РАССТОЯНИИ
Предположение о том, что взаимодействие между удаленными друг от друга телами всегда осуществляется с помощью промежуточных звеньев (или среды), передающих взаимодействие от точки к точке, составляет сущность теории близкодействия. Распр. с конечной скоростью.
Теория прямого действия на расстоянии непосредственно через пустоту. Согласно этой теории действие передается мгновенно на сколь угодно большие расстояния.
Обе теории являются взаимно противоположными друг другу. Согласно теории действия на расстоянии одно тело действует на другое непосредственно через пустоту и это действие передается мгновенно.
Теория близкодействия утверждает, что любое взаимодействие осуществляется с помощью промежуточных агентов и распространяется с конечной скоростью.
Существования определенного процесса в пространстве между взаимодействующими телами, который длится конечное время, — вот главное, что отличает теорию близкодействия от теории действия на расстоянии.
Согласно идее Фарадея электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд, и наоборот. По мере удаления от заряда поле ослабевает.
Электромагнитные взаимодействия должны распространятся в пространстве с конечной скоростью.
Электрическое поле существует реально, его свойства можно исследовать опытным путем, но мы не можем сказать из чего это поле состоит.
О природе электрического поля можно сказать, что поле материально; оно сущ. независимо от нас, от наших знаний о нем;
Поле обладает определенными свойствами, которые не позволяют спутать его с чем-либо другим в окружающем мире;
Главное свойство электрического поля – действие его на электрические заряды с некоторой силой;
Электрическое поле неподвижных зарядов называют электростатическим . Оно не меняется со временем. Электростатическое поле создается только электрическими зарядами. Оно существует в пространстве, окружающем эти заряды, и неразрывно с ним связано.
Напряженность электрического поля.
Отношение силы, действующей на помещенный в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от заряда и может рассматриваться как характеристика поля.
Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду.
Напряженность поля точечного заряда.
.
Модуль напряженности поля точечного заряда q o на расстоянии r от него равен:
.
Если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых и т. д., то результирующая напряженность поля в этой точке равна:
СИЛОВЫЕ ЛИНИИ ЭЛЕКТРИЧЕСКОГО ПОЛ.
НАПРЯЖЕННОСТЬ ПОЛЯ ЗАРЯЖЕННОГО ШАРА
Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным.
Густота силовых линий больше вблизи заряженных тел, где напряженность поля также больше.
-напряженность поля точечного заряда.
Внутри проводящего шара (r > R) напряженность поля равна нулю.
ПРОВОДНИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ.
В проводниках имеются заряженные частицы, способные перемещаться внутри проводника под влиянием электрического поля. Заряды этих частиц называют свободными зарядами.
Электростатического поля внутри проводника нет. Весь статический заряд проводника сосредоточен на его поверхности. Заряды в проводнике могут располагаться только на его поверхности.
Закон сохранения заряда
Не все явления природы можно понять и объяснить на основе использования понятий и законов механики, молекулярно-кинетической теории строения вещества, термодинамики. Эти науки ничего не говорят о природе сил, которые связывают отдельные атомы и молекулы, удерживают атомы и молекулы вещества в твердом состоянии на определенном расстоянии друг от друга. Законы взаимодействия атомов и молекул удается понять и объяснить на основе представлений о том, что в природе существуют электрические заряды.
Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении. Взаимодействие тел, обнаруживаемое при электризации, называется электромагнитным взаимодействием, а физическая величина, определяющая электромагнитное взаимодействие, — электрическим зарядом. Способность электрических зарядов притягиваться и отталкиваться говорит о наличии двух различных видов зарядов: положительных и отрицательных.
Электрические заряды могут появляться не только в результате электризации при соприкосновении тел, но и при других взаимодействиях, например, под воздействием силы (пьезоэффект). Но всегда в замкнутой системе, в которую не входят заряды, при любых взаимодействиях тел алгебраическая (т.е. с учетом знака) сумма электрических зарядов всех тел остается постоянной. Этот экспериментально установленный факт называется законом сохранения электрического заряда.
Нигде и никогда в природе не возникают и не исчезают электрические заряды одного знака. Появление положительного заряда всегда сопровождается появлением равного по абсолютному значению, но противоположного по знаку отрицательного заряда. Ни положительный, ни отрицательный заряды не могут исчезнуть в отдельности друг от друга, если равны по абсолютному значению.
Появление и исчезновение электрических зарядов на телах в большинстве случаев объясняется переходами элементарных заряженных частиц — электронов — от одних тел к другим. Как известно, в состав любого атома входят положительно заряженные ядро и отрицательно заряженные электроны. В нейтральном атоме суммарный заряд электронов в точности равен заряду атомного ядра. Тело, состоящее из нейтральных атомов и молекул, имеет суммарный электрический заряд, равный нулю.
Если в результате какого-либо взаимодействия часть электронов переходит от одного тела к другому, то одно тело получает отрицательный электрический заряд, а второе — равный по модулю положительный заряд. При соприкосновении двух разноименно заряженных тел обычно электрические заряды не исчезают бесследно, а избыточное число электронов переходит с отрицательно заряженного тела к телу, у которого часть атомов имела не полный комплект электронов на своих оболочках.
Особый случай представляет встреча элементарных заряженных античастиц, например, электрона и позитрона. В этом случае положительный и отрицательный электрические заряды действительно исчезают, аннигилируют, но в полном соответствии с законом сохранения электрического заряда, так как алгебраическая сумма зарядов электрона и позитрона равна нулю.
Закон сохранения заряда утверждает, что во время взаимодействия некоторой замкнутой системы с окружающим пространством количество заряда которое выходит из системы через ее поверхность равно количеству заряда поступившего внутрь системы. Другими словами алгебраическая сумма всех зарядов системы равна нулю.
Формула 1 — Закон сохранения заряда
Как известно в природе существует два вида зарядов. Это положительные и отрицательные. Также величина заряда дискретна, то есть он может меняться только порциями. Элементарным зарядом считается заряд электрона. Если к атому добавить один электрон, то он становится отрицательно заряженным ионом. А если его отнять то положительным.
Основная идея закона сохранения заряда состоит в том, что заряд не возникает из неоткуда и не исчезает в никуда. При возникновении заряда одного знака тут же появляется заряд противоположного знака той же величины.
Для подтверждения этого закона проведем эксперимент. Для него нам понадобится два электрометра. Это приборы показывающих электрически заряд. Он состоит из стержня, на котором закреплена ось. На оси находится стрелка. Все это помещено в цилиндрический корпус, закрытый с двух сторон стеклом.
На стержне первого электрометра находится металлический диск. На который мы поместим другой такой же диск. Между дисками необходимо проложить, какой ни будь изолятор. Например, сукно. У верхнего диска имеется диэлектрическая ручка. Взявшись за эту ручку, потрем диски друг о друга. Таким образом, электризуя их.
Рисунок 1 — Электрометры с закрепленными на них дисками
После того как мы уберем верхний диск электрометр покажет наличие заряда. У него отклонится стрелка. Далее мы возьмём диск и коснемся им стержня второго электрометра. У него также стрелка отклонится, указывая на наличие заряда. Хотя заряд будет противоположного знака. Далее если мы соединим стержни электрометров, то стрелки вернутся в исходное положение. То есть заряды скомпенсируют друг друга.
Рисунок 2 — компенсация зарядов дисков
Что же произошло в данном эксперименте. Когда мы потерли диски друг о друга, произошло разделение зарядов в металле дисков. Изначально каждый диск был электрически нейтрален. Один из них получил избыток электронов, то есть отрицательный заряд. У другого получилась недостача электронов, то есть он стал, заряжен положительно.
Заряды в данном случае не появились из неоткуда. Они уже были внутри проводящих дисков. Только они были скомпенсированы между собой. Мы просто их разделили. Поместив при этом на разные диски. Когда же мы соединили стержни электрометров, то заряды вновь с компенсировались между собой. О чем свидетельствовали стрелки.
Если рассматривать электрометры и диски как единую систему. То несмотря на все наши манипуляции суммарный заряд этой система все время был постоянен. В начальный момент диски были электрически нейтральны. После разделения появились объёмные положительные и отрицательные заряды. Вот только по величине они были одинаковы. А значит, в системе заряд остался тем же. После соединения стержней система вернулась в исходное состояние.
Электростатика – раздел, изучающий статические (неподвижные) заряды и связанные с ними электрические поля.
Перемещение зарядов либо отсутствует, либо происходит так медленно, что возникающие при движении зарядов магнитные поля ничтожны. Сила взаимодействия между зарядами определяется только их взаимным расположением. Следовательно, энергия электростатического взаимодействия – потенциальная энергия.
Несмотря на обилие различных веществ в природе, существуют только два вида электрических зарядов: заряды подобные тем, которые возникают на стекле, потертом о шелк, и заряды, подобные тем, которые появляются на янтаре, потертом о мех. Первые были названы положительными, вторые отрицательными зарядами. Назвал их так Бенджамин Франклин в 1746 г.
В целом заряд атома любого вещества равен нулю, так как положительный заряд ядра атома компенсируется противоположным зарядом электронных оболочек атома. Очень сильное взаимодействие между зарядами практически исключает самопроизвольное появление заряженных макроскопических тел. Так, сила кулоновского притяжения между электроном и протоном в атоме водорода в 1039 раз больше их гравитационного взаимодействия.
Известно, что одноименные заряды отталкиваются, разноименные – притягиваются. Далее, если поднести заряженное тело (с любым зарядом) к легкому – незаряженному, то между ними будет притяжение – явление электризации легкого тела через влияние . На ближайшем к заряженному телу конце появляются заряды противоположного знака (индуцированные заряды) это явление называется электростатической индукцией.
Опыт показывает, что возникновение заряда на любом теле сопровождается появлением заряда такой же величины, но противоположного знака на другом теле. Например, при трении стеклянной палочки о шелк заряжаются оба тела: палочка отрицательно, шелк положительно.
Таким образом, всякий процесс заряжения есть процесс разделения зарядов . Сумма зарядов не изменяется, заряды только перераспределяются. Отсюда следует закон сохранения заряда – один из фундаментальных законов природы, сформулированный в 1747 г. Б. Франклином и подтвержденный в 1843 г. М. Фарадеем: алгебраическая сумма зарядов, возникающих при любом электрическом процессе на всех телах, участвующих в процессе всегда равна нулю . Или короче: суммарный электрический заряд замкнутой системы не изменяется .
(Доступны демонстрации по темам «Сохранение заряда » и «Виды зарядов «.).
Электрические заряды не существуют сами по себе, а являются внутренними свойствами элементарных частиц – электронов, протонов и др.
Опытным путем в 1914 г. американский физик Р. Милликен показал что электрический заряд дискретен . Заряд любого тела составляет целое кратное от элементарного электрического заряда .
Где n – целое число. Электрон и протон являются соответственно носителями элементарных отрицательного и положительного зарядов.
Например, наша Земля имеет отрицательный заряд Кл, это установлено по измерению напряженности электростатического поля в атмосфере Земли.
Большой вклад в исследование явлений электростатики внес знаменитый французский ученый Ш. Кулон. В 1785 г. он экспериментально установил закон взаимодействия неподвижных точечных электрических зарядов.