Измерение ёмкости и тангенса угла потерь
При подключении к конденсатору источника электрической энергии часть ее теряется в виде тепла (из-за сквозной проводимости, расхода энергии на смещение зарядов при поляризации, потерь энергии в выводах и электродах, потерь на ионизацию воздушных включений в диэлектрике и др.). Если сравнить процесс накопления заряда конденсатора с накоплением потенциальной энергии механической пружиной при ее сжатии, то потери энергии в конденсаторе следует сравнить с потерями энергии в пружине, выделяющимися также в виде тепла.
Величина потерь в конденсаторе оценивается тангенсом угла потерь δ, дополняющего до 90° угол сдвига фаз между током и напряжением в емкостной цепи. Тангенс угла потерь можно выразить и как отношение активной мощности потерь конденсатора к его реактивной мощности при синусоидальном напряжении. Потери в конденсаторе в первую очередь определяются структурой его диэлектрика и наличием различных дефектов (инородных включений, повышенной проводимости и др.). Наименьшие потери имеют вакуумные конденсаторы ( tgδ≤10 -5 ), наибольшие — алюминиевые электролитические (tgδ=0.1-0.3).
В некоторых случаях определяющим в величине tgδ является сопротивление металлических частей конденсатора, особенно на высоких частотах из-за вытеснения тока к поверхности проводника (скин-эффект), а для электролитических конденсаторов — сопротивление электролита.
Иногда для оценки потерь в конденсаторе пользуются величиной, обратной tgδ, называемой добротностью или коэффициентом мощности конденсатора.
Измерение тангенса угла потерь из-за сложной природы этой величины требует особой тщательности. Удлинительные провода, плохие контакты, наличие паразитных электрических полей могут значительно исказить результаты измерений. Тангенс угла потерь конденсаторов должен измеряться при указанных в ТУ значениях напряжения и частоты измерительным прибором с указанной в технических условиях на конденсаторы погрешностью.
Тангенс угла потерь электролитических конденсаторов измеряют при указанной в ТУ величине поляризующего напряжения постоянного тока.
Измерение емкости должно производиться при указанных в действующих ТУ величинах напряжения и частоты измерительными приборами с погрешностью в 3—5 раз меньшей, чем допустимое отклонение емкости от номинала. Конденсатор для измерения подключается непосредственно к прибору с помощью предусмотренных у прибора приспособлений — колодок с контактными губками или зажимов с медными проводами.
Конструкция колодок или длина проводов должны быть такими, чтобы вносимая дополнительная погрешность не превышала 10% от допускаемого отклонения емкости. Вывод конденсатора, соединенный с корпусом или с внешним электродом (для керамических конденсаторов), подключают к заземленной клемме измерительного прибора или к клемме с меньшим потенциалом относительно земли.
Измерение последовательной емкости электролитических конденсаторов производят методом моста при поляризующем напряжении постоянного тока. Значения поляризующих напряжений указаны в ТУ.
При оценке отклонения емкости от номинального значения следует учитывать, что фактическое отклонение может отличаться от измеренного на погрешность прибора.
При оценке изменения емкости в результате воздействия на конденсатор различных факторов (температуры, влажности, вибрации и др.) следует учитывать, что фактическое изменение емкости может отличаться от измеренного на удвоенную погрешность прибора.
Список использованной литературы
- Элементы радиоэлектронной аппаратуры. Электрические конденсаторы постоянной ёмкости. В.Н. Гусев, В.Ф.Смирнов. — М.: Советское радио, 1968.
Тангенс угла диэлектрических потерь, измерение показателя диэлектрических потерь
Диэлектрическими потерями называют энергию, рассеиваемую в электроизоляционном материале под воздействием на него электрического поля.
Способность диэлектрика рассеивать энергию в электрическом поле обычно характеризуют углом диэлектрических потерь , а также тангенсом угла диэлектрических потерь . При испытании диэлектрик рассматривается как диэлектрик конденсатора, у которого измеряется емкость и угол δ , дополняющий до 90° угол сдвига фаз между током и напряжением в емкостной цепи. Этот угол называется углом диэлектрических потерь .
При переменном напряжении в изоляции протекает ток, опережающий по фазе приложенное напряжение на угол ϕ (рис. 1), меньший 90 град. эл. на небольшой угол δ, обусловленный наличием активного сопротивления.
Рис. 1. Векторная диаграмма токов через диэлектрик с потерями: U — напряжение на диэлектрике; I — полный ток через диэлектрик; Ia,Ic — соответственно активная и емкостная составляющие полного тока; ϕ — угол фазного сдвига между приложенным напряжением и полным током; δ — угол между полным током и его емкостной составляющей
Отношение активной составляющей тока Ia к емкостной составляющей Ic называется тангенсом угла диэлектрических потерь и выражается в процентах:
В идеальном диэлектрике без потерь угол δ=0 и, соответственно, tg δ=0. Увлажнение и другие дефекты изоляции вызывают увеличение активной составляющей тока диэлектрических потерь и tgδ. Поскольку при этом активная составляющая растет значительно быстрее, чем емкостная, показатель tg δ отражает изменение состояния изоляции и потери в ней. При малом объеме изоляции удается обнаружить развитые местные и сосредоточенные дефекты.
Измерение тангенса угла диэлектрических потерь
Для измерения емкости и угла диэлектрических потерь (или tg δ ) эквивалентную схему конденсатора представляют как идеальный конденсатор с последовательно включенным активным сопротивлением (последовательная схема) или как идеальный конденсатор с параллельно включенным активным сопротивлением (параллельная схема).
Для последовательной схемы активная мощность:
Р=(U 2 ω tg δ )/( 1+tg 2 δ ) , tg δ = ω С R
Для параллельной схемы:
Р=U2 ω tg δ, tg δ = 1/ (ω С R )
где С — емкость идеального конденсатора; R — активное сопротивление.
Значение угла диэлектрических потерь обычно не превышает сотых или десятых долей единицы (поэтому угол диэлектрических потерь принято выражать в процентах), тогда 1+tg 2 δ ≈ 1, а потери для последовательной и параллельной схем замещения Р=U 2 ω tg δ, tg δ = 1/ (ω С R )
Значение потерь пропорционально квадрату приложенного к диэлектрику напряжения и частоте, что необходимо учитывать при выборе электроизоляционных материалов для аппаратуры высокого напряжения и высокочастотной.
С увеличением приложенного к диэлектрику напряжения до некоторого значения U о начинается ионизация имеющихся в диэлектрике газовых и жидкостных включений, при этом δ начинает резко возрастать за счет дополнительных потерь, вызванных ионизацией. При U1 газ ионизирован и уменьшается (рис. 2).
Рис. 2. Ионизационная кривая tg δ = f (U)
Значение тангенса угла диэлектрических потерь измеряют при напряжениях, меньших U о (обычно 3 — 10 кВ). Напряжение выбирается так, чтобы облегчить испытательное устройство при сохранении достаточной чувствительности прибора.
Значение тангенса угла диэлектрических потерь ( tg δ) нормируется для температуры 20 °С, поэтому измерение следует производить при температурах, близких к нормированной (10 — 20 о С). В этом диапазоне температур изменение диэлектрических потерь невелико, и для некоторых типов изоляции измеренное значение может без пересчета сравниваться с нормированным для 20 °С.
Для устранения влияния токов утечки и внешних электростатических полей на результаты измерения на испытуемом объекте и вокруг измерительной схемы монтируют защитные приспособления в виде охранных колец и экранов. Наличие заземленных экранов вызывает появление паразитных емкостей; для компенсации их влияния обычно применяют метод защитного — напряжения, регулируемого по значению и фазе.
Наибольшее распространение получили мостовые схемы измерения емкости и тангенса угла диэлектрических потерь .
Местные дефекты, обусловленные сквозными проводящими мостиками, лучше обнаруживаются измерением сопротивления изоляции на постоянном токе. Измерение tg δ производят мостами переменного тока типов МД-16, Р5026 (Р5026М) или Р595, которые являются по существу измерителями емкости (мост Шеринга). Принципиальная схема моста приведена на рис. 3.
В этой схеме определяются параметры изоляционной конструкции, соответствующие схеме замещения с последовательным соединением конденсатора без потерь С и резистора R, для которой tg δ=ωRC, где ω — угловая частота сети.
Процесс измерения заключается в уравновешивании (балансировке) мостовой схемы поочередной регулировкой сопротивления резистора и емкости магазина конденсаторов. При равновесии моста, которое индицируется измерительным прибором Р, выполняется равенство. Если значение емкости С выразить в микрофарадах, то при промышленной частоте сети f = 50 Гц будем иметь ω=2πf = 100π и, следовательно, tg δ % = 0,01πRC.
П ринципиальная схема моста Р525 приведена на рис. 3.
Рис. 3. Принципиальная схема измерительного моста переменного тока Р525
Измерение возможно на напряжение до 1 кВ и выше 1 кВ (3—10 кВ) в зависимости от класса изоляции и емкости объекта. В качестве источника питания может служить измерительный трансформатор напряжения. Мост используется с внешним воздушным конденсатором С0. Принципиальная схема включения аппаратуры при измерении tg δ показана на рис. 4.
Рис. 4. Схема включения испытательного трансформатора при измерении тангенса угла диэлектрических потерь: S — рубильник; TAB — регулировочный автортрансформатор; SAC — переключатель полярности выводов испытательного трансформатор Т
Применяют две схемы включения моста: так называемую нормальную, или прямую, в которой измерительный элемент Р включен между одним из электродов испытуемой изоляционной конструкции и землей, и перевернутую, где он включен между электродом испытуемого объекта и выводом высокого напряжения моста. Нормальную схему применяют, когда оба электрода изолированы от земли, перевернутую — когда один из электродов наглухо соединен с землей.
Необходимо помнить, что в последнем случае отдельные элементы моста будут находиться под полным испытательным напряжением. Измерение возможно на напряжении до 1 кВ и выше 1 кВ (3—10 кВ) в зависимости от класса изоляции и емкости объекта. В качестве источника питания может служить измерительный трансформатор напряжения.
Мост используется с внешним образцовым воздушным конденсатором. Мост и необходимую аппаратуру размещают в непосредственной близости к испытуемому объекту и устанавливают ограждение. Провод, идущий от испытательного трансформатора Т к образцовому конденсатору С, а также соединительные кабели моста Р, находящиеся под напряжением, должны быть удалены от заземленных предметов не менее чем на 100—150 мм. Трансформатор Т и его регулировочное устройство ТАВ (ЛАТР) должны отстоять от моста не менее чем на 0,5 м. Корпуса моста, трансформатора и регулирующего устройства, а также один вывод вторичной обмотки трансформатора обязательно заземляют.
Показатель tg δ часто измеряется в зоне действующего РУ, а, поскольку между объектом испытания и элементами РУ всегда имеется емкостная связь, через испытуемый объект протекает ток влияния. Этот ток, зависящий от напряжения и фазы влияющего напряжения и суммарной емкости связи, может привести к неправильной оценке состояния изоляции, особенно объектов небольшой емкости, в частности вводов (до 1000—2000 пФ).
Уравновешивание моста производится путем многократного регулирования элементов схемы моста и защитного напряжения, для чего индикатор равновесия включается то в диагональ, то между экраном и диагональю. Мост считается уравновешенным, если при обоих включениях индикатора равновесия ток через него отсутствует.
В момент равновесия моста
г де f — частота переменного тока, питающего схему
Постоянное сопротивление R4 выбирается равным 10 4 / π Ом. В этом случае tg δ = С4, где емкость С4 выражена в микрофарадах.
Если измерение проводилось на частоте f’ , отличной от 50Гц, то tg δ = (f’/50)C4
Когда измерение тангесна угла диэлектрических потерь производится на небольших отрезках кабеля или образцах изоляционных материалов, из-за их малой емкости необходимы электронные усилители (например, типа Ф-50-1 с коэффициентом усиления около 60). Следует иметь в виду, что мост учитывает потери в проводе, соединяющем мост с испытуемым объектом, и измеренное значение тангенса угла диэлектрических потерь будет больше действительного на 2 π fRzCx , где Rz — сопротивление провода.
При измерениях по схеме перевернутого моста регулируемые элементы измерительной схемы находятся под высоким напряжением, поэтому регулирование элементов моста либо производят и а расстоянии с помощью изолирующих штанг, либо оператора помещают в общем экране с измерительными элементами.
Тангенс угла диэлектрических потерь трансформаторов и электрических машин измеряют между каждой обмоткой и корпусом при заземленных свободных обмотках.
Влияния электрического поля
Различают электростатические и электромагнитные влияния электрического поля. Электромагнитные влияния исключаются полным экранированием. Измерительные элементы размещают в металлическом корпусе (например, мосты Р5026 и Р595). Электростатические влияния создаются находящимися под напряжением частями РУ и ЛЭП. Вектор влияющего напряжения может занимать любое положение по отношению к вектору испытательного напряжения.
Известны несколько способов уменьшения влияния электростатических полей на результаты измерения tg δ:
- отключение напряжения, создающего влияющее поле. Этот способ наиболее эффективен, но не всегда применим по условиям энергоснабжения потребителей;
- вывод объекта испытания из зоны влияния. Цель достигается, но транспортировка объекта нежелательна и не всегда возможна;
- измерение на частоте, отличной от 50 Гц. Применяется редко, так как требует специальной аппаратуры;
- расчетные методы исключения погрешности;
- метод компенсации влияний, при котором достигается совмещение векторов испытательного напряжения и ЭДС влияющего поля.
С этой целью в цепь регулирования напряжения включают фазорегулятор и при отключенном объекте испытания добиваются равновесия моста. При отсутствии фазорегулятора эффективной мерой может явиться питание моста от того напряжения трехфазной системы (с учетом полярности), при котором результат измерения будет минимальным. Часто бывает достаточно выполнить измерение четыре раза при разных полярностях испытательного напряжения и подключении гальванометра моста; Применяются как самостоятельно, так и для уточнения результатов, полученных другими методами.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Словарь специальных терминов
Диэлектрическими потерями называют энергию, рассеиваемую в электроизоляционном материале под воздействием на него электрического поля.
Способность диэлектрика рассеивать энергию в электрическом поле обычно характеризуют углом диэлектрических потерь, а также тангенсом угла диэлектрических потерь. При испытании диэлектрик рассматривается как диэлектрик конденсатора, у которого измеряется емкость и угол δ, дополняющий до 90° угол сдвига фаз между током и напряжением в емкостной цепи. Этот угол называется углом диэлектрических потерь.
Измерение тангенса угла диэлектрических потерь
Для измерения емкости и угла диэлектрических потерь (или tgδ) эквивалентную схему конденсатора представляют как идеальный конденсатор с последовательно включенным активным сопротивлением (последовательная схема) или как идеальный конденсатор с параллельно включенным активным сопротивлением (параллельная схема).
Рис. 1. Векторная диаграмма тока и напряжения в диэлектрике с потерями
Для последовательной схемы активная мощность:
Р=(U 2 ωtgδ)/(1+tg 2 δ), tgδ = ωСR
Для параллельной схемы:
Р=U 2 ωtgδ, tgδ = 1/(ωСR)
где С – емкость идеального конденсатора; R – активное сопротивление.
Значение угла диэлектрических потерь обычно не превышает сотых или десятых долей единицы (поэтому угол диэлектрических потерь принято выражать в процентах), тогда 1+tg 2 δ≈ 1, а потери для последовательной и параллельной схем замещения Р=U 2 ωtgδ, tgδ = 1/(ωСR)
Значение потерь пропорционально квадрату приложенного к диэлектрику напряжения и частоте, что необходимо учитывать при выборе электроизоляционных материалов для аппаратуры высокого напряжения и высокочастотной.
С увеличением приложенного к диэлектрику напряжения до некоторого значения U0 начинается ионизация имеющихся в диэлектрике газовых и жидкостных включений, при этом δ начинает резко возрастать за счет дополнительных потерь, вызванных ионизацией. При U1 газ ионизирован и уменьшается (рис. 2).
Рис. 2. Ионизационная кривая tgδ = f (U)
Значение тангенса угла диэлектрических потерь измеряют при напряжениях, меньших U0(обычно 3–10 кВ). Напряжение выбирается так, чтобы облегчить испытательное устройство при сохранении достаточной чувствительности прибора.
Значение тангенса угла диэлектрических потерь (tgδ) нормируется для температуры 20°С, поэтому измерение следует производить при температурах, близких к нормированной (10–20 о С). В этом диапазоне температур изменение диэлектрических потерь невелико, и для некоторых типов изоляции измеренное значение может без пересчета сравниваться с нормированным для 20°С.
Для устранения влияния токов утечки и внешних электростатических полей на результаты измерения на испытуемом объекте и вокруг измерительной схемы монтируют защитные приспособления в виде охранных колец и экранов. Наличие заземленных экранов вызывает появление паразитных емкостей; для компенсации их влияния обычно применяют метод защитного напряжения, регулируемого по значению и фазе.
Наибольшее распространение получили мостовые схемы измерения емкости и тангенса угла диэлектрических потерь. В настоящее время промышленность выпускает мосты переменного тока типов Р5026 и Р525.Принципиальная схема моста Р525 приведена на рис. 3.
Рис. 3. Принципиальная схема измерительного моста переменного тока Р525
Уравновешивание моста производится путем многократного регулирования элементов схемы моста и защитного напряжения, для чего индикатор равновесия включается то в диагональ, то между экраном и диагональю. Мост считается уравновешенным, если при обоих включениях индикатора равновесия ток через него отсутствует.
В момент равновесия моста tgδ = 2πfС4Rx;
где f — частота переменного тока, питающего схему
Постоянное сопротивление R4 выбирается равным 10 4 /π Ом. В этом случае tgδ = С4, где емкость С4 выражена в микрофарадах.
Если измерение проводилось на частоте f‘, отличной от 50Гц, то tgδ = (f’/50)C4
Когда измерение тангенса угла диэлектрических потерь производится на небольших отрезках кабеля или образцах изоляционных материалов, из-за их малой емкости необходимы электронные усилители (например, типа Ф-50-1 с коэффициентом усиления около 60). Следует иметь в виду, что мост учитывает потери в проводе, соединяющем мост с испытуемым объектом, и измеренное значение тангенса угла диэлектрических потерь будет больше действительного на 2πfRzCx, где Rz — сопротивление провода.
Если один из электродов объекта соединен с землей (кабель с заземленной металлической оболочкой), то вторичную обмотку трансформатора высокого напряжения (ТрВН) не заземляют, а соединяют с точкой D (рис. 3) или измерение производят по схеме перевернутого моста (мосты типа Р5026), когда высокое напряжение подается к точке D а к точке С подсоединяется заземленный электрод испытуемого объекта.
При измерениях по схеме перевернутого моста регулируемые элементы измерительной схемы находятся под высоким напряжением, поэтому регулирование элементов моста либо производят на расстоянии с помощью изолирующих штанг, либо оператора помещают в общем экране с измерительными элементами.
Тангенс угла диэлектрических потерь трансформаторов и электрических машин измеряют между каждой обмоткой и корпусом при заземленных свободных обмотках.
Рис. 4. Приборы для измерение тангенса угла диэлектрических потерь
Что такое тангенс угла потерь у конденсатора.
Тангенс угла диэлектрических потерь определяют при наладке электрооборудования. Теоретически, это отношение активного тока утечки через изоляцию к реактивному току, при подаче переменного испытательного напряжения на ввод. Нормируемая величина. Характеризует качество изоляции.
гораздо важнее параметр ESR в современных схемах. ( схема откажется работать при исправном конденсаторе если парамет будет не в норме) хотя он косвенно связан с Tg угла потерь
Похожие вопросы