Полевые транзисторы: типы, устройство, принцип и режимы работы
Полевые транзисторы: типы, устройство, принцип и режимы работы, схемы включения, основные параметры, использование.
Полевым транзистором (ПТ) называется полупроводниковый радиокомпонент, используемый для усиления электрического сигнала. В цифровых устройствах схемы на основе ПТ исполняют функции ключей, управляющих переключениями логических элементов. В последнем случае использование полевых транзисторов оказывается крайне выгодным с точки зрения миниатюризации аппаратуры. Это обусловлено тем, что для цепей управления этими радиокомпонентами требуются небольшие мощности, вследствие чего на одном кристалле полупроводниковой микросхемы можно размещать десятки тысяч транзисторов.
- карбид кремния;
- арсенид галлия;
- нитрид галлия;
- фосфид индия.
Устройство и принцип работы полевого транзистора.
ПТ состоит из трёх элементов – истока, стока и затвора. Функции первых двух очевидны и состоят соответственно в генерировании и приёме носителей электрического заряда, то есть электронов или дырок. Предназначение затвора заключается в управлении током, протекающим через полевой транзистор. Таким образом, мы получаем классический триод с катодом, анодом и управляющим электродом.
В момент подачи напряжения на затвор возникает электрическое поле, изменяющее ширину p-n-переходов и влияющее на величину тока, который протекает от истока к стоку. При отсутствии управляющего напряжения ничто не препятствует потоку носителей заряда. С повышением управляющего напряжения канал, по которому движутся электроны или дырки, сужается, а при достижении некоего предельного значения закрывается вовсе, и ПТ входит в так называемый режим отсечки. Как раз это свойство полевых транзисторов и позволяет использовать их в качестве ключей.
Усилительные свойства радиокомпонента обусловлены тем, что мощный электрический ток, протекающий от истока к стоку, повторяет динамику напряжения, прикладываемого к затвору. Другими словами, с выхода усилителя снимается такой же по форме сигнал, что и на управляющем электроде, только гораздо более мощный.
Распространённые типы полевых транзисторов.
В настоящее время в радиоаппаратуре применяются ПТ двух основных типов – с управляющим p-n-переходом и с изолированным затвором. Опишем подробнее каждую модификацию.
1. Управляющий p-n-переход.
Эти полевые транзисторы представляют собой удлинённый полупроводниковый кристалл, противоположные концы которого с металлическими выводами играют роль стока и истока. Функцию затвора исполняет небольшая область с обратной проводимостью, внедрённая в центральную часть кристалла. Так же, как сток и исток, затвор комплектуется металлическим выводом.
Электронно-дырочный p-n-переход в таких полевых транзисторах получил название управляющего, поскольку напрямую изменяет мощность потока носителей заряда, представляя собой физическое препятствие для электронов или дырок (в зависимости от типа проводимости основного кристалла).
2. Изолированный затвор.
Конструкция этих полевых транзисторов отличается от описанных выше ПТ с управляющим p-n-переходом. Здесь полупроводниковый кристалл играет роль подложки, в которую на некотором удалении друг от друга внедрены две области с обратной проводимостью. Это исток и сток соответственно. Функцию затвора исполняет металлический вывод, который отделяется от кристалла слоем диэлектрика и, таким образом, электрически с ним не контактирует.
Из-за того, что в конструкции этих полевых транзисторов используются три типа материалов – металл, диэлектрик и полупроводник, – данные радиокомпоненты часто именуют МДП-транзисторами. В элементах, которые формируются в кремниевых микросхемах планарно-эпитаксиальными методами, в качестве диэлектрического слоя используется оксид кремния, в связи с чем буква «Д» в аббревиатуре заменяется на «О», и такие компоненты получают название МОП-транзисторов.
Существует два вида этих полевых транзисторов – с индуцированным и встроенным каналом. В первых физический канал отсутствует и возникает только в результате воздействия электрического поля от затвора на подложку. Во вторых канал между истоком и стоком физически внедрён в подложку, и напряжение на затворе требуется не для формирования канала, а лишь для управления его характеристиками.
Схемотехническое преимущество ПТ с изолированным затвором перед транзисторами с управляющим p-n-переходом заключается в более высоком входном сопротивлении. Это расширяет возможности применения данных элементов. К примеру, они используются в высокоточных устройствах и прочей аппаратуре, критичной к электрическим режимам.
В силу конструктивных особенностей МОП-транзисторы чрезвычайно чувствительны к внешним электрическим полям. Это вынуждает соблюдать особые меры предосторожности при работе с этими радиодеталями. В частности, в процессе пайки необходимо использовать паяльную станцию с заземлением, а, кроме того, заземляться должен и человек, выполняющий пайку. Даже маломощное статическое электричество способно повредить полевой транзистор.
Схемы включения полевых транзисторов.
В зависимости от того, каким образом ПТ включается в усилительный каскад, существует три схемы – с общим истоком, с общим стоком и с общим затвором. Способы различаются тем, на какие электроды подаются питающие напряжения, и к каким цепям присоединяются источник сигнала и нагрузка.
Схема с общим истоком используется чаще всего, так как именно в этом случае достигается максимальное усиление входного сигнала. Способ включения ПТ с общим стоком используется, главным образом, в устройствах согласования, поскольку усиление здесь небольшое, но входной и выходной сигналы совпадают по фазе. И, наконец, схема с общим затвором находит применение, в основном, в высокочастотных усилителях. Полоса пропускания при таком включении полевого транзистора гораздо шире, чем при других схемах.
Основные параметры полевых транзисторов:
- Максимально допустимая постоянная рассеиваемая мощность;
- Максимально допустимая рабочая частота;
- Напряжение сток-исток;
- Напряжение затвор-сток;
- Напряжение затвор-исток;
- Максимально допустимый ток стока;
- Ток утечки затвора;
- Крутизна характеристики;
- Начальный ток стока;
- Емкость затвор-исток;
- Входная ёмкость;
- Выходная ёмкость;
- Проходная ёмкость;
- Выходная мощность;
- Коэффициент шума;
- Коэффициент усиления по мощности.
Транзистор полевой
В современной цифровой электронике, транзисторы работают, как правило — в ключевом (импульсном) режиме: открыт-закрыт. Для таких режимов оптимально подходят – полевые транзисторы. Название «полевой» происходит от «электрическое поле». Это значит, что они управляются полем, которое образует напряжение, приложенное к управляющему электроду. Другое их название – униполярный транзистор. Так подчеркивается, что используются только одного типа носители заряда (электроны или дырки), в отличии от классического биполярного транзистора. «Полевики» по типу проводимости канала и типу носителей бывают двух видов: n-канальный – носители электроны и p-канальный – носители дырки. Транзистор имеет три вывода: исток, сток, затвор. исток (source) — электрод, из которого в канал входят (истекают) носители заряда, источник носителей. В традиционной схеме включения, цепь истока n-канального транзистора подключается к минусу питания, p-канального — к плюсу питания. сток (drain) — электрод, через который из канала выходят (стекают) носители заряда. В традиционной схеме включения, цепь стока n-канального транзистора подключается к плюсу питания, p-канального — к минусу питания. затвор (gate) — управляющий электрод, регулирует поперечное сечения канала и соответственно ток протекающий через канал. Управление происходит напряжением между затвором и истоком – Vgs. Полевые транзисторы бывают двух основных видов: с управляющим p-n переходом и с изолированным затвором. С изолированным затвором делятся на: с встроенным и индуцированным каналом. На рис.1 изображены типы полевых транзисторов и их обозначения на схемах.
Транзистор полевой
Транзистор полевой
Рис.1. Типы полевых транзисторов и их схематическое обозначение.
«Полевик» с изолированным затвором и индуцированным каналом
Нас интересуют транзисторы Q5 и Q6. Именно они используются в цифровой и силовой электронике. Это полевые транзисторы с изолированным затвором и индуцированным каналом. Их называют МОП (метал-оксид-полупроводник) или МДП (метал-диэлектрик-полупроводник) транзисторами. Английское название MOSFET (metal-oxide-semiconductor field effect transistor). Таким названием подчеркивается, что затвор отделен слоем диэлектрика от проводящего канала. Жаргонные названия: «полевик», «мосфет», «ключ». Индуцированный канал — означает, что проводимость в нем появляется, канал индуцируется носителями (открывается транзистор) только при подаче напряжения на затвор. В отличии от транзисторов Q3 и Q4 которые тоже МОП транзисторы, но со встроеным каналом, канал всегда открыт, даже при нулевом напряжении на затворе. Схематически, разница между этими двумя типами транзисторов на схемах обозначается сплошной (встроенный) или пунктирной (индуцированный) линией канала. Другое название индуцированного канала – обогащенный, встроенного – обеднённый.
Обратный диод
Технология изготовления МОП транзисторов такова, что образуются некоторые паразитные элементы, в частности биполярный транзистор, включенный параллельно силовым выводам. См. рис.2. Он оказывает негативное влияние на характеристики транзистора, поэтому технологической перемычкой замыкают вывод истока с подложкой (замыкают переход: база-эмиттер, паразитного транзистора), а оставшийся переход: коллектор-база, образует диод, включенный параллельно стоку-истоку, в направлении обратном протеканию тока (в классической схеме включения). Параметры этого диода производители уже могут контролировать, поэтому он не оказывает существенного влияния на работу транзистора. И даже наоборот, его наличие специально используется в некоторых схематических решениях. Именно этот диод (стабилитрон) обозначается на схематическом изображении МОП транзистора, а технологическая перемычка показана стрелкой соединенной с истоком. Существуют и транзисторы без технологической перемычки, на их условном обозначения нет стрелкой. В зависимости от модели транзистора, диод может быть, как и штатный – паразитный, низкочастотный, так и специально добавленный, с заданными характеристиками (высокочастотный или стабилитрон). Это указывается в документации к транзистору. Рис.2. Паразитные элементы в составе полевого транзистора.
Основные преимущества MOSFET
- меньшее потребление, высокий КПД. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
- простая схема управления.Схемы управления напряжением более просты, чем схемы управления током.
- высокая скорость переключения.Отсутствуют неосновные носители. Следовательно не тратится время на их рассасывание. Частота работы сотни и тысячи килогерц
- повышеная теплоустойчивость. С ростом температуры растет сопротивление канала, следовательно понижается ток, а это приводит к понижению температуры. Происходит саморегуляция.
Основные характеристики MOSFET
- Vds(max) – максимальное напряжение сток-исток в закрытом состоянии транзистора
- Rds(on) – активное сопротивление канала в открытом состоянии транзистора. Этот параметр указывают для определенных значений Vgs 10В или 4.5В или 2.5 В при которых сопротивление становится минимальным.
- Vgs(th) – пороговое напряжение при котором транзистор начнет открываться.
- Ids – максимальный постоянный ток через транзистор.
- Ids(Imp) – импульсный (кратковременный) ток, который выдерживает транзистор.
- Ciss, Crss, Coss – емкость затвор-исток (input), затвор-сток (reverse), сток-исток(output).
- Qg – заряд который необходимо передать затвору для переключения.
- Vgs(max) – максимальное допустимое напряжение затвор-исток.
- t(on), t(of) – время переключения транзистора.
- характеристики обратного диода сток-исток ( максимальный ток, падение напряжения, время восстановление)
Что еще нужно знать про полевой транзистор?
P-канальные транзисторы имеют хуже характеристики чем N-канальные. Меньше рабочая частота, больше сопротивление, больше площадь кристалла. Они реже используются и выпускаются в меньшем ассортименте.
МОП транзистор — потенциальный прибор и управляется напряжением (потенциалом), затвор отделен слоем диэлектрика , по сути это конденсатор и через него не протекает постоянный ток, поэтому он не потребляет ток управления в статике, но во время переключения требуется приличный ток для заряда-разряда емкости.
МОП транзистор имеет хоть и не большое, но активное сопротивление в открытом состоянии Rds. Это сопротивление уменьшается с ростом отпирающего напряжения и становится минимальным при определенном напряжении затвор-исток, 4.5В или 10В. По сути – это резистор, сопротивление которого управляется напряжением Vgs.
Схема включения MOSFET
Традиционная, классическая схема включения «мосфет», работающего в режиме ключа (открыт-закрыт), приведена на рис 3. Это схема, с общим истоком. Она наиболее распространена, легка в реализации и имеет самый простой способ управления транзистором.
Нагрузку включают в цепь стока. Встроенный диод, оказывается включенным в обратном направлении и ток через него не протекает.
Для n-канального: исток на землю, сток через нагрузку к плюсу. Тогда для его открытия, на затвор нужно подать положительное напряжение, подтянуть к плюсу питания. При работе от ШИМ (широтно импульсный модулятор), открывать его будет положительный импульс.
Для p-канального: исток на плюс питания, сток через нагрузку на землю. Тогда для его открытия, на затвор нужно подать отрицательное напряжение, подтянуть к минусу питания (земле). При управлении от ШИМ, открывающим будет – отрицательный импульс (отсутствие импульса).
Рис. 3. Классическая схема включения MOSFET в ключевом режиме.
МОП транзистор, в открытом состоянии, будет пропускать ток как от истока к стоку, так и от стока к истоку. Также и нагрузку можно включать как в цепь стока, так и истока. Но при «нестандартном» включении, усложняется управление транзистором, так для n-канального может потребоваться, напряжение выше питания, а для p-канального – отрицательное напряжение ниже земли (двухполярное питание).
МОП транзис торы, используемые в цифровой электронике, делятся на два типа.
- Мощные силовые – используются в импульсных преобразователях напряжения и в цепях питания.
- Транзисторы логического уровня – используются как ключи, коммутируют различные сигналы и управляются микросхемами.
Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора.
Сохранить или поделиться статьей —
Другие популярные статьи
Подходит ли MacBook Air на процессоре M1 для игр: тест более 30 игр
Читателей за год: 38467
Помню как писал пост про игры на мак «Какие игры идут на MacBook и iMac?». Это было скорее для себя, хотя играми не особо интересуюсь. В сети пишут, что Mac для игр не подходит, поэтому решил поискать информацию по данному вопросу. Так получилось, что этот пост оказался самым популярным за последний год. Но есть момент в том, что он не затрагивает новую линейку Маков на процессоре М1.
Выключается iPhone при достаточном заряде батареи ~50-60%
Читателей за год: 10553
Чего только не случается со смартфонами: падают, тонут, иногда просто теряются. И все это может стать причиной возникновений неисправностей в смартфоне. Но хороший дефект всегда себя покажет. А что если причина возникновения неисправности неизвестна?
Какие игры идут на MacBook и iMac?
Читателей за год: 10165
Возможно вы готовитесь купить свой первый Mac или уже имеете яблочный девайс, но новичок в компьютерных играх. В любом случае это может удивить вас: Большинство лучших игр доступны на Mac
Сроки, качество и стоимость ремонта в мастерской MacMachine
Быстро, качественно, недорого. Да, такое возможно и Вам не надо выбирать два условия:)
Про качество
Качество кроется в деталях! Но «деталь» в обоих смыслах. Деталь — комплектующая часть для ремонта и деталь — педантичный, скурпулезный подход к процессу, когда важна каждая мелочь.
«Качество — это делать правильно, даже когда никто не смотрит.»
У нас профессиональное, дорогое оборудование для ремонта, опыт с 2004 года и педантичный характер мастера:)
Для ремонта используем только проверенные комплектующие. Там где возможно и рентабельно посоветуем оригинал запчасти Apple. Там где это будет слишком дорого или мак уже снят с поддержки — предложим аналог. Вы сами выбираете что установим в макбук.
Гарантия на работы — до 6 месяцев. Это больше, чем гарантия авторизованного сервисного центра Apple.
Про стоимость
У нас доступные цены на ремонт MacBook, ниже средних. А мы хорошо знаем цены, потому что много сервисных центров Москвы приносят к нам маки на сложный ремонт материнских плат.
Наша специализация — компонентный ремонт материнской платы. Это когда вместо целиковой замены материнской платы, ремонтируется ваша неисправная плата. Перепаиваются сгоревшие детали, восстанавливаются отгнившие дорожки и тд.
Мы успешно ремонтируем 80% материнских плат. Компонентный ремонт платы Macbook — в разы дешевле целиковой замены!
Другая значимая составлящая стоимости ремонта — расходы на сервис и реклама. Основные расходы на сервис это аренда и зарплата сотрудников. Большой сервис или сеть сервисных центров, по определению не сможет ремонтировать дешево. MacMachine — небольшая «семейная» мастерская. Поэтому наши расходы на сервис минимальны.
Расходы на рекламу входят в наценку стоимости услуг, так же как и «бесплатная доставка». У нас почти нет рекламы. Мы не вкладываем сотни тысяч ежемесячно в рекламу. Наша реклама — отзывы клиентов, сарафанное радио и контент в нашем блоге и соцсетях.
Про сроки
Мы быстрый сервис при наличии деталей на ваш ремонт. Средние сроки ремонта: 1-3 дня. Диагностика: 1-2 дня. Первичная диагностика бесплатная. Многие проблемы решаются день — в день.
Клавиатура на эире держится на заклёпках, поэтому заменить ее можно, только вырвав с корнями старую. . .
MacBook Pro 13 A1706 2017 был залит пивом, выполнен компонентный ремонт платы и замена топкейса. . .
Сгоревший защитный диод на разъёме magsafe , причина того, что не заряжается и не работает от зарядки. . .
Airport до и после чистки. . .
Залитый MacBook Pro 13 A1502. . .
Как вы думаете, что с этим шлейфом не так? . .
Previous Next
Что делать если Mac не включается? (видео) Новое в блоге
Проверить статус заказа
Введите номер заказа в формате MM12345 (в английской раскладке):
Популярные теги
Отзывы о мастерской
Спасибо за проделанную работу , в двух сервисах разводили на деньги , а здесь Александр выполнил ремонт меньше чем за сутки и взял с меня в три ! раза меньше денег , чем просили в другом сервисном.
Алена П.
Приносили макбук ретина 2014 после другой мастерской, которые приговорили его к смерти) (неисправен процессор) 1 день ремонта и ноутбук готов) Мастер глубоко погружен в свою работу и знает все тонкости любой неисправности, рекомендую!
Андрей Бородин
Хочу выразить благодарность мастеру Александру т.к. он смог разобраться в проблеме с мои macbook pro 15 2013г. — зависал. До него был в двух сервисах, где приговаривали мат.плату к замене, а у него удалось обойтись ремонтом, что почти в 2 раза дешевле.
xvovax10 x.
Спасибо Александру за то, что спас мой ноутбук от недобросовестных мастеров. Поменяли с Александром клавиатуру, устранили последствия залития и почистили. Все сделали очень быстро, я даже в шоке была. Если вдруг что-то еще случится с моим маком, то сразу
Анна Кручинина
Александр — мастер золотые руки, которому с уверенностью можно доверить здоровье любимых гаджетов.
Дмитрий К.
Отличный сервис по ремонту любой техники эпл. Обращался два раза, оба раза доволен. Всё четко, по делу, и достаточно выгодно! Теперь друзьям рекомендую, они тоже довольны)
Илья К.
Делал чистку от пыли и замену термопасты на MacBook. Работу выполнили за 20 минут, результатом доволен
Илья П.
Сдавал MacBook Pro A1398, стандартная проблема — пропадание изображения при нагрузке. Обращался в несколько спецализированных сервисов Apple, но варианта у них было 2 — менять материнку или прогревать видеочип. При чем ценник был заоблачный. Нашел подробн
Денис
Полевой транзистор МОП (MOSFET)
Что такое полевой транзистор MOS, MOSFET, МОП транзистор?
Как часто вы слышали название полевой транзистор МОП, MOSFET, MOS, полевик, МДП-транзистор, транзистор с изолированным затвором? Это все слова синонимы и относятся к одному и тому же радиоэлементу: полевому МОП-транзистору.
Полное название такого радиоэлемента на английский манер звучит как Metal Oxide Semiconductor Field Effect Transistors (MOSFET), что в дословном переводе Металл Оксид Полупроводник Поле Влияние Транзистор. Если преобразовать на наш могучий русский язык, то получается как полевой транзистор со структурой Металл Оксид Полупроводник или просто МОП-транзистор. Почему МОП-транзистор также называют МДП-транзистором и транзистором с изолированным затвором.
Откуда пошло название «МОП»
Если «разрезать» МОП-транзистор, то можно увидеть вот такую картину.
12 недорогих наборов электроники для самостоятельной сборки и пайки
Моя личная подборка конструкторов с Aliexpress «сделай сам» для пайки от простых за 153 до 2500 рублей. Дочке 5 лет — надо приучать к паяльнику))) — пусть пока хотя-бы смотрит — переходи посмотреть, один светодиодный куб чего только стоит
С точки зрения еды на вашем столе, МОП-транзистор будет больше похож на бутерброд. Полупроводник P-типа — толстый кусок хлеба, диэлектрик — тонкий слой колбасы, слой металла — тонкая пластинку сыра. В результате у нас получается вот такой бутерброд.
А как будет строение транзистора сверху-вниз? Сыр — металлическая пластинка, колбаса — диэлектрик, хлеб — полупроводник. Следовательно, получаем Металл-Диэлектрик-Полупроводник. А если взять первые буквы с каждого названия, то получается МДП — Металл-Диэлектрик-Полупроводник, не так ли? Значит, такой транзистор можно назвать по первым буквам МДП-транзистором. А так как в качестве диэлектрика используется очень тонкий слой оксида кремния (SiO2), можно сказать почти стекло, то и вместо названия «диэлектрик» взяли название «оксид, окисел», и получилось Металл-Окисел-Полупроводник, сокращенно МОП. Ну вот, теперь все встало на свои места).
Далее по тексту МОП-транзистор условимся называть просто полевой транзистор. Так будет проще.
Строение полевого транзистора
Давайте еще раз рассмотрим структуру полевого транзистора.
Имеем «кирпич» полупроводникового материала P-проводимости. Как вы помните, основными носителями в полупроводнике P-типа являются дырки, поэтому, их концентрация намного больше, чем электронов. Но электроны также есть и в P-полупроводнике. Как вы помните, электроны в P-полупроводнике — это неосновные носители и их концентрация очень мала, по сравнению с дырками. «Кирпич» P-полупроводника носит название Подложки. От подложки выходит вывод с таким же названием: подложка.
Другие слои — это материал N+ типа, диэлектрик, металл. Почему N+, а не просто N? Дело в том, что этот материал сильно легирован, то есть концентрация электронов в этом полупроводнике очень большая. От полупроводников N+ типа, которые располагаются по краям, отходят два вывода: Исток и Сток.
Между Истоком и Стоком через диэлектрик располагается металлическая пластинка, от который идет вывод. Называется этот вывод Затвором. Между Затвором и другими выводами нет никакой электрической связи. Затвор вообще изолирован от всех выводов транзистора, поэтому МОП-транзистор также называют транзистором с изолированным затвором.
Мы видим, что полевой транзистор на схеме имеет 4 вывода (Исток, Сток, Затвор и Подложка), а реальный транзистор имеет только 3 вывода.
В чем прикол? Дело все в том, что Подложку обычно соединяют с Истоком. Иногда это уже делается в самом транзисторе еще на этапе разработки. В результате того, что Исток соединен с Подложкой, у нас образуется диод между Стоком и Истоком, который иногда даже не указывается в схемах, но всегда присутствует:
Поэтому, следует соблюдать цоколевку при подключении МОП-транзистора в схему.
Виды полевых транзисторов
В семействе МОП полевых транзисторов в основном выделяют 4 вида:
1) N-канальный с индуцированным каналом
2) P-канальный с индуцированным каналом
3) N-канальный со встроенным каналом
4) P-канальный со встроенным каналом
Как вы могли заметить, разница только в обозначении самого канала. С индуцированным каналом он обозначается штриховой линией, а со встроенным каналом — сплошной.
В современном мире полевой транзистор со встроенным каналом используется все реже и реже, поэтому, в наших статьям мы их не будем рассматривать. Будем изучать только N и P — канальные полевые транзисторы с индуцированным каналом.
Принцип работы полевого транзистора
Принцип работы почти такой же, как и в полевом транзисторе с управляющим PN-переходом (JFET-транзисторе). Исток — это вывод, откуда начинают свой путь основные носители заряда, Сток — это вывод, куда они притекают, а Затвор — это вывод, с помощью которого мы контролируем поток основных носителей.
Пусть Затвор у нас пока что никуда не подключен. Для того, чтобы устроить движение электронов через Исток-Сток, нам потребуется источник питания Bat:
Если рассмотреть наш транзистор с точки зрения PN-переходов и диодов на их основе, то можно нарисовать эквивалентную схемку для нашего рисунка. Она будет выглядеть вот так:
Как вы видите, диод VD2 включен в обратном направлении, так что электрический ток никуда не потечет.
Значит, в этой схеме
никакого движения электрического тока пока что не намечается.
Индуцирование канала в МОП-транзисторе
Если подать некоторое напряжение на Затвор, то в Подложке начнутся волшебные превращения. В ней будет индуцироваться канал. Индукция, индуцирование — это буквально означает «наведение», «влияние». Под этим термином понимают возбуждение в объекте какого-либо свойства или активности в присутствии возбуждающего субъекта (индуктора), но без непосредственного контакта (например, через магнитное или электрическое поле). Последнее выражение для нас имеет более глубокий смысл: «через электрическое поле».
Также нам не помешает вспомнить, как ведут себя заряды различных знаков. Те, кто не играл на физике на последней парте в морской бой и не плевал через корпус шариковой ручки бумажными шариками в одноклассниц, тот наверняка вспомнит, что одноименные заряды отталкиваются, а разноименные — притягиваются:
На основе этого принципа еще в начале ХХ века ученые сообразили, где все это можно применить, и создали гениальный радиоэлемент. Оказывается, достаточно подать на Затвор положительное напряжение относительно Истока, как сразу под Затвором возникает электрическое поле.
Так как у нас слой диэлектрика очень тонкий, следовательно, электрическое поле будет также влиять и на подложку, в которой дырок намного больше, чем электронов, так как в данный момент подложка P-типа. А раз и на Затворе положительный потенциал, а дырки обладают положительным зарядом, следовательно, одноименные заряды отталкиваются, а разноименные — притягиваются.
Картина будет выглядеть следующим образом.
Дырки обращаются в бегство подальше от Затвора, так как одноименные заряды отталкиваются, а электроны наоборот пытаются пробиться к металлической пластинке затвора, но им мешает диэлектрик, который не дает им воссоединиться с Затвором и уравнять потенциал до нуля. Поэтому, электронам ничего другого не остается, как просто создать «вавилонское столпотворение» около слоя диэлектрика, что мы и видим на рисунке ниже.
Но смотрите, что произошло !? Исток и Сток соединились тонким каналом из электронов! Говорят, что такой канал индуцировался из-за электрического поля, которое создал Затвор транзистора.
Так как этот канал соединяет Исток и Сток, которые сделаны из N+ полупроводника, следовательно у нас получился N-канал. А такой транзистор уже будет называться N-канальным МОП-транзистором. Вы наверняка помните, что в проводнике очень много свободных электронов. Так как Сток и Исток соединились мостиком из большого количества электронов, следовательно, этот канал стал проводником для электрического тока. Проще говоря, между Истоком и Стоком образовался «проводок», по которому может бежать электрический ток.
Значит, если сейчас подать напряжение между Стоком и Истоком при индуцированном канале, то мы можем увидеть вот такую картину.
Как вы видите, цепь стает замкнутой, и в цепи может спокойно течь электрический ток.
Но это еще не все! Чем сильнее электрическое поле, тем больше концентрация электронов, тем толще получается канал, следовательно, тем меньше сопротивление канала! А как сделать поле сильнее? Достаточно подать побольше напряжения на Затвор! Подавая бОльшее напряжение на Затвор с помощью источника питания Bat2, мы увеличиваем толщину канала, а значит и его проводимость! Или простыми словами, мы можем менять сопротивление канала, «играя» напряжением на затворе. Ну гениальнее некуда!
Работа P-канального полевого транзистора
Выше мы разобрали N-канальный транзистор с индуцированным каналом. Также есть еще и P-канальный транзистор с индуцированным каналом. P-канальный работает точно также, как и N-канальный, но вся разница в том, что основными носителями будут являться дырки. В этом случае все напряжения в схеме меняем на инверсные, в отличие от N-канального транзистора. Честно говоря, P-канальные полевые транзисторы используются реже, чем N-канальные.
Принцип работы показан на рисунке ниже.
Режимы работы полевого транзистора
Работа полевого транзистора в режиме отсечки
Давайте познакомимся с нашим героем. У нас в гостях N-канальный полевой транзистор с индуцированным каналом. Судя по гравировке, звать его IRFZ44N. Выводы слева-направо: Затвор, Сток и Исток.
Как мы уже с вами разобрали, Затвор служит для управлением ширины канала между Стоком и Истоком. Для того, чтобы показать принцип работы, мы с вами соберем простейшую схему, которая будет управлять интенсивностью свечения лампы накаливания. Так как в данный момент нет никакого напряжения на Затворе полевого транзистора, следовательно, он будет находится в закрытом состоянии. То есть электрический ток через лампу накаливания течь не будет.
По идее, для того, чтобы управлять свечением лампы, нам достаточно менять напряжение на Затворе относительно Истока. Так как наш полевой транзистор является N-канальным, следовательно, на Затвор мы будем подавать положительное напряжение. Окончательная схема примет вот такой вид.
Вопрос в другом. Какое напряжение надо подать на Затвор, чтобы в цепи Сток-Исток побежал минимальный электрический ток?
Мой блок питания Bat2 выглядит следующим образом.
С помощью этого блока питания мы будем регулировать напряжение. Так как он стрелочный, более правильным будет измерение напряжения с помощью мультиметра.
Собираем все как по схеме и подаем на Затвор напряжение номиналом в 1 Вольт.
Лампочка не горит. На другом блоке питания (Bat1) есть встроенный амперметр, который показывает, что в цепи лампы накаливания электрический ток не течет, следовательно, транзистор не открылся. Ну ладно, будем добавлять напряжение.
И только уже при 3,5 Вольт амперметр на Bat1 показал, что в цепи лампы накаливания появился ток, хотя сама лампа при этом не горела.
Такого слабого тока ей просто недостаточно, чтобы накалить вольфрамовую нить. Режим, при котором в цепи Сток-Исток не протекает электрический ток, называется режимом отсечки.
Активный режим работы полевого транзистора
В нашем случае при напряжении около 3,5 Вольт наш транзистор начинает немного приоткрываться. Это значение у различных видов полевых транзисторов разное и колеблется в диапазоне от 0,5 и до 5 Вольт. В даташите этот параметр называется как Gate threshold voltage, в переводе с англ. яз. — пороговое напряжение Затвора. Указывается как VGS(th), а в некоторых даташитах как VGS(to) .
Как вы видите в таблице, на мой транзистор это напряжение варьируется от 2 и до 4 Вольт при каких-то условиях (conditions). В условиях прописано, что открытие транзистора считается при токе в 250 мкА и при условии, что напряжение на Стоке-Истоке будет такое же как и напряжение на Затворе-Стоке.
С этого момента мы можем плавно регулировать ширину канала нашего полевого транзистора, увеличивая напряжение на Затворе. Если чуть-чуть добавить напряжение, то мы можем увидеть, что нить лампы накаливания начинает накаляться. Меняя напряжение туда-сюда, мы можем добиваться нужного нам свечения лампочки накаливания. Такой режим работы полевого транзистора называется активным режимом.
В этом режиме полевой транзистор может менять сопротивление индуцируемого канала в зависимости от напряжения на Затворе. Для того, чтобы понять, как усиливает полевой транзистор, вам надо прочитать статью про принцип работы биполярного транзистора, где все это описано, иначе ничего не поймете. Читать по этой ссылке.
Активный режим работы транзистора чреват тем, что в этом режиме транзистор может очень сильно греться. Поэтому, всегда следует позаботиться об охлаждающем радиаторе, который бы рассеивал тепло от транзистора в окружающее пространство. Почему же греется транзистор? В чем дело? Да все оказывается до боли просто. Сопротивление Сток-Исток зависит от того, какое напряжение будет на Затворе. То есть схематически это можно показать вот так.
Если напряжения на Затворе нет или оно меньше, чем напряжение открытия транзистора, то сопротивление в этом случае будет бесконечно большое. Лампочка — это нагрузка, которая обладает каким-либо сопротивлением. Не спорю, что сопротивление нити горящей лампочки будет совсем другое, чем холодной, но пока пусть будет так, что лампочка — это какое-то постоянное сопротивление. Перерисуем нашу схему вот так.
Получился типичный делитель напряжения. Как я уже говорил, если нет напряжения на Затворе, то сопротивление Сток-Истока будет бесконечно большим. Значит, мощность, рассеиваемая на транзисторе, будет равняться падению напряжения на Сток-Истоке помноженной на силу тока через Сток-Истока: P=Ic Uси . Если выразить эту формулу через сопротивление, то получаем
где R – это сопротивление канала Сток-Исток, Ом
IC – сила тока, проходящая через канал (ток Стока) , А
А что такое мощность, рассеиваемая на каком-либо радиоэлементе? Это и есть тепло.
Теперь представьте, что мы приоткрыли транзистор наполовину. Пусть в нашей цепи ток через лампу будет 1 Ампер, а сопротивление перехода Сток-Исток будет равно 10 Ом. Согласно формуле P= I 2 C R получим, что рассеиваемая мощность на транзисторе в этот момент будет 10 Ватт! Да это маленький, черт его возьми, нагреватель!
Режим насыщения полевого транзистора
Для того, чтобы полностью открыть полевой транзистор, нам достаточно подавать напряжение до тех пор, пока лампа не будет гореть во весь накал. В моем случае это напряжение более чем 4,2 Вольта.
В режиме насыщение сопротивление канала Сток-Исток минимально и почти не оказывает сопротивление электрическому току. Лампа ест свои честные 20,4 Ватта (12х1,7=20,4).
На самой лампе мы видим ее мощность 21 Ватт. Спишем небольшую погрешность на наши приборы.
Самое интересное то, что транзистор в этом случае остается холодным и ни капли не греется, хотя через него проходит 1,7 Ампер! Для того, чтобы понять этот феномен, нам опять надо рассмотреть формулу P= I 2 C R . Если сопротивление Стока-Истока составляет какие-то сотые доли Ома в режиме насыщения, то с чего будет греться транзистор?
Поэтому, самые щадящие режимы для полевого МОП-транзистора – это когда канал полностью открыт или когда канал полностью закрыт. При закрытом транзисторе сопротивление канала будет бесконечно большое, а ток через это сопротивление будет бесконечно мал, так как в этой цепи будет работать закон Ома. Подставляя эти значение в формулу P= I 2 C R, мы увидим, что мощность рассеивания на таком транзисторе будет равна практически нулю. В режиме насыщения у нас сопротивление будет достигать сотые доли Ома, а сила тока будет зависеть от нагрузку в цепи. Следовательно, в этом режиме транзистор также будет рассеивать какие-то сотые доли Ватта.
Ключевой режим работы полевого транзистора
В этом режиме полевой транзистор работает только в режиме отсечки и насыщения.
Давайте немного изменим схему и уберем из нее Bat2. Вместо него поставим переключатель, а напряжение на Затвор будем брать от Bat1.
Для наглядности вместо переключателя я использовал проводок от макетной платы. В данном случае лампочка не горит. А с чего ей гореть-то? На Затворе то у нас полный ноль, поэтому, канал закрыт.
Но стоит только перекинуть выключатель в другое положение, как у нас лампочка сразу же загорается на всю мощь.
Даже не надо ни о чем заморачиваться! Просто подаем на Затвор напряжение питания и все! Разумеется, если оно не превышает максимальное напряжение на Затворе, прописанное в даташите. Для нашего транзистора это +-20 Вольт. Не повредит ли напряжение питания Затвору? Так как Затвор у нас имеет очень большое входное сопротивление (он ведь отделен слоем диэлектрика от всех выводов), то и сила тока в цепи Затвора будет ну очень маленькая (микроамперы).
Как вы видите, лампочка горит на всю мощь. В этом случае можно сказать, что потенциал на Стоке стал такой же, как и на Истоке, то есть ноль, поэтому весь ток побежал от плюса питания к Стоку, «захватив» по пути лампочку накаливания, которая не прочь была покушать электрический ток, излучая кучу фотонов в пространство и на мой рабочий стол.
Но наблюдается также и интересный феномен, в отличие от ключа на биполярном транзисторе. Даже если откинуть проводок от Затвора, все равно лампочка продолжает гореть как ни в чем не бывало!
Почему так происходит? Здесь надо вспомнить внутреннее строение самого полевого транзистора. Вот эта часть вам ничего не напоминает?
Так это же конденсатор! А раз мы его зарядили, то с чего он будет разряжаться? Разрядиться-то ему некуда, поэтому он и держит заряд электронов в канале, пока мы не разрядим вывод Затвора. Для того, чтобы убрать потенциал с Затвора и «заткнуть» канал, нам опять же надо уравнять его с нулем. Сделать это достаточно просто, замкнув Затвор на Исток. Лампочка сразу же потухнет.
Как вы видели в опыте выше, если мы отключаем напряжение на Затворе, то обязательно должны притянуть Затвор к минусу, иначе канал так и останется открытым. Поэтому обязательное условие в схемах — Затвор должен всегда чем-то управляться и с чем-то соединяться. Ему нельзя висеть в воздухе.
А почему бы Затвор автоматически не притягивать к нулю при отключении подачи напряжения на Затвор? Поэтому, эту схему можно доработать и сделать самый простейший ключ на МОП-транзисторе:
При включении выключателя S цепь стает замкнутой и лампочка загорается
Как только я убираю красный проводок от Затвора (разомкну выключатель), лампочка сразу тухнет:
Красота! То есть как только я убрал напряжение от Затвора, Затвор притянуло к минусу через резистор и на нем стал нулевой потенциал. А раз на Затворе ноль, то и канал Сток-Исток закрыт. Если я снова подам напряжение на Затвор, то у нас на мегаомном резисторе упадет напряжение питания, которое будет все оседать на Затворе и транзистор снова откроется. На бОльшем сопротивлении падает бОльшее напряжение ;-). Не забываем золотое правило делителя напряжения. Резистор в основном берут от 100 КилоОм и до 1 МегаОма (можно и больше). Так как МОП-транзисторы с индуцированным каналом в основном используются в цифровой и импульсной технике, из них получаются отличные транзисторные ключи, в отличие от ключа на биполярном транзисторе.
Характеристики полевого МОП транзистора
Для того, чтобы узнать характеристики транзистора, нам надо открыть на него даташит и рассмотреть небольшую табличку на первой странице даташита. Будем рассматривать транзистор, который мы использовали в своих опытах: IRFZ44N.
Напряжение VGS — это напряжение между Затвором и Истоком. Смотрим на даташит и видим, что максимальное напряжение, которое можно подать на Затвор это +-20 Вольт. Более 20 Вольт в обе стороны пробьет тончайший слой диэлектрика, и транзистор придет в негодное состояние.
Максимальная сила тока ID , которая может течь через канал Сток-Исток.
Как мы видим, транзистор в легкую может протащить через себя 49 Ампер.
Но это при температуре кристалла 25 градусов по Цельсию. А так номинальная сила тока 35 Ампер при температуре кристалла 100 градусов, что чаще всего и происходит на практике.
RDS(on) — сопротивление полностью открытого канала Стока-Истока. В режиме насыщения, сопротивление канала транзистора достигает ну очень малого значения. Как вы видите, у нашего подопечного сопротивление канала достигает 17,5 мОм (при условии, что напряжение на Затворе = 10 Вольт, а ток Стока = 25 Ампер).
Максимальная рассеиваемая мощность PD — это мощность, которую транзистор может рассеять на себе, превращая эту мощность в тепло. В нашем случае это 94 Ватта. Но здесь также должны быть соблюдены различные условия — это температура окружающей среды, а также есть ли у транзистора радиатор.
Также различные зависимости одних параметров от других можно увидеть в даташите на последних страницах.
Например, ниже на графике приводится зависимость тока Стока от напряжения Стока-Истока при каких-то фиксированных значениях напряжения на Затворе при температуре кристалла (подложки) 25 градусов Цельсия (комнатная температура). Верхняя линия графика приводится для напряжения 15 Вольт на Затворе. Другие линии в порядке очереди по табличке вверху слева:
Также есть интересная зависимость сопротивления канала полностью открытого транзистора от температуры кристалла:
Если посмотреть на график, то можно увидеть, что при температуре кристалла в 140 градусов по Цельсию у нас сопротивление канала увеличивается вдвое. А при отрицательных температурах наоборот уменьшается.
Как проверить полевой транзистор
Для того, чтобы проверить полевой транзистор, мы должны определить, где какие у него выводы. У нас подопытным кроликом будет тот же самый транзистор: IRFZ44N.
Для этого вбиваем в любой поисковик название нашего транзистора и рядом прописываем слово «даташит». Чаще всего на первой странице даташита мы можем увидеть цоколевку транзистора.
Хотя, интернет переполнен уже готовыми распиновками и иногда все-таки бывает проще набрать»распиновка (цоколевка) *название транзистора* «. Итак, я вбил ” IRFZ44N цоколевка” в Яндекс и нажал на вкладку “картинки”. Яндекс мне выдал уйму картинок с распиновкой этого транзистора:
Ну а дальше дело за малым.
Устройство и принцип работы в видео:
Проверка полевого транзистора с помощью мультиметра
Теперь, зная цоколевку и принцип работы транзистора, мы можем проверить его на работоспособность. Первым делом мы без проблем можем проверить эквивалентный диод VD2 между Стоком и Истоком. В схемотехническом обозначении его тоже часто указывают.
Как проверить диод мультиметром, я писал еще в этой статье.
Но не спешите брать мультиметр в руки и прозванивать диод! Ведь первым делом надо снять с себя статическое напряжение. Это можно сделать, если задеть метализированный слой водонагревательных труб, либо коснуться заземляющего провода. При работе с радиоэлементами, чувствительными к статическому напряжению, желательно использовать антистатический браслет, один конец которого закрепляется к заземляющему проводнику, например, к батарее отопления, а другой конец в виде ремешка надевается на запястье.
Далее замыкаем все выводы транзистора каким-нибудь металлическим предметом. В моем случае это металлический пинцет. Для чего мы это делаем? А вдруг кто-то зарядил Затвор до нас или он уже где-то успел «хапнуть» потенциал на Затворе? Поэтому, чтобы все было честно, мы уравняем потенциал на Затворе до нуля с помощью этой нехитрой манипуляции.
Ну а теперь со спокойной совестью можно проверить диод, который образуется в полевом транзисторе между Стоком и Истоком. Так как у нас транзистор N-канальный, следовательно, его схемотехническое обозначение будет выглядеть вот так:
Беремся положительным (красным) щупом мультиметра за Исток, так-как там находится анод диода, а отрицательным (черным) — за Сток
(там у нас катод диода). На мультиметре должно высветиться падение напряжения на диоде 0,5-0,7 Вольт. В моем случае, как видите, 0,56 Вольт.
Далее меняем щупы местами. Мультиметр покажет единичку, что нам говорит о том, что диод в полевом транзисторе жив и здоров.
Проверяем сопротивление канала. Мы с вами уже знаем, что в N-канальном транзисторе ток у нас будет бежать от Стока к Истоку, следовательно, встаем красным положительным щупом на Сток, а отрицательным – на Исток, и меряем сопротивление. Оно должно быть ну о-о-о-очень большое. В моем случае даже на Мегаомах показывает единичку, что говорит о том, что сопротивление даже больше, чем 200 Мегаом. Это очень хорошо.
Так как у нас транзистор N-канальный, следовательно, чтобы его приоткрыть, нам достаточно будет подать напряжение на Затвор, относительно Истока. Чаще всего в режиме прозвонки диодов на щупах мультиметра бывает напряжение в 3-4 Вольта. Все зависит от марки мультиметра. Этого напряжения будет вполне достаточно, чтобы подать его на Затвор и приоткрыть транзистор.
Так и сделаем. Ставим черный щуп на Исток, а красный на Затвор на доли секунды. На показания мультиметра не обращаем внимания, так как мы сейчас используем его в качестве источника питания, чтобы подать потенциал на Затвор. Этим простым действием мы приоткрыли наш транзистор.
Раз мы приоткрыли транзистор, значит, сопротивление Сток-Исток должно уменьшится. Проверяем, так ли это? Ставим мультиметр в режим измерения сопротивления и смотрим, уменьшилось ли сопротивление между Стоком-Истоком? Как видите, мультиметр показал значение в 2,45 КОм.
Это говорит о том, что наш полевой транзистор полностью работоспособен.
Конечно, бывает и такое, что малого напряжения на мультиметре не хватает, чтобы приоткрыть транзистор. Здесь можно прибегнуть к источникам питания, которые выдают более-менее нормальное напряжение, например, блок питания или батарейка Крона в 9 Вольт. Так как рядом не оказалось Кроны, то мы просто выставим напряжение в 10 Вольт. Напряжение на Затвор именно этого транзистора не должно превышать 20 Вольт, иначе произойдет пробой диэлектрика, и транзистор выйдет из строя.
Итак, выставляем 10 Вольт.
Подаем это напряжение на Затвор транзистора на доли секунды.
Теперь по идее сопротивление между Стоком и Истоком должно равняться нулю. Для чистоты эксперимента замеряем сопротивление щупов самого мультиметра. Эх, дешевые китайские щупы. 2,1 Ом).
А теперь и замеряем сопротивление самого перехода. Практически 0 Ом!
Хотя, если верить даташиту, должно быть 17,5 миллиОм. Теперь можно утверждать со 146% вероятностью, что наш транзистор полностью жив и здоров.
Как проверить полевой транзистор с помощью транзисторметра
На рабочем столе каждого электронщика должен быть этот замечательный китайский прибор, благо он стоит недорого. Про него я писал обзор здесь.
Здесь все просто, как дважды два. Вставляем транзистор в кроватку и нажимаем большую зеленую кнопку. В результате прибор сразу же определил, что это полевой МОП транзистор с каналом N-типа, определил расположение выводов транзистора, а также емкость затвора и пороговое напряжение открытия, о котором мы говорили выше в статье. Ну не прибор, а чудо!
Меры безопасности при работе с полевыми транзисторами
Все полевые транзисторы, будь это полевой транзистор с управляющим PN-переходом, либо МОП-транзистор, очень чувствительны к электрическим перегрузкам на Затворе. Особенно это касается электростатического заряда, который накапливается на теле человека и на измерительных приборах. Опасные значения электростатического заряда для МОП-транзисторов составляют 50-100 Вольт, а для транзисторов с управляющим PN переходом — 250 Вольт. Поэтому, самое важное правило при работе с такими транзисторами — это заземлить себя через антистатический браслет, или взяться за голую батарею ДО касания полевых транзисторов.
Также в некоторых экземплярах полевых транзисторов встраивают защитные стабилитроны между Истоком и Затвором, которые вроде бы спасают от электростатики, но лучше все-таки перестраховаться лишний раз и не испытывать судьбу транзистор на прочность. Также не помешало бы заземлить всю паяльную и измерительную аппаратуру. В настоящее время это все делается уже автоматически через евро розетки, у которых имеются в наличии заземляющий проводник.
Похожие статьи по теме «полевой транзистор»
Сколько выводов имеет классический силовой мдп транзистор
Транзистор (англ. transistor), полупроводниковый триод — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналом управлять током в электрической цепи. Обычно используется для усиления, генерации и преобразования электрических сигналов. В общем случае транзистором называют любое устройство, которое имитирует главное свойство транзистора – изменения сигнала между двумя различными состояниями при изменении сигнала на управляющем электроде.
- По основному полупроводниковому материалу
- С кремния,
- С германия,
- С арсенида,
- С галлия.
- По структуре
- Биполярные n-p-n структуры, «обратной проводимости»; p-n-p структуры, «прямой проводимости».
- Полевые с p-n переходом; с изолированным затвором–МДП-транзистор.
- По мощности
- Маломощные транзисторы до 100 мВт .
- Транзисторы средней мощности от 0,1 до 1 Вт.
- Мощные транзисторы (больше 1 Вт).
- По исполнению
- Дискретные транзисторы.
- Корпусные.
- Для свободного монтажа.
- Для установки на радиатор.
- Для автоматизированных систем пайки.
- бескорпусные.
- Транзисторы в составе интегральных схем.
- По материалу и конструкции корпуса
- Металлостеклянный.
- Металлокерамический.
- Пластмассовый.
1.3.1 Биполярный транзистор
Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора, имеет 3 вывода (эмиттер, коллектор и базу). Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и p-n-p транзисторы.
В биполярном транзисторе, в отличие от полевого транзистора, используются заряды одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» — «два»).
На рисунке 1.3.1.1 Представлена структурная схема и УГО биполярного транзистора типа n-p-n и p-n-p.
Рисунок 1.3.1.1 структурная схема и УГО биполярного транзистора
типа n-p-n и p-n-p.
База — это управляющий вывод;
Коллектор — находится под положительным потенциалом (для n-p-n транзистора);
Эмиттер — находится под отрицательным потенциалом (для n-p-n транзистора).
Режимы работы биполярного транзистора
- Нормальный активный режим (рисунок 1.3.1.2)
Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт)
Рисунок 1.3.1.2 Нормальный активный режим
- Режим насыщения (рисунок 1.3.1.3)
Оба p-n — перехода смещены в прямом направлении (оба открыты) Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения.
Рисунок 1.3.1.3 Режим насыщения
- Режим отсечки (рисунок 1.3.1.4)
В данном режиме коллекторный p-n — переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера.
Рисунок 1.3.1.4 Режим отсечки
Схемы включения биполярного транзистора
Любая схема включения транзистора характеризуется двумя основными показателями:
В большинстве электрических схем транзистор используется в качестве четырехполюсника, то есть устройства, имеющего два входных и два выходных вывода. Очевидно, что, поскольку транзистор имеет только три вывода, для его использования в качестве четырехполюсника необходимо один из выводов транзистора сделать общим для входной и выходной цепей. Соответственно различают три схемы включения транзистора: схемы с общей базой (ОБ), общим эмиттером (ОЭ) и общим коллектором(ОК).
На рисунке 1.3.1.5 (см. стр. 33) показаны полярности напряжений между электродами и направления токов, соответствующие активному режиму в указанных схемах включения транзистора. Следует отметить, что токи транзистора обозначаются одним индексом, соответствующим названию электрода, во внешней цепи которого протекает данный ток, а напряжения между электродами обозначаются двумя индексами, причем вторым указывается индекс, соответствующий названию общего электрода.
Рисунок 1.3.1.5 Схемы включения биполярного транзистора
В схеме с общей базой (см. рисунок 1.3.1.5, а) входной цепью является цепь эмиттера, а выходной-цепь коллектора. Схема ОБ наиболее проста для анализа, поскольку в ней каждое из внешних напряжений прикладывается к конкретному переходу: напряжение UЭБ прикладывается к эмиттерному переходу, а напряжение UКБ–к коллекторному. Следует заметить, что падениями напряжений на областях эмиттера, базы и коллектора можно в первом приближении пренебречь, поскольку сопротивления этих областей значительно меньше сопротивлений переходов. Нетрудно убедиться, что приведенные на рисунке полярности напряжений (UЭБUКБ>0) обеспечивают открытое состояние эмиттерного перехода и закрытое состояние коллекторного перехода, что соответствует активному режиму работы транзистора.
В схеме с общим эмиттером (см. рисунок 1.3.1.5, б) входной цепью является цепь базы, а выходной — цепь коллектора. В схеме ОЭ напряжение UБЭ>0 прикладывается непосредственно к эмиттерному переходу и отпирает его. Напряжение UКЭ распределяется между обоими переходами: UКЭ=UКБ+UБЭ. Для того, чтобы коллекторный переход был закрыт, необходимо UКБ=UКЭ–UБЭ>0, что обеспечивается при UКЭ>UБЭ>0.
В схеме с общим коллектором (см. рисунок 1.3.1.5, в) входной цепью является цепь базы, а выходной–цепь эмиттера.
- Коэффициент передачи по току.
- Входное сопротивление.
- Выходная проводимость.
- Обратный ток коллектор-эмиттер.
- Время включения.
- Предельная частота коэффициента передачи тока базы.
- Обратный ток коллектора.
- Максимально допустимый ток.
- Граничная частота коэффициента передачи тока в схеме с общим эмиттером.
Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:
- коэффициент усиления по току α;
- сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
rк — сумму сопротивлений коллекторной области и коллекторного перехода;
rб — поперечное сопротивление базы.
- Усилители, каскады усиления
- Генератор сигналов
- Модулятор
- Демодулятор (Детектор)
- Инвертор (лог. элемент)
1.3.2 Полевой транзистор
Полевой транзистор — полупроводниковый прибор, в котором регулирование тока осуществляется изменением проводимости проводящего канала с помощью поперечного электрического поля.
В отличие от биполярного ток полевого транзистора обусловлен потоком основных носителей.
Электроды полевого транзистора называют истоком (И), стоком (С) и
затвором (З). Управляющее напряжение прикладывается между затвором и истоком. От напряжения между затвором и истоком зависит проводимость канала, следовательно, и величина тока.
Таким образом, полевой транзистор можно рассматривать как источник тока, управляемый напряжением затвор-исток. Если амплитуда изменения управляющего сигнала достаточно велика, сопротивление канала может изменяться в очень больших пределах. В этом случае полевой транзистор можно использовать в качестве электронного ключа.
Классификация полевых транзисторов на рисунке 1.3.2.1.
Рисунок 1.3.2.1 Классификация полевых транзисторов
Преимущества и недостатки полевых транзисторов перед биполярными.
Полевые транзисторы практически вытеснили биполярные в ряде применений. Самое широкое распространение они получили в интегральных схемах в качестве ключей (электронных переключателей)
Главные преимущества полевых транзисторов:
- Благодаря очень высокому входному сопротивлению, цепь полевых транзисторов расходует крайне мало энергии, так как практически не потребляет входного тока.
- Усиление по току у полевых транзисторов намного выше, чем у биполярных.
- Значительно выше помехоустойчивость и надежность работы, поскольку из-за отсутствия тока через затвор транзистора, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.
- У полевых транзисторов на порядок выше скорость перехода между состояниями проводимости и непроводимости тока. Поэтому они могут работать на более высоких частотах, чем биполярные.
Главные недостатки полевых транзисторов:
Структура полевых транзисторов начинает разрушаться при меньшей температуре (150 ○ С), чем структура биполярных транзисторов (200 ○ С).
Несмотря на то, что полевые транзисторы потребляют намного меньше энергии, по сравнению с биполярными транзисторами, при работе на высоких частотах ситуация кардинально меняется.
Важнейшим недостатком полевых транзисторов является их чувствительность к статическому электричеству. Поскольку изоляционный слой диэлектрика на затворе чрезвычайно тонкий, иногда даже относительно невысокого напряжения бывает достаточно, чтоб его разрушить. А разряды статического электричества, присутствующего практически в каждой среде, могут достигать несколько тысяч вольт.
Устройство полевого транзистора JFET с N-каналом (п олевой транзистор с управляющим PN-переходом).
Как показано на рисунке 1.3.2.2, область полупроводника N-типа формирует канал между зонами P-типа. Электроды, подключаемые к концам N-канала, называются сток и исток. Полупроводники P-типа электрически соединяются между собой (закорачиваются), и представляют собой один электрод – затвор.
Рисунок 1.3.2.2 Полевого транзистора JFET с N-каналом
Вблизи стока и истока находятся области повышенного легирования N+ т.е. зоны с повышенной концентрацией электронов. Это улучшает проводимость канала. Кроме этого, наличие областей N+ ослабляет эффект появления паразитических PN-переходов в случае присоединения проводников из трехвалентного алюминия.
Имена электродов сток и исток носят условный характер. Если взять отдельный полевой транзистор, не подключенный к какой-либо схеме, то не будет иметь значения какая ножка корпуса сток, а какая исток. Имя электрода будет зависеть от его расположения в электрической цепи.
Работа полевого транзистора JFET с N-каналом
- Напряжение на затворе Uзи=0 (рисунок 1.3.2.3).
Рисунок 1.3.2.3 Работа полевого транзистора JFET с N-каналом Uзи=0
Подключим источник положительного напряжения к стоку, землю к истоку. Затвор также подсоединим к земле (Uзи=0). Начнем постепенно повышать напряжение на стоке Uси. Пока Uси низкое, ширина канала максимальна. В таком состоянии полевой транзистор ведет себя как обычный проводник. Чем больше напряжение между стоком и истоком Uси, тем больше ток через канал между стоком и истоком Iси. Это состояние еще называют омическая область.
При повышении Uси, в полупроводнике N-типа в зонах PN-перехода постепенно снижается количество свободных электронов – появляется обедненный слой. Этот слой растет несимметрично – больше со стороны стока, поскольку туда подключен источник напряжения. В результате канал сужается настолько, что при дальнейшем повышении Uси, Iси будет расти очень незначительно. Это состояние называют режим насыщения.
Когда транзистор находится в режиме насыщения, канал относительно узкий. Достаточно подать небольшое отрицательное напряжение на затвор Uзи, для того чтобы еще сильнее сузить канал и значительно уменьшить ток Iси (для транзистора с P-каналом на затвор подается положительное напряжение). Если продолжить понижать Uзи, канал будет сужаться, пока полностью не закроется, и ток Iси не прекратится. Значение Uзи, при котором ток Iси останавливается, называется напряжение отсечки (Uотс).
Рисунок 1.3.2.4 Работа полевого транзистора JFET с N-каналом Uзи
Для усиления сигнала полевой транзистор JFET используют в режиме насыщения, так как в этом состоянии вследствие небольших изменений Uзи сильно меняется Iси. Параметр усилительной способности JFET – это крутизна стоко-затворной характеристики (Mutual Transconductance). Обозначается gm или S, и измеряется в mA/V (милиАмпер/Вольт) представлена на рисунке 1.3.2.5.
Рисунок 1.3.2.5 Стоко-затворная характеристика
Полевой транзистор с изолированным затвором MOSFET
Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого электрически изолирован от проводящего канала полупроводника слоем диэлектрика. Благодаря этому, у транзистора очень высокое входное сопротивление (у некоторых моделей оно достигает 10 17 Ом).
Принцип работы этого типа полевого транзистора (рисунок 1.3.2.6), как и полевого транзистора с управляющим PN-переходом, основан на влиянии внешнего электрического поля на проводимость прибора.
Рисунок 1.3.2.6 Принцип действия полевого транзистора
В соответствии со своей физической структурой, полевой транзистор с изолированным затвором носит название МОП-транзистор (Металл-Оксид-Полупроводник), или МДП-транзистор (Металл-Диэлектрик-Полупроводник). Международное название прибора—MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
МДП-транзисторы делятся на два типа – со встроенным каналом и с индуцированным каналом. В каждом из типов есть транзисторы с N–каналом и P-каналом (рисунок 1.3.2.7)
Рисунок 1.3.2.7 МДП-транзисторы
Устройство МДП-транзистора (MOSFET) с индуцированным каналом.
На основании (подложке) полупроводника с электропроводностью P-типа (для транзистора с N-каналом) созданы две зоны с повышенной электропроводностью N + -типа. Все это покрывается тонким слоем диэлектрика, обычно диоксида кремния SiO2. Сквозь диэлектрический слой проходят металлические выводы от областей N + -типа, называемые стоком и истоком. Над диэлектриком находится металлический слой затвора. Иногда от подложки также идет вывод, который закорачивают с истоком (рисунок 1.3.2.8)
Рисунок 1.3.2.8 Устройство МДП-транзистора с индуцированным каналом N-типа
Работа МДП-транзистора (MOSFET) с индуцированным каналом N-типа.
Подключим напряжение любой полярности между стоком и истоком. В этом случае электрический ток не пойдет, поскольку между зонами N + находиться область P, не пропускающая электроны (рисунок 1.3.2.9)
Рисунок 1.3.2.9 Работа МДП-транзистора с индуцированным каналом N-типа
Далее, если подать на затвор положительное напряжение относительно истока Uзи, возникнет электрическое поле. Оно будет выталкивать положительные ионы (дырки) из зоны P в сторону подложки. В результате под затвором концентрация дырок начнет уменьшаться, и их место займут электроны, притягиваемые положительным напряжением на затворе.
Когда Uзи достигнет своего порогового значения, концентрация электронов в области затвора превысит концентрацию дырок. Между стоком и истоком сформируется тонкий канал с электропроводностью N-типа, по которому пойдет ток Iси. Чем выше напряжение на затворе транзистора Uзи, тем шире канал и, следовательно, больше сила тока. Такой режим работы полевого транзистора называется режимом обогащения.
Принцип работы МДП-транзистора с каналом P–типа такой же, только на затвор нужно подавать отрицательное напряжение относительно истока.
Устройство МДП-транзистора (MOSFET) со встроенным каналом.
Физическое устройство МДП-транзистора со встроенным каналом отличается от типа с индуцированным каналом наличием между стоком и истоком проводящего канала.
Работа МДП-транзистора (MOSFET) со встроенным каналом N-типа.
Подключим к транзистору напряжение между стоком и истоком Uси любой полярности. Оставим затвор отключенным (Uзи=0). В результате через канал пойдет ток Iси, представляющий собой поток электронов.
Далее, подключим к затвору отрицательное напряжение относительно истока. В канале возникнет поперечное электрическое поле, которое начнет выталкивать электроны из зоны канала в сторону подложки. Количество электронов в канале уменьшиться, его сопротивление увеличится, и ток Iси уменьшиться. При повышении отрицательного напряжения на затворе, уменьшается сила тока. Такое состояние работы транзистора называется режимом обеднения.
Если подключить к затвору положительное напряжение, возникшее электрическое поле будет притягивать электроны из областей стока, истока и подложки. Канал расшириться, его проводимость повыситься, и ток Iси увеличиться. Транзистор войдет в режим обогащения.
Задание для самостоятельной работы
по теме 1.3 «Транзисторы»
Выполнить задание «Системный оператор».
В качестве системы (объекта) будет выступать «транзистор».
Необходимо заполнить все клеточки таблицы, состоящей из 9 клеток. Сам объект помещается в центр таблицы, под номером 1. Следует постепенно, в соответствии с нумерацией (см.рисунок 1) заполнить все клетки таблицы.
Система- это объект, который, который находиться в центре рассмотрения.
Надсистема- ближайшее окружение объекта, система, частью которого является объект.
Подсистема- структурная единица системы, части, из которых состоит сам объект.
Заполнить таблицу и поместить ее в чате.
Оценить работы своих одногруппников с помощью смайликов.
ОБРАЗЕЦ ВЫПОЛНЕНИЯ ЗАДАНИЯ
Пример №1
Элемент электрической цепи
Конденсатор
Компонент интегральной микросхемы
Обкладки, диэлектрик, выводы
Электронно-дырочные переходы транзистора
Пример №2
Разделы учебника
- 1. Элементы электроники
- 1.1 Пассивные элементы
- 1.1.1 Резисторы
- 1.1.2 Конденсаторы
- 1.1.3 Катушка индуктивности
- 1.2. Полупроводниковые диоды
- 1.3 Транзисторы
- 1.4 Тиристоры
- 1.5 Интегральные микросхемы
- 1.6 Индикаторные приборы
- 1.7 Фотоэлектрические приборы
- 2. Усилители электрических сигналов
- 2.1 Усилители на биполярных и полевых транзисторах
- 2.2 Усилители мощности
- 2.3 Усилители постоянного тока
- 2.4 Интегральные и операционные усилители
- 3. Электронные генераторы электрических сигналов
- 3.1 Автогенераторы
- 3.2. Мультивибраторы
- 3.3 Блокинг-генераторы
- 3.4. Генераторы линейного изменяющегося напряжения (ГЛИН)