Что такое пульсация выпрямленного напряжения
Перейти к содержимому

Что такое пульсация выпрямленного напряжения

  • автор:

Пульсации выпрямленного напряжения

Рассмотренные схемы выпрямителей давали возможность получить на нагрузке выпрямленное, но пульсирующее напряжение. Недопустимо большие пульсации напряжения нарушают нормальный режим работы электронной аппаратуры создают фон на ее выходе, вызывают искажения сигналов, приводят к неустойчивости работы электронного устройства в целом. Поэтому для устранения пульсации выпрямленного напряжения в схему выпрямителя на его выходе включают сглаживающие фильтры .

Прежде чем познакомиться с практическими схемами фильтрации, рассмотрим физические процессы в схеме двухполупериодного выпрямителя для случая, когда последовательно с сопротивлением нагрузки включен дроссель L ( рис. 117, а ), т. е. когда выпрямитель нагружен на индуктивное и активное сопротивления.

Напряжение U R н L , приложенное к цепи R н — L, имеет форму положительных синусоидальных полуволн; форма же тока, протекающего через нагрузку, отличается от формы выпрямленного напряжения. При увеличении напряжения U R н L в индуктивности L возникает э. д. с. самоиндукции e L , которая противодействует увеличению тока.

Она направлена навстречу возрастающему напряжению U R н L и поэтому на графике показана с обратной полярностью.

Рис. 117. Работа двухполупериодного выпрямителя: а —на индуктивность и активное сопротивление; б — на емкость и активное сопротивление.

Как только ток первого вентиля В 1 перестанет возрастать (достигает максимума), э. д. с. самоиндукции становится равной нулю. В следующую часть периода, когда полярность ее изменится, она будет препятствовать уменьшению тока в цепи R н — L, поэтому ток прекращается не в момент а позже, в момент времени t’. В момент времени t’ открывается также вентиль В 2 и ток в нагрузке складывается из возрастающего тока вентиля В 2 и уменьшающегося тока вентиля В 1 , поддерживаемого э. д. с. самоиндукции (последний замыкается теперь через вентиль В 2 , так как вентиль В 1 заперт).

Среднее значение выпрямленного тока уже незначительно отличается от максимального тока через вентиль, причем это отличие будет тем меньше, чем больше индуктивность L. Одновременно уменьшаются и пульсации выпрямленного напряжения . Так, при ωL, — (5÷8) R н пульсации напряжения на нагрузке не превышают 20%.

Обратное напряжение на вентиле равно сумме э. д. с. е II и напряжения на входе цепи R н —L:

U обр.макс 2Е mII ≈πU cр .

В общем случае среднее значение выпрямленного напряжения на нагрузке равно

U ср = U ср.х.х — I ср (R i + r II + r др ),

где U ср.х.х — напряжение на выходе выпрямителя при отключенной нагрузке в режиме холостого хода; I ср (R i + r II + r др ) — напряжение потерь на актив-пых сопротивлениях элементов схемы.

Из последнего равенства следует, что с увеличением тока через нагрузку (при уменьшении R н ) увеличивается наклон внешней характеристики. Однако этот наклон не зависит от индуктивности дросселя, поэтому в выпрямителе с индуктивной нагрузкой целесообразно применять вентили с малым внутренним сопротивлением R i (селеновые или ионные вентили).

На рис. 117, б приведены двухполупериодная схема выпрямителя, нагруженного на параллельно подключенные конденсатор С и сопротивление R н , а также графики, поясняющие работу этой схемы.

Конденсатор дважды за каждый период подзаряжается до напряжения U C.макс поочередно через вентиль В 1 и вентиль В 2 . Когда напряжение на соответствующей половине вторичной обмотки трансформатора становится выше напряжения U С на конденсаторе, он. подзаряжается в промежутки времени t 1 — t 2 , t 3 — t 4 и разряжается на нагрузку в промежутки времени t 2 —t 3 , t 4 — t 5 . При этом ток в нагрузке поддерживается за счет энергии, накопленной в конденсаторе. Вентили в это время заперты. Чем больше сопротивление нагрузки, тем медленнее разряжается конденсатор, тем меньше изменяется (меньше пульсирует) напряжение на нагрузке.

Среднее значение выпрямленного напряжения примерно равно амплитуде напряжения на половине вторичной обмотки трансформатора: обратное напряжение в 2 раза больше (≈2Е mII ), коэффициент пульсации не превышает 15% при С≈8÷10 мкф.

Следует заметить, что ток в нагрузке протекает в течение всего полупериода, в то время как ток через вентиль проходит только лишь часть полупериода, причем максимальное значение этого тока в 3—4 раза больше среднего значения выпрямленного. Поэтому если необходимо получить от выпрямителя ток в 100 ма, то допустимый максимальный ток вентиля должен быть не менее 300 ма.

Наклон внешней характеристики зависит не только от величины внутреннего сопротивления вентиля и вторичной обмотки трансформатора, но и от постоянных времени заряда и разряда конденсатора:

t зар ≈ С(R i +r’ II ); t разр = CR н

Величина выпрямленного напряжения резко зависит от величины тока нагрузки. При R н = ∞, т. е., когда I ср = 0, напряжение на емкости максимально; при уменьшении R н напряжение U ср падает.

Выпрямитель, работающий на емкость, можно рассматривать как источник с большим внутренним сопротивлением. В момент включения схемы имеет место бросок тока, происходит первоначальный заряд конденсатора С, ток в цепи ограничивается только внутренним сопротивлением вентилей, поэтому возникает опасность выхода одного из них из строя.

Что такое пульсация выпрямленного напряжения

Коэффициент пульсации — отношение абсолютного уровня пульсации к постоянной составляющей сигнала. Иначе говоря, коэффициент пульсации — мера пульсации в относительных единицах. Несмотря на то что, казалось бы, можно дать довольно чёткое определение данному понятию, на самом деле оно крайне неоднозначное. Причина этого в том, что существуют совершенно разные подходы к определению абсолютного уровня пульсаций.

Оглавление
Коэффициент пульсации

Введение

Довольно часто, например, при измерении различных физических величин, при анализе качества электропитания устройств и при рассмотрении множества других вопросов, мы сталкиваемся с явлением пульсации — нежелательным периодическим отклонением величины (допустим, выходного напряжения блока питания) относительно среднего значения.

Мерой пульсации является уровень пульсации, который может быть выражен в абсолютных величинах (амплитуда пульсации, размах, действующее значение и т.д.). Но иногда бывает удобно рассматривать уровень пульсации не в абсолютном выражении, а в относительных единицах. Отношение величины, характеризующей уровень пульсаций к постоянной составляющей сигнала, называют коэффициентом пульсации.

Коэффициент пульсации можно использовать, например, как объективную характеристику качества выходного напряжения источника питания, которая позволяет сравнивать между собой разные устройства, без привязки к абсолютным значениям выходных напряжений. Коэффициент пульсации позволяет судить о применимости данного источника для питания той или иной нагрузки, ведь для обеспечения работоспособности потребителя, пульсация не должна превышать заданных для него допустимых пределов.

Другой простой пример, когда бывает полезным рассмотрение коэффициента пульсации — анализ выпрямителей. Так, для идеализированного выпрямителя без сглаживающего фильтра, коэффициент пульсации является параметром схемы, не зависящим ни от входного напряжения, ни от нагрузки и дающего возможность легко сопоставлять между собой разные типы выпрямителей.

Определение коэффициента пульсации

Некоторые сложности с использованием данного параметра возникают в связи с тем, что можно вводить в рассмотрение множество разных коэффициентов пульсации, в зависимости от того, какую величину выберем в качестве абсолютной меры уровня пульсаций. Поэтому важно уточнять, о каком именно коэффициенте идёт речь. Чем некоторые авторы порой пренебрегают и тогда остаётся только догадываться, что имелось в виду.

Можно выделить три основных подхода к определению коэффициента пульсации, которые чаще всего используются в литературе и отражены в нормативной документации (стандартах).

1. Коэффициент пульсации — отношение половины размаха пульсации к среднему значению величины (или, что то же самое, к постоянной составляющей величины). Под размахом пульсации понимается разность между максимальным и минимальным значением величины: $$ k=\frac -U_> . $$

Пульсация напряжения источника питания.

Рис. %img:rpl_def

Для практического измерения коэффициента пульсации удобно воспользоваться осциллографом и определить величины Umin, Umax. Если для оценки постоянной составляющей воспользоваться приближением \(U_0 \approx (U_+U_)/2,\) то получаем следующую формулу, удобную для практического определения коэффициента пульсации: $$ k \approx \frac . $$

Существует аналогичное определение, но в нём используется не половина размаха, а полный размах пульсаций.

2. Коэффициент пульсации — отношение размаха пульсации к среднему значению величины (к постоянной составляющей величины): $$ k=\frac -U_> , $$ или, в более удобной форме для вычисления по результатам измерений запишем как $$ k \approx 2 \; \frac -U_> +U_>. $$

Но можно использовать не только амплитудные значения величины пульсаций, а, например, действующее (среднеквадратичное) значение напряжения пульсации. Тогда получим следующее определение.

3. Коэффициент пульсации — отношение среднеквадратичного значения переменной составляющей к абсолютному значению постоянной составляющей изменяющейся величины: $$ k=\frac > . $$

Каждое из рассмотренных определений имеет свою область применения. Выбор определяется тем, какой из коэффициентов наилучшим образом отображает реальные характеристики пульсации в данном случае.

Коэффициенты, вычисляемые по амплитуде и размаху пульсации (первое и второе определения) в целом равноценны, лишь отличаются друг от друга в 2 раза. Они характеризуют наибольшее отклонение величины от среднего значения. Хорошо подходят, например, для оценки качества выходного напряжения источников питания. Как правило, питаемое устройство предъявляет вполне определённые требования к пиковым отклонениям питающего напряжения, что позволяет на основании амплитудного коэффициента пульсации сделать вывод о применимости источника по пульсациям.

В некоторых же случаях больший интерес представляет не амплитуда, а действующее значение пульсации, которое определяет мощность пульсации на резистивной нагрузке. И тогда отдают предпочтение третьему определению.

Действующее значение величины, а значит и вычисленный по ней коэффициент пульсации оказывается малочувствителен к единичным кратковременным выбросам величины («иголкам» сигнала), которым соответствует малая переносимая в нагрузку энергия и которые вносят малый вклад в среднюю мощность, рассеиваемую на нагрузке.

Иногда эта особенность коэффициента пульсации по действующему значению оказывается полезной.

Определения понятия в соответствии с нормативной документацией

Поскольку коэффициент пульсаций — очень важный технический параметр, его не обошли вниманием в стандартах.

Посмотрим, например, что по данному вопросу можно найти в стандартах достаточно авторитетной организации IEC (Международной электротехнической комиссии). Осуществляя деятельность по разработке стандартов, IEC также проделала огромную работу с целью унификации терминологии в области электротехники, результатом чего стало создание Международного электротехнического словаря (Electropedia), доступного on-line.

Воспользовавшись поиском по словарю, обнаруживаем, что термины «пульсация», «коэффициент пульсации» используются в разных предметных областях: математика; электромагнитная совместимость; силовая электроника и др. Это ещё одна из причин многозначности термина.

Если, например, обратиться к разделу электромагнитной совместимости, то обнаружим, что там рассматриваются два вида коэффициентов пульсации:

  • peak-ripple factor (коэффициент пульсации по амплитудному значению, пиковый коэффициент пульсации) — отношение пикового значения переменной составляющей к абсолютному значению постоянной составляющей изменяющейся величины (перевод определения из документа IEC-60050-161; под пиковым значением понимается просто размах пульсации) * ;
  • r.m.s.-ripple factor (коэффициент пульсации по среднеквадратичному значению, среднеквадратичный коэффициент пульсаций) — отношение среднеквадратичного значения переменной составляющей к абсолютному значению постоянной составляющей изменяющейся величины (перевод определения из документа IEC-60050-161; среднеквадратичное значение — это то, что раньше было принято называть действующим значением).

* Вариант на английском: peak-ripple factor — the ratio of the peak-to-valley value of the ripple content to the absolute value of the direct component of a pulsating quantity.
Значение термина «peak-to-valley value» также может быть найдено в Electropedia:
peak-to-valley value, peak-to-peak value — difference between the global maximum value and the global minimum value in the same specified interval of the argument.
Note 1 to entry: For a periodic quantity, the specified interval has a range equal to the period.
Note 2 to entry: The synonym «peak-to-peak value» should be used only when the global maximum and minimum values are of different signs.

В разделе «Силовая электроника» обнаруживаем термин «DC ripple factor» (коэффициент пульсации постоянного тока), который определяется как отношение половины разницы между максимальным и минимальным значениями пульсирующего тока к среднему значению этого тока (ratio of half the difference between the maximum and minimum value of a pulsating direct current to the mean value of this current), смотрите IEC-60050-551. Это определение похоже на рассмотренное ранее определение для peak-ripple factor (коэффициент пульсации по амплитудному значению), но здесь для расчёта берётся не полный размах пульсации, а половина.

Наверно есть основания для введения двух однотипных определений, но избавиться от путаницы это совсем не помогает.

Найти упоминание о коэффициенте пульсации можно и в ГОСТ. Так, во многих статьях, касающихся темы пульсации, даётся ссылка на «ГОСТ 23875-88 Качество электрической энергии. Термины и определения», в котором приводится сразу несколько вариантов определения:

  • Коэффициент пульсации напряжения (тока) — величина, равная отношению наибольшего значения переменной составляющей * пульсирующего напряжения (тока) к его постоянной составляющей.
    Примечание. Для целей стандартизации допускается относить к номинальному напряжению (току).
    * Не вполне очевидно, что понимается под «наибольшим значением переменной составляющей». Возможно, это амплитуда.
  • Коэффициент пульсации напряжения (тока) по действующему значению — величина, равная отношению действующего значения переменной составляющей пульсирующего напряжения (тока) к его постоянной составляющей.
  • Коэффициент пульсации напряжения (тока) по среднему значению — величина, равная отношению среднего значения переменной составляющей пульсирующего напряжения (тока) к его постоянной составляющей.

Первые два определения имеют свои аналоги в IEC, а последнее — уже что-то новенькое. И опять же, не обошлось без доли таинственности. Так как среднее значение переменной составляющей равно 0, можно предположить, что в определении имелось в виду нечто иное. Скорее всего, это «среднее по модулю значение переменного напряжения (тока)», которое в этом же ГОСТе определяется как «среднее за период значение модулей мгновенных значений переменного напряжения (тока)». Вероятно, в каких-то случаях использовать этот коэффициент имеет смысл.

Рассмотрев так подробно вопрос о коэффициенте пульсации с точки зрения ГОСТ 23875-88, осталось только отметить, что этот ГОСТ с 2012 года утратил силу. Так что теперь ссылка на него выглядит как не слишком убедительное обоснование для использования того или иного определения * .

* Тем не менее, например, в действующем «ГОСТ 23414-84 Преобразователи электроэнергии полупроводниковые. Термины и определения (с Изменением N 1)» имеется ссылка на утративший силу ГОСТ 23875-88. Оказывается так можно.

Однако, тут нам на помощь приходят другие ГОСТы. Так, в «ГОСТ 26567-85 Преобразователи электроэнергии полупроводниковые. Методы испытаний» (на момент написания этой статьи имеет статус действующего), даётся наглядное объяснение «в картинках», рис. %img:h. На рисунке: 1 — огибающая мгновенных значений пульсирующего напряжения; t — время, в течение которого проводят наблюдения. Как видим, за величину пульсаций принимается половина размаха пульсаций. Также даётся расчётная формула (для вычисления коэффициента в процентах): $$ k_=\frac>\cdot 100, $$ т.е. отношение половины размаха пульсации к номинальному значению величины.

Определение размаха пульсаций в соответствии с ГОСТ.

Рис. %img:h

Данное определение в некоторой степени аналогично рассмотренному выше определению «DC ripple factor» (коэффициент пульсации постоянного тока) из IEC-60050-551.

Подобные определения можно найти и в других ГОСТах, например, в «ГОСТ Р 52907-2008 Источники электропитания радиоэлектронной аппаратуры. Термины и определения»:
коэффициент пульсации постоянного выходного напряжения [тока] источника электропитания РЭА — величина, равная отношению наибольшего значения переменной составляющей пульсирующего постоянного выходного напряжения [тока] к его среднему значению в установившемся режиме работы источника электропитания радиоэлектронной аппаратуры.

Правда, данный стандарт является национальным (на что намекает символ Р в обозначении), но тем не менее.

Альтернативные определения

Справедливости ради нужно отметить, что рассмотренные выше определения коэффициента пульсации не являются единственно возможными и в литературе можно встретить другие варианты.

В принципе, под коэффициентом пульсации можно понимать отношение любой меры уровня пульсаций к среднему значению величины. Поэтому, в случае необходимости, можно вводить в рассмотрение самые экзотические варианты определения. Например, за уровень пульсаций можем принять сумму гармоник переменной составляющей с удобными нам весовыми коэффициентами.

В простейшем случае берём первую гармонику с коэффициентом 1 и получаем ещё один вариант определения, который достаточно часто можно встретить в отечественной литературе: коэффициент пульсации — отношение амплитуды первой гармоники (или низшей, или основной — в разных формулировках) к среднему значению напряжения (т.е., к постоянной составляющей).

Впрочем, известная доля популярности ещё не означает, что это определение является удачным. Во-первых, из рассмотрения исключаются все гармонические составляющие, кроме «основной», в то время как вклад «неосновных» может быть весьма значительным; в результате полученный коэффициент очень косвенно отражает реальное положение дел. Во-вторых, практическое измерение коэффициента не является простым — требуется выделение (фильтрация) одной гармоники для измерения её амплитуды.

Но если, например, имеем дело с питанием устройства, для которого нормируются вполне определённые компоненты в спектре пульсации, то описанный вариант определения вполне годится.

Источники информации
  1. IEC, International Electrotechnical Commission (Международная электротехническая комиссия).
  2. Electropedia (Международный электротехнический словарь).
  3. ГОСТ 26567-85 Преобразователи электроэнергии полупроводниковые. Методы испытаний
  4. ГОСТ Р 52907-2008 Источники электропитания радиоэлектронной аппаратуры. Термины и определения
  5. ГОСТ 23414-84 Преобразователи электроэнергии полупроводниковые. Термины и определения (с Изменением N 1)
  6. ГОСТ 23875-88 Качество электрической энергии. Термины и определения

Пульсация напряжения (тока)

Процесс периодического или случайного изменения постоянного напряжения (тока) относительно его среднего уровня в установившемся режиме работы источника, преобразователя электрической энергии или системы электроснабжения (по ГОСТ 23875-88)

  • Проходной изолятор
  • Пульсирующий электрический ток

Смотреть что такое «Пульсация напряжения (тока)» в других словарях:

  • пульсация напряжения (тока) — Процесс периодического или случайного изменения постоянного напряжения (тока) относительно его среднего уровня в установившемся режиме работы источника, преобразователя электрической энергии или системы электроснабжения. [ГОСТ 23875 88] Тематики… … Справочник технического переводчика
  • Пульсация напряжения (тока) — 56. Пульсация напряжения (тока) Процесс периодического или случайного изменения постоянного напряжения (тока) относительно его среднего уровня в установившемся режиме работы источника, преобразователя электрической энергии или системы… … Словарь-справочник терминов нормативно-технической документации
  • ПУЛЬСАЦИЯ НАПРЯЖЕНИЯ — 3.15 ПУЛЬСАЦИЯ НАПРЯЖЕНИЯ: ПУЛЬСАЦИЯ НАПРЯЖЕНИЯ НА РЕНТГЕНОВСКОЙ ТРУБКЕ r выражается в процентах пикового напряжения Umax в определенном временном интервале. Пульсация r определяется уравнением где Umax наибольшее значение напряжения в заданном… … Словарь-справочник терминов нормативно-технической документации
  • Пульсация напряжения — (тока) – процесс периодического или случайного изменения постоянного напряжения (тока) относительно его среднего уровня в установившемся режиме работы источника, преобразователя электрической энергии или системы электроснабжения. ГОСТ 23875 88 … Коммерческая электроэнергетика. Словарь-справочник
  • пульсация постоянного выходного напряжения — 30 пульсация постоянного выходного напряжения [тока] источника электропитания РЭА: Процесс периодического или случайного изменения постоянного выходного напряжения [тока] относительно его среднего значения в установившемся режиме работы источника … Словарь-справочник терминов нормативно-технической документации
  • Пульсация тока — См. Пульсация напряжения … Коммерческая электроэнергетика. Словарь-справочник
  • ГОСТ 23875-88: Качество электрической энергии. Термины и определения — Терминология ГОСТ 23875 88: Качество электрической энергии. Термины и определения оригинал документа: Facteur de distortion (d’une tension ou d’un courant alternatif non sinusoïdal) 55 Определения термина из разных документов: Facteur de… … Словарь-справочник терминов нормативно-технической документации
  • ГОСТ Р 52907-2008: Источники электропитания радиоэлектронной аппаратуры. Термины и определения — Терминология ГОСТ Р 52907 2008: Источники электропитания радиоэлектронной аппаратуры. Термины и определения оригинал документа: 18 время отключения (источника электропитания РЭА): Интервал времени между моментом прекращения подачи входного… … Словарь-справочник терминов нормативно-технической документации
  • Сглаживающий фильтр — Сглаживающий фильтр устройство для сглаживания пульсаций после выпрямления переменного тока диодным мостом. Простейшим сглаживающим фильтром является электролитический конденсатор большой ёмкости, установленный на схеме параллельно нагрузке … Википедия
  • ПОРОКИ СЕРДЦА — ПОРОКИ СЕРДЦА. Содержание: I. Статистика . 430 II. Отдельные формы П. с. Недостаточность двустворчатого клапана . . . 431 Сужение левого атглю вентрикулярного отверстия . «. 436 Сужение устья аорты … Большая медицинская энциклопедия

Коэффициент пульсации напряжения

Очень часто приходится сталкиваться с выпрямителями переменного тока, поскольку для нормальной работы многих электронных устройств требуется наличие постоянного напряжения, а то и нескольких сразу.

Выпрямители имеют несколько основных характеристик:
• номинальное выходное напряжение;
• уровень пульсаций напряжения;
• номинальный ток.

Коэффициент пульсаций – это отношение переменной составляющей выходного сигнала выпрямителя к его постоянной составляющей.

Различают несколько значений пульсации напряжения, например:
• действующее;
• среднее;
• импульсное.

В некоторых случаях, например, для осуществления запитки двигателя постоянного тока, этот параметр абсолютно не важен. Однако, при подаче рабочего напряжения на усилитель звуковой частоты даже в том случае, если коэффициент пульсаций составляет всего 5%, в динамике будет слышен фон переменного тока.

Способы измерения коэффициента пульсации напряжения

В общем случае имеется два основных способа измерения уровня пульсаций постоянного напряжения, после чего производится непосредственно расчет самого коэффициента. Это могут быть измерения при помощи:
• осциллографа;
• двух вольтметров.

В первом случае проводится измерение постоянной и переменной составляющих по экрану осциллографа. Точность этого способа невелика, так как отсчет параметров ведется визуально по экрану, поэтому невозможно качественно провести калибровку, оценить параллакс.

Однако осциллограф позволяет визуально оценить форму переменной составляющей, что часто дает более полное представление о выходном сигнале.

При помощи двух вольтметров измерение уровня пульсаций можно установить более точно и быстро. У этого способа есть свои существенные недостатки, такие, как:
• невозможность визуального просмотра эпюры напряжения;
• малая предельная частота измерений.

На практике применяются оба метода, причем на частотах до 400 Гц предпочтение отдается, как правило, способу, при котором используются два вольтметра. На более высоких частотах чаще применяется осциллограф, хотя существует возможность использовать для этой цели электронный вольтметр.

Кроме того, на высоких частотах приходится иметь дело с таким понятием, как коэффициент пульсаций различных гармоник. При этом процесс измерения коэффициента пульсаций несколько усложняется.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *