Метрология и стандартизация
Метроло́гия — наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Предметом метрологии является извлечение количественной информации о свойствах объектов с заданной точностью и достоверностью; нормативная база для этого — метрологические стандарты.
Метрология состоит из трёх основных разделов:
- Теоретическая или фундаментальная — рассматривает общие теоретические проблемы (разработка теории и проблем измерений физических величин, их единиц, методов измерений).
- Прикладная — изучает вопросы практического применения разработок теоретической метрологии. В её ведении находятся все вопросы метрологического обеспечения.
- Законодательная — устанавливает обязательные технические и юридические требования по применению единиц физической величины, методов и средств измерений.
Стандартиза́ция — деятельность по разработке, опубликованию и применению стандартов, по установлению норм, правил и характеристик в целях обеспечения безопасности продукции, работ и услуг для окружающей среды, жизни, здоровья и имущества, технической и информационной совместимости, взаимозаменяемости и качества продукции, работ и услуг в соответствии с уровнем развития науки, техники и технологии, единства измерений, экономии всех видов ресурсов, безопасности хозяйственных объектов с учётом риска возникновения природных и техногенных катастроф и других чрезвычайных ситуаций, обороноспособности и мобилизационной готовности страны.
Стандартизация направлена на достижение оптимальной степени упорядочения в определенной области посредством установления положений для всеобщего и многократного применения в отношении реально существующих или потенциальных задач.
За реализацию норм стандартизации отвечают органы стандартизации, наделенные законным правом руководить разработкой и утверждать нормативные документы и другие правила, придавая им статус стандартов.
В области промышленности стандартизация ведет к снижению себестоимости продукции, поскольку:
- позволяет экономить время и средства за счет применения уже разработанных типовых ситуаций и объектов;
- повышает надежность изделия или результатов расчетов, поскольку применяемые технические решения уже неоднократно проверены на практике;
- упрощает ремонт и обслуживание изделий, так как стандартные узлы и детали — взаимозаменяемые (при условии, что сборка осуществлялась без пригоночных операций).
На нашем сайте предоставлены учебные материалы для студентов, по метрологии и стандартизации. Суммарно около
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.
6. Электронные аналоговые приборы
Электронный аналоговый измерительный прибор (ЭАИП) представляет собой сочетание магнитоэлектрического измерительного механизма с электронным преобразователем, превращающим измеряемую величину в постоянный или пульсирующий ток.
Использование электронных преобразователей позволяет существенно расширить функциональные возможности аналоговых приборов и улучшить их метрологические характеристики. Это относится к таким свойствам ЭАИП, как высокая чувствительность, малая потребляемая мощность, широкий диапазон измерений.
6.1. Выпрямительные приборы
В выпрямительных приборах электронным преобразователем является выпрямитель, выполненный на маломощных полупроводниковых диодах. Сочетание выпрямителя с магнитоэлектрическим механизмом образует прибор, позволяющий измерять переменный ток или переменное напряжение.
Выпрямитель прибора может быть выполнен по однополупериодной или двухполупериодной схемам. В первом случае (рис. 6.1) используются два диода: VD1 включен последовательно с рамкой измерительного механизма, VD2 с резистором R образуют шунтирующую цепь. Сопротивление резистора должно быть равно сопротивлению рамки механизма.
Рис. 6.1. Миллиамперметр с однополупериодным выпрямителем (а) и временные диаграммы (б)
Положительная полуволна iп измеряемого переменного тока протекает через измерительный механизм, отрицательная iR – через резистор и диод VD2.
Среднее значение пульсирующего тока
а угол отклонения указателя
где Кф – коэффициент формы измеряемого переменного тока; SI – чувствительность измерительного механизма к току; I – действующее значение измеряемого тока.
Вариант прибора с двухполупериодным выпрямителем показан на рис. 6.2. В этом случае через измерительный механизм протекают обе полуволны измеряемого тока и чувствительность прибора возрастает в два раза:
Для расширения измерения до нескольких ампер используют специальные шунты, а при измерении больших токов – специальные трансформаторы тока.
Рис. 6.2. Миллиамперметр с двухполупериодным выпрямителем (а) и временные диаграммы (б)
Выпрямительные вольтметры выполняют по аналогичным схемам с добавочным резистором. Угол отклонения указателя при двухполупериодном выпрямлении
где U – действующее значение измеряемого напряжения; Rд – сопротивление добавочного резистора.
Из выражений (6.1), (6.2), (6.3) следует, что на показание приборов влияет форма измеряемого тока или напряжения. Шкалы таких приборов градуируют в действующих значениях для синусоид (Кф = 1.11), поэтому показания приборов достоверны лишь при измерении синусоидальных величин.
Если измеряемые величины несинусоидальны, показания прибора следует разделить на Кф = 1.11, что дает достоверное среднее значение, а затем умножить на коэффициент формы измеряемой величины:
В отличие от электромагнитных, выпрямительные приборы обладают высокой чувствительностью, имеют практически равномерные шкалы, могут работать на повышенных (до 50 кГц) частотах. Точность приборов относительно невысока (классы точности 1.0 или 1.5) из-за температурной зависимости характеристик диодов.
Аналоговые электромеханические измерительные приборы
В отличие от цифровых измерительных приборов, выдающих дискретный сигнал, аналоговые устройства выдают показания в виде непрерывной функции, с бесконечным числом значений за промежуток времени.
Аналоговый сигнал имеет ту же форму, что и физическая величина, которую он описывает. Однако, это не значит, что при измерении параметров переменного синусоидального сигнала, стрелка будет отклоняться 50 раз в секунду.
Шкалы приборов, для измерения переменных токов и напряжений градуируют в действующих (среднеквадратичных) значениях сигнала. Инерционность измерительной системы не позволяет реагировать на моментальные значения величины.
Для синусоидальных переменных тока и напряжения действующее значение составляет 0,707 от амплитудного значения.
Электромеханические измерительные приборы преобразуют входную электрическую величину, в механическую энергию поворотного измерительного механизма, на котором жестко закреплена стрелка-указатель.
Угол поворота стрелки зависит от величины и скорости изменения приложенного к измерительному механизму электромагнитного поля, созданного входным сигналом.
Вращение поворотного механизма осуществляется под действием двух противоположно направленных моментов: вращающий момент М, определяемый для всех приборов скоростью изменения электромагнитного поля и противодействующий момент, который создается пружинами различного вида.
Закручивающиеся пружины выполняются из оловянно-цинковой бронзы. С их помощью создается тормозной момент, подводится ток к подвижной части механизма, и производится корректировка показаний прибора (установка на ноль).
Исходя из способа преобразования входного электрического сигнала в механическую энергию перемещения подвижной части, электроизмерительные приборы разделяются на следующие группы: магнитоэлектрические, электродинамические, электростатические, электромагнитные, логометры и др.
Тип измерительного механизма всегда указывается на шкале устройства. В таблице приведены символы указывающие к какой системе относится прибор:
Принцип действия магнитоэлектрических приборов основан на взаимодействии электромагнитного поля катушки и магнитного поля постоянного магнита. Наибольшее распространение получили измерительные устройства с подвижной катушкой и неподвижным магнитом. В цепи катушки протекает ток измерительной цепи.
Величина этого тока, зависит от входного сигнала и влияет на величину и интенсивность электромагнитного поля, создаваемого вокруг катушки. Взаимодействие двух полей приводит к вращению подвижной части с закрепленной на ней стрелкой. Вращение происходит до тех пор, пока вращающий и тормозной момент не будут уравновешены.
Электродинамические измерительные приборы имеют в составе своего измерительного механизма две неподвижные катушки и одну подвижную, насаженную на ось внутри неподвижных.
Неподвижные катушки между собой соединены последовательно или параллельно, по ним протекают токи I1 и I2 соответственно. Если по цепи подвижной катушки ток не протекает, система находится в равновесном состоянии, показания прибора равны нулю.
Как только по цепи второй катушки начинает протекать измеряемый ток, равновесное состояние нарушается. Подвижная катушка стремится повернуться, чтобы снова найти равновесное состояние. Её вращение происходит до тех пор, пока тормозной момент не скомпенсирует вращающий.
Пространственное расположение катушек отрегулировано таким образом, чтобы вращающий момент строго соответствовал произведению действующих значений токов I1 и I2, в пределах шкалы прибора.
Электростатический измерительный механизм представляет собой конденсатор, одной обкладкой которого являются неподвижные контакты, а второй — подвижный контакт, перемещающийся в полости неподвижных контактов.
При подаче напряжения на обе обкладки, возникает электростатическое поле, пропорционально зависящее от квадрата напряжения и емкости конденсатора, которая в свою очередь зависит от активной площади обкладок.
Под действием электростатической силы происходит втягивание подвижного контакта в пространство между неподвижными контактами, при этом увеличивается емкость конденсатора. Втягивание происходит до тех пор, пока не уравновесятся вращающий и тормозной моменты.
Электромагнитные механизмы конструктивно выполнены в виде катушки и пермаллоевого лепестка, эксцентрично насаженного на ось, поперек катушки. При протекании электрического тока по катушке, создается электромагнитное поле, которое стремится втянуть лепесток.
Сила втягивания лепестка определяется интенсивностью электромагнитного поля, которая зависит от величины измеряемого сигнала. На ось с лепестком насажена стрелка-указатель. Как и в приборах других систем, градуировка шкалы производится исходя из величины вращающего момента.
Логометры — это измерительные устройства для сравнения двух электрических величин. Логометры могут быть выполнены с различными измерительными механизмами указанными выше. Сравнение двух величин происходит при включении их на перпендикулярно расположенные воспринимающие элементы.
Перемещение подвижной части прибора происходит под воздействием большего момента. Если на его вход не поданы два сравниваемых сигнала, стрелка занимает произвольное положение, и судить об измеряемой величине не представляется возможным. Правильная работа прибора возможна только при сравнении двух встречно направленных моментов.
© Forum220.ru | 2009 — 2015 | Электрические измерения Размещение данных материалов на других веб-ресурсах возможно только при наличии обратной гиперссылки на сайт Forum220.ru
12.3. АНАЛОГОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ
Начало качественно нового этапа развития электроизмерительной техники связано, в первую очередь, с зарождением и развитием радиоэлектроники. Проникновение элементной базы и научных идей радиоэлектроники в измерительную технику привело к созданию радиоизмерительных приборов: электронно-лучевых осциллографов, электронных вольтметров, омметров, частотомеров, фазометров и ваттметров, измерительных усилителей и генераторов, анализаторов спектра и т.д. Применение радиоизмерительных приборов позволило резко расширить динамический и частотный диапазоны измерения электрических и магнитных величин, а также создать разнообразные измерительные преобразователи неэлектрических величин в электрические с высокими метрологическими характеристиками.
Первые научные открытия, положившие начало современной осциллографии, были сделаны в конце XIX в. Однако прежде чем осциллограф стал широко распространенным средством измерений, должно было пройти полвека. Нужно было преодолеть массу трудностей, связанных с получением требуемого вакуума, фокусировкой электронного луча и управления им, обеспечением достаточной яркости изображения, построением генераторов развертки, усилителей и т.д.
Одним из первых был построен осциллограф с тлеющим светом, запатентованный в 1904 г. немецким ученым Г. Герке. В нем использовалась стеклянная трубка длиной 275 диаметром 35 мм, заполненная азотом, в которой помещались два электрода длиной по 60 и шириной 10 мм. Было эмпирически установлено, что над электродом, который в данный момент служит катодом, появляется свечение в виде тонкой линии, длина которой пропорциональна мгновенной силе тока. Длина светящегося отрезка при токе 60 мА составляла примерно 50 мм. За счет снижения яркости можно было повышать чувствительность путем уменьшения давления газа в трубке.
Развертка изображения осуществлялась с помощью вращающегося зеркала; частота вращения достигала 200 об/с. Позже были разработаны другие конструкции данного осциллографа с частотным диапазоном до 1 МГц. Однако из-за низкой точности и ряда других серьезных недостатков этот прибор не выдержал конкуренции с катодным осциллографом — будущим аналоговым электронно-лучевым осциллографом.
Первые катодные осциллографы строились на основе трубки Брауна. Электронно-лучевые приборы с термоэлектронными катодами появились существенно позже, в 30-х годах XX в. Для обеспечения развертки в первых электронных осциллографах применялся вращающийся зеркальный барабан или движущаяся фотопленка, как в светолучевых (шлейфовых) осциллографах.
Однако вскоре начали использовать современные методы: развертку с помощью вспомогательного синусоидального или линейно изменяющегося напряжения соответствующей частоты.
Так, в 1924 г. фирма «Вестерн электрик» (США) в своем осциллографе применила в качестве генератора развертки генератор линейно изменяющегося напряжения на основе неоновой лампы с параллельно включенным конденсатором; при этом использовалось электростатическое отклонение луча как по вертикали, так и по горизонтали, как в большинстве современных осциллографов. Линейность развертки с помощью такого генератора оставляла желать лучшего. Позднее было предложено осуществлять заряд конденсатора, включенного параллельно горизонтально отклоняющим пластинам, через источник постоянного тока с высоким выходным сопротивлением, построенный на базе электронной лампы. Эта идея нашла широкое применение в генераторах развертки с высокой линейностью изменения выходного напряжения. Кроме того, в таких генераторах весьма просто решались вопросы синхронизации и осуществлялся режим ждущей развертки.
Малая интенсивность электронного пучка в осциллографах с трубкой Брауна не позволяла производить фотографирование экрана при исследовании быстро протекающих процессов, например блуждающих волн в электрических сетях. Эта трудность была преодолена в 1923 г. в осциллографе Дюфура, производство которого организовала фирма «Ш. Будуен» (Франция). В нем фотографическая пластинка помещалась в вакуум и подвергалась прямому воздействию электронного луча без посредства фосфоресцирующего экрана.
Осциллограф Дюфура (рис. 12.4) по внешнему виду мало напоминал современный. Это был громоздкий прибор без экрана, с вакуумной камерой в бронзовом корпусе, соединенной с трубкой Брауна. К нему подсоединялся вакуумный насос, приводившийся в действие после каждой смены фотопластинки. Тем не менее он позволил исследовать процессы с частотами до 1 ГГц; скорость записи достигала 10 мм/нс. Для экономного использования фотопластинки применялось два развертывающих напряжения: синусоидальное горизонтально отклоняющее и сравнительно медленно изменяющееся вертикально отклоняющее (сметание). При отсутствии исследуемого напряжения луч вычерчивал на фотопластинке несколько периодов синусоиды. Исследуемое напряжение высокой частоты, но сравнительно малого значения, записывалось на этой синусоиде.
Рис. 12.4. Осциллограф Дюфура (модель 1927 г.)
Некоторые технические характеристики осциллографа Дюфура были улучшены в двух осциллографах, разработанных в то же время в Германии, однако не выпускавшихся серийно. В первом из них в вакуумной камере можно было размещать несколько фотопластинок или фотопленку, что позволяло делать до 20 снимков. Пленка передвигалась с помощью электромагнитного устройства, так что откачивать камеру приходилось лишь после использования всей пленки. Процесс откачивания диффузионным насосом длился примерно 15 мин. Этим осциллографом удалось получить осциллограммы процессов пробоя изоляции длительностью от 1 до 10 не при напряжениях до 20 кВ.
Второй осциллограф был предназначен для регистрации естественных блуждающих волн, возникающих в случайные моменты времени, как это происходит в линиях электропередачи при атмосферных разрядах. Задача была решена в 1924–1926 гг. путем применения режима ждущей развертки, который осуществлялся с помощью электронного переключающего реле, собранного на двух электронных лампах.
Следует заметить, что для исследования блуждающих волн применялись не только осциллографические методы. Были построены специальные приборы — клиндографы (волнописцы).
Работа клиндографа основывалась на том, что при ударе искры, вызванной блуждающей волной, о фотографическую пластинку в ней возникает кистеобразная фигура, анализ которой позволяет получить информацию о параметрах волны. Эффект образования подобных фигур был известен с XVIII в., однако первые клиндографы были изготовлены только в 1924 г. фирмой «Вестингауз».
Конструктивно клиндограф представлял собой корпус, в который вставлялись три или четыре изолированных острия (по числу проводов линии электропередачи). Острия касались светочувствительной пленки, которая медленно передвигалась с помощью часового механизма. Для регистрации напряжений свыше 20 кВ использовались внешние делители напряжения.
С помощью клиндографов оказалось возможным устанавливать время появления, полярность и значения перенапряжений, форму фронта и направление блуждающей волны, промежутки времени между непосредственно следующими друг за другом разрядами. Технические характеристики клиндографов позволили, например, исследовать перенапряжения до 2 MB в трехфазной линии электропередачи напряжением 220 кВ. Разрешение по времени составляло 1 пс, что было недостижимо для осциллографов того времени.
Между тем электронные осциллографы продолжали совершенствоваться. Были разработаны электронно-лучевые трубки с термоэлектронными катодами, люминесцентными экранами, высококачественными магнитными и электростатическими линзами. Повышенная яркость изображения позволила отказаться от фотосъемок в вакууме. Применение измерительных усилителей и генераторов развертки привело к созданию осциллографов с калиброванными усилением и разверткой, ставших полноценными средствами измерений мгновенных значений напряжений и интервалов времени. Первый такой осциллограф (модель 511) был разработан в США Дж. Мердоком и X. Воллумом и выпущен в 1946 г. фирмой «Тектроникс» («Tektronix»).
В течение последующих 50 лет было разработано большое число осциллографов различного назначения: универсальные, скоростные, стробоскопические, запоминающие, многоканальные, многолучевые и др. И только в 80-х годах аналоговые осциллографы начали постепенно вытесняться цифровыми, а также компьютерными средствами измерений.
Элементная база, необходимая для создания аналоговых электронных вольтметров, возникла и стала быстро развиваться с начала XX в.
Одной из первых электронные (катодные) вольтметры выпустила в 1922 г. Кембриджская компания. Эти приборы предназначались для измерений переменных напряжений на двух диапазонах: либо от 0 до 1,5 В, либо от 0 до 10 В. Чуть позже появились вольтметры Сименса, построенные на тетроде. В конце 20-х годов вольтметр Сименса строился уже на четырех электронных лампах; его шкала была практически равномерной в диапазоне 20–300 мВ; приведенная погрешность не превышала 2% в частотном диапазоне 0,5–15 кГц. Главным преимуществом первых электронных вольтметров перед электромеханическими были высокое входное сопротивление при хорошей чувствительности на переменном токе; немаловажное значение имела также их высокая перегрузочная способность.
Для дальнейшего улучшения метрологических характеристик и расширения функциональных возможностей электронных вольтметров и осциллографов требовалась разработка измерительных преобразователей и, прежде всего, измерительных усилителей. Первые такие усилители удалось построить в конце 20-х годов XX в. американскому ученому Х.С. Блэку.
Х.С. Блэк работал над созданием усилителей для протяженных телефонных линий связи. Из-за большого ослабления полезного сигнала в таких линиях приходилось включать последовательно много усилителей. Однако применение известных в то время усилителей на базе электронных ламп приводило к ограничению полосы пропускания и большим нелинейным искажениям сигнала.
Рис. 12.5. Структурная схема усилителя с последовательной отрицательной обратной связью по напряжению
В 1927 г. Х.С. Блэк предложил усилитель с отрицательной обратной связью (ООС), построенный по общеизвестной в настоящее время схеме (рис. 12.5), согласно которой усилитель с коэффициентом усиления К охватывается звеном обратной связи с коэффициентом передачи ?. При больших значениях К? коэффициент усиления такого усилителя равен примерно 1/?, т.е. свойства такого усилителя, например его точность и частотный диапазон, определяются свойствами цепи ООС и мало зависят от значения K.
Идея ООС, глубоко изученная специалистами по теории автоматического управления, была известна очень давно. Еще в III в. до нашей эры идея ООС была описана Архимедом применительно к регулированию водяных часов. Однако изобретение Х.С. Блэка было признано с большим трудом.
Дело в том, что задолго до Х.С. Блэка для увеличения коэффициентов усиления усилителей и генерации колебаний широко использовалась положительная (регенеративная) обратная связь. Отрицательная (вырождающаяся) обратная связь уменьшала коэффициент усиления и считалась безусловно вредной. Поэтому к патентной заявке Х.С. Блэка эксперты отнеслись так же, как к заявке на вечный двигатель, и вынесли положительное решение только спустя 9 лет; первая публикация об изобретении появилась лишь в 1934 г. Очевидно, было очень трудно преодолеть психологический барьер, связанный с тем, что ООС уменьшает и без того малый коэффициент усиления, который практически достигался в то время в схемах на электронных лампах.
Действительно, первый операционный усилитель, т.е. усилитель постоянного тока с высоким коэффициентом усиления, позволяющий строить измерительные преобразователи, функции и технические характеристики которых определяются в основном свойствами цепи ООС, был построен только в 1942 г. в США. Более совершенный операционный усилитель, выпускаемый как самостоятельное изделие, был разработан в США лишь в 1948 г.
Несмотря на непонимание и трудности начального этапа, теория усилителей с ООС, основы которой начали формироваться в 30-х годах в работах американских ученых Х.С. Блэка, X. Найквиста и Г.В. Боде, стала широко использоваться при разработке измерительных преобразователей, аналоговых, а затем и цифровых измерительных приборов и систем.
Проникновение идей теории автоматического управления и радиоэлектронной элементной базы в электроизмерительную технику позволило резко повысить качество и расширить номенклатуру средств измерений.
Были разработаны автоматические мосты и потенциометры (компенсаторы) постоянного и переменного тока для измерения электрических и неэлектрических величин, телеизмерительные системы, многофункциональные электронные измерительные приборы: мультиметры, осциллографы различного назначения, анализаторы спектра, электронные ваттметры, частотомеры и фазометры, измерительные усилители и генераторы, измерители параметров электрических цепей, приборы для измерения магнитных величин и т.д. В 30–50-х годах это были аналоговые электрорадиоизмерительные приборы и системы, построенные на базе электронных ламп, мировое производство которых достигало сотен миллионов штук в год.
В разработку этих приборов большой вклад внесли отечественные ученые К.Б. Карандеев, Л.Ф. Куликовский, Ф.Е. Темников и многие другие.
Использование радиоэлектронной элементной базы позволило увеличить чувствительность и точность средств измерений, существенно расширить их функциональные возможности. Например, был разработан ряд приборов, основанных на использовании эффекта Холла, которые позволили измерять магнитную индукцию не только в постоянных, но и в переменных, в том числе импульсных, магнитных полях. Без радиоэлектронной элементной базы было бы невозможно создание и других приборов для магнитных измерений, например приборов, использующих дифференциальные ферромодуляционные или ядерно-резонансные измерительные преобразователи.
Дальнейшее развитие аналоговой электроизмерительной техники было тесно связано с прогрессом в области электроники.
Появление в 50-х годах новой элементной базы — полупроводниковых приборов, начавших постепенно вытеснять электронные лампы, позволило уменьшить габариты и собственное потребление энергии, повысить надежность, улучшить метрологические характеристики аналоговых средств измерений. Этот процесс еще более усилился с развитием микроэлектроники и появлением интегральных схем. В середине 50-х годов были разработаны первые гибридные интегральные схемы, а в начале 60-х — монолитные интегральные схемы.
В те же годы в США была разработана планарная технология, которая позволила существенно улучшить технические данные транзисторов и легла в основу современных технологий изготовления интегральных схем.
Прогресс в области полупроводниковой электроники быстро отразился на электроизмерительной технике. Уже в 1959 г. американская фирма «Бур-Браун» («Burr-Brown») продавала первые операционные усилители на германиевых транзисторах. В 1960 г. в США был построен первый портативный полупроводниковый осциллограф, а в 1963–1965 гг. созданы первые монолитные интегральные схемы операционных усилителей (модели 702 и 709), явившиеся базой для создания многих узлов аналоговых и цифровых средств измерений.
Аналоговые электронные электроизмерительные приборы, отличающиеся надежностью, хорошими метрологическими характеристиками и низкой стоимостью, широко использовались в течение нескольких десятилетий и продолжают применяться в настоящее время. Так, ламповый мультиметр НР412А с прибором магнитоэлектрической системы на выходе оставался широко распространенным измерительным прибором до конца 70-х годов, а выпущенный в 1966 г. фирмой «Хьюлет-Пакард» («Hewlett-Packard») универсальный полупроводниковый осциллограф типа HP 180А оставался в производстве до 1986 г. Однако с 60-х годов аналоговые средства измерений стали постепенно вытесняться цифровыми.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
Осветительные приборы
Осветительные приборы Вопрос. Как может производиться установка светильников и прокладка электрических сетей в производственных помещениях, оборудованных мостовыми кранами, участвующими в непрерывном производственном процессе, а также в бескрановых пролетах, в
Глава 1 Электронные схемы и конструкции на все случаи жизни
Глава 1 Электронные схемы и конструкции на все случаи жизни 1.1. Мощный источник питания, рассчитанный на ток в нагрузке до 10 А Радиолюбителю необходим безопасный источник питания от сети 220 В, с помощью которого можно налаживать и испытывать самостоятельно собранные
3.1. Электронные часы на ЖКИ
3.1. Электронные часы на ЖКИ В современной электронной технике используется, в основном, только три типа индикаторов: светодиоды, вакуумные электролюминесцентные лампы и жидкокристаллические индикаторы (сокращенно — ЖКИ). Наибольшее распространение получили ЖКИ, что
Глава 5 Электронные узлы и дополнения к электрическим схемам
Глава 5 Электронные узлы и дополнения к электрическим схемам 5.1. Автомат для клавиатуры В популярных версиях телефонов с определителями номера, таких как «АНА-31», «Русь-18», «Русь-23 PLUS» и др., последовательным нажатием кнопок клавиатуры запускаются функциональные режимы
Электронные книги, цифровые библиотеки…
Электронные книги, цифровые библиотеки… Ныне все чаще можно увидеть человека, который сидит в общественном транспорте, уткнувшись в электронный планшет, и читает. На смену книгам обыкновенным приходят электронные, а библиотеки становятся цифровыми и даже виртуальными
Электронные компоненты
Электронные компоненты • (1) ОУ КМОП-структуры на 5 В ALD 1702 или аналогичный• (1) Резистор 33 кОм, 0,25 Вт• (1) Фоторезистор CdS• (1) Подстроечный резистор 4,7 кОм• (2) Резистор 15 кОм• (1) Конденсатор 0,0047 мкФ• (1) Транзистор TiP 120 NPN Darlington• (1) Макетная платаДетали можно заказать в:Images
Электронные битвы в Атлантике
Электронные битвы в Атлантике Другой важной главой в истории РЭБ стала ожесточенная борьба между подводными лодками стран Оси и авиационными и морскими противолодочными силами Союзников в так называемой Битве за Атлантику.В начале войны, единственным имевшимся
8. Аналоговые видеомагнитофоны
8. Аналоговые видеомагнитофоны Совсем еще недавно видеомагнитофоны были очень важной частью любой системы видеонаблюдения (и записи), но с появлением цифровых видеорегистраторов (DVR) количество новых инсталляций систем видеонаблюдения с видеомагнитофонами стало
Глава XI. Судовые навигационные приборы и связь § 52. Электро и радионавигационные приборы
Глава XI. Судовые навигационные приборы и связь § 52. Электро и радионавигационные приборы На каждом судне для следования по намеченному курсу, выбора пути следования, контроля местонахождения в открытом море с учетом изменяющейся навигационной и гидрометеорологической
42. Приборы времени
42. Приборы времени Эти приборы в виде различных часов, как и весы, являются первыми известными приборами в истории человечества с незапамятных времен.Сегодня перечисление только их разновидностей в быту заняло бы не одну страницу.Приборы времени различают по принципу
Приборы и методы
Приборы и методы Какая первая ассоциация при слове «измерить»? У меня — вольтметр, у некоторых — метр. То есть «сантиметр». Нет, не тот, которых сто этих в одном том, а который по словарям sartorial meter, metre measure ruler или metre-stick — это который «метр», а tape measure, metre tape measure, tape-line — это
Приборы сигнализации
Приборы сигнализации К приборам сигнализации относятся звуковой сигнал, световые указатели поворотов и стоп-сигнал.Звуковой сигнал. На автомобилях устанавливают звуковые электромагнитные сигналы вибрационного типа, состоящий из корпуса 7, электромагнита (сердечника 9
Приборы освещения
Приборы освещения Безопасная работа на автомобиле и движение в потоке транспорта невозможна без приборов освещения и световой сигнализации. В зависимости от дорожных условий, движения в различное время суток, от погодных условий, свет фар должен обеспечить гарантию
11.4.5. ИНТЕГРАЛЬНЫЕ ЛОГИЧЕСКИЕ И АНАЛОГОВЫЕ МИКРОСХЕМЫ
11.4.5. ИНТЕГРАЛЬНЫЕ ЛОГИЧЕСКИЕ И АНАЛОГОВЫЕ МИКРОСХЕМЫ Интеграция в электронике проявилась как результат объединения нескольких элементов схем в один функционально и конструктивно завершенный узел. На этом этапе развития полупроводниковой схемотехники произошло
11.4.6. ЭЛЕКТРОННЫЕ АВТОМАТЫ С ПАМЯТЬЮ
11.4.6. ЭЛЕКТРОННЫЕ АВТОМАТЫ С ПАМЯТЬЮ В развитии интегральной схемотехники заслуживает упоминания такой этап, как синтез автоматов с памятью. В 1961 г. появились ставшие классическими работы В.М. Глушкова по синтезу автоматов, имеющих конечное множество внутренних