Тиристор и симистор в чем разница
Перейти к содержимому

Тиристор и симистор в чем разница

  • автор:

Тиристоры и симисторы

Тиристор — это переключающий полупроводниковый прибор, пропускающий ток в одном направлении. Этот радиоэлемент часто сравнивают с управляемым диодом и называют полупроводниковым управляемым вентилем (Silicon Controlled Rectifier, SCR).

Тиристор имеет три вывода, один из которых — управляющий электрод, можно сказать, «спусковой крючок» — используется для резкого перевода тиристора во включенное состояние.

Тиристор совмещает в себе функции выпрямителя, выключателя и усилителя. Часто он используется как регулятор, главным образом, когда схема питается переменным напряжением. Нижеследующие пункты раскрывают четыре основных свойства тиристора:

  • тиристор, как и диод, проводит в одном направлении, проявляя себя как выпрямитель;
  • тиристор переводится из выключенного состояния во включенное при подаче сигнала на управляющий электрод и, следовательно, как выключатель имеет два устойчивых состояния. Тем не менее для возврата тиристора в выключенное (разомкнутое) состояние необходимо выполнить специальные условия;
  • управляющий ток, необходимый для перевода тиристора из закрытого состояния в открытое, значительно меньше (несколько миллиампер) при рабочем токе в несколько ампер и даже в несколько десятков ампер. Следовательно, тиристор обладает свойствами усилителя тока;
  • oсредний ток через нагрузку, включенную последовательно с тиристором, можно точно регулировать в зависимости от длительности сигнала на управляющем электроде. Тиристор при этом является регулятором мощности.

Структура тиристора

Тиристором называется управляемый трехэлектродный полупроводниковый прибор, состоящий из чередующихся четырех кремниевых слоев типа р и n. Полупроводниковый прибор с четырехслойной структурой представлен на рис. 1.

Крайнюю область р-структуры, к которой подключается положительный полюс источника питания, принято называть анодом, а крайнюю область n, к которой подключается отрицательный полюс этого источника, — катодом.

Структура и обозначение тиристора

Рис.1. Структура и обозначение тиристора

Свойства тиристора в закрытом состоянии

В соответствии со структурой тиристора можно выделить три электронно-дырочных перехода и заменить тиристор эквивалентной схемой, как показано на рис. 2.

Эта эквивалентная схема позволяет понять поведение тиристора с отключенным управляющим электродом.

Если анод положителен по отношению к катоду, то диод D2 закрыт, что приводит к закрытию тиристора, смещенного в этом случае в прямом направлении. При другой полярности диоды D1 и D2 смещены в обратном направлении, и тиристор также закрыт.

Представление тиристора тремя диодами

Рис.2. Представление тиристора тремя диодами

Принцип отпирания с помощью управляющего электрода

Эквивалентное представление структуры р-n-p-n в виде двух транзисторов показано на рис. 3.

Представление тиристора в виде двух транзисторов разного типа проводимости приводит к эквивалентной схеме, представленной на рис. 1.4. Она наглядно объясняет явление отпирания тиристора.

Зададим ток IGT через управляющий электрод тиристора, смещенного в прямом направлении (напряжение VAK положительное), как показано на рис. 4.

Так как ток IGT становится базовым током транзистора n-p-n, то ток коллектора этого транзистора равен B1xIGT, где B1 — коэффициент усиления по току транзистора Т1.

Этот ток одновременно является базовым током транзистора р-n-р, что приводит к его отпиранию. Ток коллектора транзистора Т2 составляет величину B1xB2xIGT и суммируется с током IGT, что поддерживает транзистор Т1 в открытом состоянии. Поэтому, если управляющий ток IGT достаточно велик, оба транзистора переходят в режим насыщения.

Цепь внутренней обратной связи сохраняет проводимость тиристора даже в случае исчезновения первоначального тока управляющего электрода IGT, при этом ток анода (1А ) остается достаточно высоким.

Типовая схема запуска тиристора приведена на рис. 5

Разбиение тиристора на два транзистора

.

Рис.3. Разбиение тиристора на два транзистора

Представление тиристора в виде двухтранзисторной схемы

Рис.4. Представление тиристора в виде двухтранзисторной схемы

Типичная схема запуска тиристора

Рис.5. Типичная схема запуска тиристора

Отключение тиристора

Тиристор перейдет в закрытое состояние, если к управляющему электроду открытого тиристора не приложен никакой сигнал, а его рабочий ток спадет до некоторого значения, называемого током удержания (гипостатическим током).

Отключение тиристора произойдет, в частности, если была разомкнута цепь нагрузки (рис. 6а) или напряжение, приложенное к внешней цепи, поменяло полярность (это случается в конце каждого полупериода переменного напряжения питания).

Способы отключения тиристора

Рис.6. Способы отключения тиристора

Когда тиристор работает при постоянном токе, отключение может быть произведено с помощью механического выключателя.

Включенный последовательно с нагрузкой этот ключ используется для отключения рабочей цепи.

Включенный параллельно основным электродам тиристора (рис. 6б) ключ шунтирует анодный ток, и тиристор при этом переходит в закрытое состояние. Некоторые тиристоры повторно включаются после размыкания ключа. Это объясняется тем, что при размыкании ключа заряжается паразитная емкость р-n перехода тиристора, вызывая помехи.

Поэтому предпочитают размещать ключ между управляющим электродом и катодом тиристора (рис. 1.6в), что гарантирует правильное отключение посредством отсечения удерживающего тока. Одновременно смещается в обратном направлении переход р-n, соответствующий диоду D2 из схемы замещения тиристора тремя диодами (рис. 2).

На рис. 6а-д представлены различные варианты схем отключения тиристора, среди них и ранее упоминавшиеся. Другие, как правило, применяются, когда требуется отключать тиристор с помощью дополнительной цепи. В этих случаях механический выключатель можно заменить вспомогательным тиристором или ключевым транзистором, как показано на рис. 7.

Классические схемы отключения тиристора с помощью дополнительной цепи

Рис.7. Классические схемы отключения тиристора с помощью дополнительной цепи

Симистор

Симиcmop — полупроводниковый прибор, который широко используется в системах, питающихся переменным напряжением. Упрощенно он может рассматриваться как управляемый выключатель. В закрытом состоянии он ведет себя как разомкнутый выключатель. Напротив, подача управляющего тока на управляющий электрод симис-тора ведет к переходу его в проводящее состояние. В это время симистор подобен замкнутому выключателю.

При отсутствии управляющего тока симистор во время любого полупериода переменного напряжения питания неизбежно переходит из состояния проводимости в закрытое состояние.

Кроме работы в релейном режиме в термостате или светочувствительном выключателе, разработаны и широко используются системы регулирования, функционирующие по принципу фазового управления напряжением нагрузки, или, другими словами, плавные регуляторы.

Структура симистора

Симистор можно представить двумя тиристорами, включенными встречно-параллельно. Он пропускает ток в обоих направлениях. Структура этого полупроводникового прибора показана на рис. 8. Симистор имеет три электрода: один управляющий и два основных для пропускания рабочего тока.

Структура симистора

Рис.8. Структура симистора

Функционирование симистора

Симистор открывается, если через управляющий электрод проходит отпирающий ток или если напряжение между его электродами А1 и А2 превышает некоторую максимальную величину (на самом деле это часто приводит к несанкционированным срабатываниям симистора, происходящим при максимуме амплитуды напряжения питания).

Симистор переходит в закрытое состояние после изменения полярности между его выводами А1 и А2 или если значение рабочего тока меньше тока удержания Iу.

Отпирание симистора

В режиме переменного питания смена состояний симистора вызывается изменением полярности напряжения на рабочих электродах А1 и А2. Поэтому в зависимости от полярности управляющего тока можно определить четыре варианта управления симистором, как показано на рис. 9.

Каждый квадрант соответствует одному способу открывания симистора. Все способы кратко описаны в табл. 1.

Четыре возможных варианта управления симистором

Рис.9. Четыре возможных варианта управления симистором

Таблица 1. Упрощенное представление способов открывания симистора

Квадрант VA2-A1 VG-A1 IGT Обозначение
I >0 >0 Слабый + +
II >0 0 Высокий — +

Например, если между рабочими электродами симистора прикладывают напряжение VA1-A2>0 и напряжение на управляющем электроде отрицательно по отношению к аноду А1, то смещение симистора соответствует квадранту II и упрощенному обозначению + -.

Для каждого квадранта определены отпирающий ток I от (IGT), удерживающий ток Iуд(Iн) и ток включения Iвыкл(IL).

Отпирающий ток должен сохраняться до тех пор, пока рабочий ток не превысит в два-три раза величину удерживающего тока Iн. Этот минимальный отпирающий ток и является током включения симистора IL.

Затем, если убрать ток через управляющий электрод, симистор останется в проводящем состоянии до тех пор, пока анодный ток будет превышать ток удержания Iн.

Ограничения при использовании

Симистор накладывает ряд ограничений при использовании, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dV/dt) между анодами симистора и скорости изменения рабочего тока di/dt.

Действительно, во время перехода симистора из закрытого состояния в проводящее внешней цепью может быть вызван значительный ток. В то же время мгновенного падения напряжения на выводах симистора не происходит. Следовательно, одновременно будут присутствовать напряжение и ток, развивающие мгновенную мощность, которая может достигнуть значительных величин. Энергия, рассеянная в малом пространстве, вызовет резкое повышение температуры р-п переходов. Если критическая температура будет превышена, то произойдет разрушение симистора, вызванное чрезмерной скоростью нарастания тока di/dt.

Ограничения также распространяются на изменение напряжения двух категорий: на dV/dt применительно к закрытому симистору и на dV/dt при открытом симисторе (последнее также называется скоростью переключения).

Чрезмерная скорость нарастания напряжения, приложенного между выводами А1 и А2 зарытого симистора, может вызвать его открытие при отсутствии сигнала на управляющем электроде. Это явление вызывается внутренней емкостью симистора. Ток заряда этой емкости может быть достаточным для отпирания симистора.

Однако не это является основной причиной несвоевременного открытия. Максимальная величина dV/dt при переключении симистора, как правило, очень мала, и слишком быстрое изменение напряжения на выводах симистора в момент его запирания может тотчас же повлечь за собой новое включение. Таким образом, симистор заново отпирается, в то время как должен закрыться.

Симистор с защитной RC-цепочкой

Рис.10. Симистор с защитной RC-цепочкой

При индуктивной нагрузке симистора или при защите от внешних перенапряжений для ограничения влияния dV/dt и тока перегрузки желательно использовать защитную RC-цепочку (рис. 10).

Расчет значений R и С зависит от нескольких параметров, среди которых — величина тока в нагрузке, значения индуктивности и номинального сопротивления нагрузки, рабочего напряжения, характеристик симистора.

Совокупность этих параметров с трудом поддается точному описанию, поэтому часто принимают во внимание эмпирические значения. Включение сопротивления 100-150 Ом и конденсатора 100 нФ дает удовлетворительные результаты. Однако отметим, что значение сопротивления должно быть гораздо меньше (или одного порядка), чем величина полной нагрузки, являясь достаточно высоким для того, чтобы ограничить ток разряда конденсатора с целью соблюдения максимального значения di/dt в момент отпирания.

RC-цепочка дополнительно улучшает включение в проводящее состояние симистора, управляющего индуктивной нагрузкой. Действительно, ток разряда конденсатора устраняет влияние задержки индуктивного тока, поддерживая рабочий ток выше минимального значения удерживающего тока Iуд(Iн).

Защита симистора с помощью варистора

Рис.11. Защита симистора с помощью варистора

Дополнительная защита, заслуживающая внимания, может быть обеспечена с помощью варистора, подключенного к выводам индуктивной нагрузки. Другой варистор, включенный параллельно питающему напряжению, задержит помехи, распространяющиеся по сети питания. Защита симистора также обеспечивается при подключении варистора параллельно его выводам А1 и А2 (рис. 11).

  1. Кадино Э. Цветомузыкальные установки.-М.: ДМК Пресс, 2000.
Мнения читателей
  • Александр / 02.12.2017 — 23:09 Не могу понять как собрать теристорную схему управления двигателем постоянного тока. Как закрить теристор, постоянним током.
  • kola-kora / 30.06.2016 — 17:28 а p819xa диод или симистор?
  • Шелковский Эдвард Александрович / 27.03.2015 — 09:20 т 00 40 10 512 (тиристор) К сожалению не нашёл ни характеристики, ни даташит на данные тиристоры. трёхфазный выпрямительный мост? Почему тиристоры состоят из катод и анода, 2(!) управляющих электрода. Кто — нибудь знает про тиристор такого типа?
  • анатолли / 03.02.2015 — 08:51 FT1208NG-это тиристор или симистор?
  • admin / 16.09.2014 — 18:22 Имя / 16.09.2014 17:06Еще раз напишите,возможно случайно удален. Если без матюков, тогда без проблем разместим 🙂
  • Имя / 16.09.2014 — 15:06 Я как читатель имею право на комментарий, прошу аминистрацию сайта вернуть мой одзыв, в данном сообщени был сделан вывод по отношению ответов читателей. Спам и реклама легко распростронина на вашем блоге, вывод? Делайте сами.
  • Fredy_Tema / 17.02.2014 — 07:54 MJE 13003E C16 это тиристор или симистор и каким аналогом можно заменить?
  • Иван / 25.03.2013 — 08:18 у нас вы можете приобрести силовые тиристоры диоды симисторы http://silovyha.ru/
  • Иван / 25.03.2013 — 08:16 Помогу продать б/у силовые тиристоры и диоды http://silovyha.ru/
  • Евгений / 22.10.2012 — 16:20 Cоставить функциальную схему тиристора

Чем симистор отличается от тиристора

Тиристором называется управляемый полупроводниковый переключатель, обладающий односторонней проводимостью. В открытом состоянии он ведет себя подобно диоду, а принцип управления тиристором отличается от транзистора, хотя и тот и другой имеют по три вывода и обладают способностью усиливать ток.

Тиристоры

Выводы тиристора — это анод, катод и управляющий электрод.

Анод и катод — это электроды электронной лампы или полупроводникового диода. Их лучше запомнить по изображению диода на принципиальных электрических схемах. Представьте, что электроны выходят из катода расходящимся пучком в виде треугольника и приходят на анод, тогда вывод от вершины треугольника — катод с отрицательным зарядом, а противоположный вывод — анод с положительным зарядом.

Подав на управляющий электрод определенное напряжение относительно катода, можно перевести тиристор в проводящее состояние. А для того чтобы тиристор вновь запереть, необходимо сделать его рабочий ток меньшим, чем ток удержания данного тиристора.

Тиристор, как полупроводниковый электронный компонент, состоит из четырех слоев полупроводника (кремния) p и n-типа. На рисунке верхний вывод — это анод — область p-типа, снизу — катод — область n-типа, сбоку выведен управляющий электрод — область p-типа. К катоду присоединяется минусовая клемма источника питания, а в цепь анода включается нагрузка, питанием которой следует управлять.

Воздействуя на управляющий электрод сигналом определенной длительности, можно очень легко управлять нагрузкой в цепи переменного тока, отпирая тиристор на определенной фазе периода сетевой синусоиды, тогда закрытие тиристора будет происходить автоматически при переходе синусоидального тока через ноль. Это несложный и весьма популярный способ регулирования мощности активной нагрузки.

В соответствии с внутренним устройством тиристора, в запертом состоянии его можно представить цепочкой из трех диодов, соединенных последовательно, как показано на рисунке. Видно, что в запертом состоянии данная схема не пропустит ток ни в одном, ни в другом направлении. Теперь представим тиристор схемой замещения на транзисторах.

Видно, что достаточный базовый ток нижнего n-p-n-транзистора приведет к возрастанию его коллекторного тока, который тут же явится базовым током верхнего p-n-p-транзистора.

Верхний p-n-p-транзистор теперь отпирается, и его коллекторный ток складывается с базовым током нижнего транзистора, и тот поддерживается в открытом состоянии благодаря наличию в данной схеме положительной обратной связи. И если сейчас перестать подавать напряжение на управляющий электрод, открытое состояние все равно останется таковым.

Чтобы запереть эту цепочку, придется как-то прервать общий коллекторный ток данных транзисторов. Разные способы отключения (механические и электронные) показаны на рисунке.

Симистор, в отличие от тиристора, имеет шесть слоев кремния, и в проводящем состоянии он проводит ток не в одном, а в обоих направлениях, словно замкнутый выключатель. По схеме замещения его можно представить как два тиристора, включенных встречно-параллельно, только управляющий электрод остается один общий на двоих. А после открытия симистора, чтобы ему закрыться, полярность напряжения на рабочих выводах должна измениться на противоположную или рабочий ток должен стать меньше чем ток удержания симистора.

Если симистор установлен для управления питанием нагрузки в цепи переменного или постоянного тока, то в зависимости от текущей полярности и направления тока управляющего электрода, более предпочтительными окажутся определенные способы управления для каждой ситуации. Все возможные сочетания полярностей (на управляющем электроде и в рабочей цепи) можно представить в виде четырех квадрантов.

Стоит отметить, что квадранты 1 и 3 соответствуют обычным схемам управления мощностью активной нагрузки в цепях переменного тока, когда полярности на управляющем электроде и на электроде А2 в каждом полупериоде совпадают, в таких ситуациях управляющий электрод симистора достаточно чувствителен.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Чем отличается симистор от тиристора?

Симистор действительно, симметричный полупроводниковый управляемый вентиль, как правило имеет управляющий электрод.
По структуре, это четырехслойный полупроводниковый прибор, p-n-p-n-p структуры.
Другое название симистора — триак.
Прибор не запираемый по управляющему электроду, в отличии от некоторых видов тиристоров.
Как и тиристоры, симисторы могут быть лавинными.
Основное применение в цепях переменного тока с коммутацией при переходе тока через ноль.
На счет выводов Т1 и Т2 не спорю, но все-же структура симистора с управляющим электродом, внутренне не совсем симметрична, не смотря на название, так как управляющий электрод расположен ближе к одной из крайних областей.

Остальные ответы
два тиристора образуют симистор
Симистор обладает двухсторонней проводимостью, в отличие от тиристора

симистор в отличии от тиристора имеет чктыре (а не три) p-n перехода, и не имеет управляющего электрода. симистор переводится как симметричный тиристор

два тиристора включены встречно-параллельно, для коммутации переменного тока, в связи с этим у симистора нет анода и катода, а есть вывод T1, вывод T2.

Симистор ращитан на переменный ток. А тиристор — на постоянный.

Симистор применяется в управлении сетями переменного тока большой мощности (как пример — включение и выключение освещение улиц в городе). А тиристор в сетях малых токов постоянного напряжения (цветомузыка в квартире).

Тиристор и симистор в чем разница

Москатов Е. А. Книга «Электронная техника. Начало»

7. Тиристоры

7.1. Общая информация о тиристорах

Тиристорами называют переключательные полупроводниковые компоненты, имеющие четыре и более слоя и три и более чередующихся электронно-дырочных перехода. В качестве полупроводника обычно применяют кремний. К группе тиристоров относят динисторы, тринисторы, запираемые тиристоры, симисторы. У всех тиристоров на вольтамперной характеристике присутствует участок отрицательного дифференциального сопротивления. Тиристоры в основном производят по технологии диффузии.

Амплитуда максимального тока некоторых тиристоров может достигать десятков тысяч ампер, а напряжение анод-катод – нескольких киловольт. После включения между выводами анод-катод тиристоров присутствует остаточное напряжение величиной обычно от 1,2 В до 2,5 В.

7.2. Динисторы

Динистором, или, по-другому, диодным тиристором, называют переключательный компонент с двумя выводами, который переходит в открытое состояние при превышении определённого напряжения, которое прикладывают между его выводами. Динисторы содержат три электронно-дырочных перехода. Схематичное изображение структуры динистора дано на рис. 7.1.

Вывод от внешней зоны n2 называют катодом, а от зоны p1 – анодом. Зоны n1 и p2 носят название баз динистора. Переход между зонами p1, n1 и p2, n2 именуют эмиттерным, а между зонами n1 и p2 – коллекторным переходом.

Если от источника питания к аноду динистора приложим небольшое отрицательное напряжение, а к катоду положительное напряжение, то центральный коллекторный переход будет открыт, а крайние эмиттерные переходы станут закрыты. Зоны n1 и p2 не могут преодолеть, поступающие из анода и катода основные носители зарядов, а, следовательно, они не достигнут базы динистора. В результате через динистор течёт небольшой обратный ток, обусловленный неосновными носителями заряда, и динистор закрыт. Если к аноду динистора приложим очень большое отрицательное напряжение, а к катоду – высокое положительное напряжение, то произойдёт лавинный пробой, что видно на вольтамперной характеристике динистора, показанной на рис. 7.2.

I – участок открытого состояния динистора, на котором его проводимость высока;

II – участок отрицательного сопротивления;

III – участок пробоя коллекторного перехода;

IV – участок в прямом включении, на котором динистор заперт, и приложенное к его выводам напряжение меньше, чем необходимо для возникновения пробоя;

V – участок обратного включения динистора;

VI – участок лавинного пробоя.

Если от источника питания к аноду динистора приложим небольшое положительное напряжение, а к катоду незначительное отрицательное напряжение, то коллекторный переход будет закрыт, а эмиттерные переходы станут открыты. Носители зарядов поступают из области катода n2 в зону p2 (электроны), а из области анода p1 в зону n1 (дырки). В указанных зонах баз носители заряда уже станут неосновными, и в результате в этих зонах возникает рекомбинация носителей зарядов, и из-за неё концентрации свободных носителей зарядов станут меньше. Поле коллекторного перехода будет ускоряющим для ставших неосновными носителей заряда, которые ввиду инжекции его преодолевают и оказываются в зонах, где они вновь будут основными. В областях p1 и n2 эти носители зарядов снова станут неосновными и вновь рекомбинируют. По причине рекомбинаций носителей зарядов проводимость динистора на участке IV мала и протекающий через него обратный ток также мал.

Если начать увеличивать постоянное напряжение, прикладываемое к динистору в прямом включении, то возрастает ширина коллекторного перехода и скорость носителей заряда, и становятся меньше интенсивности рекомбинаций, а прямой ток через динистор медленно возрастает. Чем больше будет прямое напряжение, тем интенсивнее станет ударная ионизация, порождающая новые носители заряда, что при определённом напряжении включения приведёт к лавинному пробою коллекторного перехода. Пробой сопровождает резкое увеличение проводимости динистора в прямом включении. Динистор открывается, и на нём будет падать небольшое остаточное напряжение.

Динисторы применяют в регуляторах и переключателях, чувствительных к изменениям напряжений.

7.3. Тринисторы

Тринистором, или, иначе, триодным тиристором, называют переключательный компонент с тремя электронно-дырочными переходами, и тремя выводами – анодом, катодом и управляющим электродом. Тринисторы обладают аналогичной динисторам структурой, а отличие состоит в наличии управляющего электрода – дополнительного вывода, подключённого к одной из баз. Если через управляющий электрод тринистора пропустить отпирающий ток, то тринистор перейдёт в открытое состояние. В зависимости от того, к какой именно из баз будет подсоединён управляющий электрод, можно организовать включение тринистора при приложении отпирающего напряжения между управляющим электродом и либо анодом, либо катодом. Вольтамперная характеристика тринистора похожа на вольтамперную характеристику динистора. Однако отпирание тринистора обычно происходит при существенно более низком прямом напряжении, чем необходимо динистору, и к открыванию тринисторной структуры приводит протекание тока через управляющий электрод. Чем больше ток управляющего электрода, тем при более низком прямом напряжении тринистор перейдёт в открытое состояние, что отражено на вольтамперной характеристике тринистора, изображённой на рис. 7.3.

На рисунке обозначено:

I – участок, на котором тринистор открыт;

II – участки отрицательного сопротивления и пробоя коллекторного перехода;

III – участок запертого состояния тринистора в прямом включении;

IV – участок обратного включения динистора.

Когда через управляющий электрод протекает отпирающий ток, возрастает скорость носителей заряда, которые инжектируются через коллекторный переход, что инициирует принудительное отпирание тринистора. После включения незапираемый тринистор не реагирует на изменение силы тока управляющего электрода. Чтобы закрыть тринистор, необходимо уменьшить силу тока, протекающего по аноду и катоду, ниже тока удержания, либо поменять полярность напряжения, приложенного между анодом и катодом. Если управляющий электрод тринистора обесточен, то тринистор функционирует совершенно так же, как динистор. В незапираемых тринисторах управляющий электрод занимает небольшой участок кристалла полупроводника, ориентировочно в несколько процентов.

Тринисторы широко применяют в регуляторах мощности, контакторах, ключевых преобразователях и инверторах и пр. Некоторое ограничение на внедрение тринисторов накладывает их частичная управляемость.

7.4. Запираемые тиристоры

Запираемые тиристоры, в отличие от тринисторов, которые были рассмотрены ранее, – это полностью управляемые компоненты, и под воздействием тока управляющего электрода они могут переходить из закрытого состояния в открытое состояние, и наоборот. Чтобы выключить запираемый тиристор, нужно пропустить через управляющий электрод ток противоположной полярности, чем полярность, вызывавшая отпирание компонента. Для закрывания изначально открытого запираемого тиристора необходимо уменьшить сумму коэффициентов передачи эмиттерных токов ниже единицы и обеднить базы носителями зарядов, для чего управляющий электрод должен быть распределён по полупроводниковому кристаллу. Для этого управляющий электрод запираемого тиристора, как и катод, выполняют из множества однотипных ячеек, распределённых определённым образом по площади кристалла. Важным параметром рассматриваемых тиристоров выступает коэффициент запирания, который равен отношению тока анода к необходимому для выключения компонента обратному току управляющего электрода.

Запираемые тиристоры обычно используют в преобразовательной технике в качестве электронных ключей.

7.5. Симисторы

Симисторы, в отличие от обычных тиристоров, проводят ток анод-катод при протекании тока по управляющему электроду, как в прямом направлении, так и в обратном. В результате этого их вольтамперная характеристика симметрична, что отражено на рис. 7.4.

Таким образом, на вольтамперной характеристике каждого симистора присутствуют два участка отрицательного дифференциального сопротивления.

Структура симистора содержит пять слоёв, что отражено на рис. 7.5.

К управляющему электроду, который отведён от зоны n3, подсоединим вывод отрицательного напряжения, полученного от источника питания, относительно вывода от зон p2, n4, в результате чего электроны из зоны n3 инжектируют в зону p2. Кроме того, приложим напряжение от источника питания положительным полюсом к зонам p1, n1, а отрицательным полюсом к зонам p2, n4. Переходы П1 и П4 открыты, и играют роль эмиттерных переходов, а переход П2 закрыт и исполняет обязанности коллекторного перехода, и через симистор по выводам анод-катод протекает ток.

Теперь поменяем полярность и приложим напряжение отрицательным полюсом к зонам p1, n1, а положительным полюсом к зонам p2, n4. Переходы П1 и П4 закрыты, и переход П1 выполняет функции коллекторного перехода, а переход П2 открыт и служит коллекторным переходом, и через симистор и в этом случае по выводам анод-катод течёт ток.

Симисторы нашли широкое применение в устройствах регулирования скорости вращения электродвигателей, в системах освещения, в электронагревателях, в преобразовательных установках.

7.6. Фототиристоры

Фототиристором называют специальный тиристор, в корпусе которого (в случае дискретного исполнения) предусмотрено окно, при облучении которого световым потоком тиристор переходит в открытое состояние. При облучении всего полупроводникового кристалла, либо только участка между катодом и управляющим электродом тиристора под действием фотонов возникает фотогенерация носителей заряда, и чем интенсивнее будет световой поток, тем больше станет ток, протекающий по тиристору. При достаточной освещённости ток через выводы анод-катод тиристора лавинообразно возрастает, что вызывает открывание тиристора. Длительность включения фототиристоров может достигать несколько микросекунд. Следует отметить, что спектр света, которым облучают полупроводниковую структуру, должен быть согласован с определённой длиной волны, к облучению которой фототиристор максимально чувствителен. Материалом фототиристоров, как и типовых тиристоров, обычно выступает кремний. Редко в качестве основного материала маломощных быстродействующих тиристоров выступает арсенид галлия.

Некоторые фототиристоры позволяют коммутировать токи силой до сотен ампер при напряжениях анод-катод в десятки киловольт и обеспечивают гальваническую развязку системы управления и исполнительной цепи. В результате между устройством управления и фототиристором не нужно включать дорогой, ненадёжный и крупногабаритный высоковольтный трансформатор, который был бы необходим для гальванической развязки обычного тиристора, включённого в цепь с высоким напряжением относительно земли.

7.7. Основные параметры тиристоров

К некоторым важнейшим параметрам тиристоров относят следующее:

  • Амплитуда повторяющегося импульсного напряжения, которое прикладывают к закрытому тиристору, B.
  • Длительность включения, т.е. такой отрезок времени, за который тиристор переходит в открытое состояние под действием импульса тока, протекающего по управляющему электроду, мс.
  • Критическая скорость нарастания напряжения на закрытом тиристоре, т.е. значение такой максимальной скорости нарастания напряжения, которое не приведёт к отпиранию тиристора, dU / dt.
  • Напряжение включения, т.е. такое напряжение, приложенное к динистору, при котором он переходит в открытое состояние, В.
  • Напряжение переключения, т.е. приложенное к тиристору напряжение во время переключения, В.
  • Неповторяющийся ударный ток тиристора в открытом состоянии, т.е. предельно допустимый ток через открытый тиристор, который не вызовет выход компонента из строя при кратковременном воздействии, по завершении которого сила тока станет много меньше, А.
  • Постоянный обратный ток, протекающий по выводам анод-катод тиристора в закрытом состоянии, мА.
  • Предельно допустимая амплитуда импульсов тока, протекающего через выводы анод-катод открытого тиристора, А.
  • Предельно допустимый постоянный ток через выводы анод-катод открытого тиристора, А.
  • Ток запирания, т.е. такой ток, протекающий по управляющему электроду, который инициирует переход тиристора из открытого состояния в закрытое состояние, А.
  • Ток удержания, т.е. минимальный ток такой силы, под действием которого тиристор не переходит в закрытое состояние, А.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *