Электролитическое рафинирование меди
Рафинирование – заключительный этап в цепочке получения из медной руды «чистого» металла. Он состоит из двух последовательных этапов – пирометаллургическое и электролитическое рафинирование. В первом черновая медь (содержит до 4% примесей) обрабатывается в печах и из неё удаляются все примеси, кроме включений серебра, золота, селена и теллура, при этом чистота основного металла может достичь 99,6%. Во втором с помощью электролитических ванн получают полностью очищенную медь, доля примесей в которой не превышает 0,001%.
Рассмотрим подробнее процесс электролитического рафинирования. Речь идёт исключительно о промышленном производстве, в работе чаще всего используются гальванические ванны объемом 4-12 м 3 метра, в качестве электролита выступает смесь из сернокислой меди (CuSO4), подкисленной серной кислотой (H2SO4). В смесь погружаются аноды из меди, прошедшей пирометаллургическое рафинирование, и катоды из «чистой» меди. В ходе электролиза все примеси остаются в растворе электролита, а на катоде оседает очищенный металл. После завершения процесса катод, по сути, представляет собой готовый слиток меди, который можно как отправить предприятиям-потребителям напрямую, так и переплавить в слитки или иной требуемый тип проката. Часть «вымытых» из меди примесей оседает на дно ванны (т.н. шлам), в дальнейшем их можно подвергнуть последующей переработке с целью получения ценных металлов.
Промышленный процесс электролитического рафинирования предполагает работу с большими объёмами металлов, электролитов и, как следствие, высокие сопутствующие затраты (стоимость электролитов, электричество, потери и т.д.). В ходе рафинирования анод («загрязнённая» медь) постепенно растворяется, теряя в объёме – часть примесей оседает на дно ванны, часть растворяется в электролите. При этом «чистая» медь «нарастает» на катоде, постепенно увеличивая его в размерах. Начальная фаза изображена на рисунке ниже.
В рафинировании меди применяется такое понятие как экономическая плотность тока – плотность тока, при которой затраты электроэнергии на получение 1 тонны чистой меди будут минимальными (не путать с таковой при расчете сечения проводов, когда идет расчет электрических потерь в ЛЭП). При этом время процесса зачастую бывает не оптимальным или вовсе не принимается во внимание из-за решающей роли стоимости электричества. Так, в среднем на растворение анода требуется 20-30 суток, а катоды достигают оптимального размера за 6-12 суток при стандартной плотности тока 170-200 А/м 2 и напряжении между анодом и катодом 0,3-0,4 В. Расход электроэнергии при этом составляет в среднем 230-350 кВт*ч на 1 тонну меди.
Тем не менее, время тоже является важным фактором, напрямую влияющим как на себестоимость процесса получения медного проката, так и на общую производительность предприятия. Уменьшить время процесса рафинирования можно одним способом – увеличением плотности тока до более высоких, по сравнению со стандартными, значений. При этом, разумеется, придётся изменять многие параметры процесса, чтобы использование токов высокой плотности оставалось в рамках «экономической плотности». Для выполнения этого условия в ход идут различные методики, дополняющие друг друга:
1) Поиск сочетаний поверхностно-активных веществ (ПАВ), которые улучшают свойства электролита,
2) Использование различных схем циркуляции электролита, позволяющих повысить скорость до 20 л/мин на 1 см 2 поверхности (при этом плотность тока может достигать 860 А/м 2 ),
3) Применение реверсного тока в процессе рафинирования. Оптимальным на данный момент является соотношение прямого и реверсного тока 200:10. Этот метод является в настоящее время самым эффективным, но требует надёжного источника питания, позволяющего генерировать импульсы тока, строго соответствующие заданным параметрам.
Все описанные выше средства в настоящее время активно исследуются и совершенствуются на многих металлургических предприятиях в России и за рубежом. Основной их целью является не только ускорение процесса, но и обеспечение его непрерывности и повышение эффективности, в том числе экономической.
Первые два способа, как правило, обкатываются непосредственно на предприятиях в ходе экспериментов – проверяются новые комбинации ПАВ, меняется состав электролита, строятся новые системы подачи электролита для повышения скорости его циркуляции. Использование же реверсных токов зачастую становится самым доступным методом – для его внедрения в промышленный процесс достаточно изменить схему питания гальванической ванны, применив современный источник тока и обеспечив циркуляцию электролита.
Хорошим решением этой задачи будет использование источников питания российского предприятия «Навиком», разрабатывающего источники питания для промышленного применения.
Как происходит получение чистой меди
Уникальный цвет меди связан с ее структурой электронных уровней и оптическими свойствами. Отличительный золотистый оттенок медь приобретает благодаря образованию не ее поверхности оксидной пленки при контакте с воздухом. Такие соединения защищают металл и делают его прочнее.
Высокая электропроводность
Отличительным свойством меди является ее высокая способность проводить электрический ток. Этот металл находится на втором месте по данному показателю, и превосходит его только серебро. Именно потому медь нашла широкое применение при изготовлении проводов.
Высокая пластичность
Медь легко поддается обработке, хорошо гнется и принимает различные формы без непреднамеренной деформации. Благодаря данному свойству этот металл часто используется при обработке металлов давлением, например, при ротационной вытяжке.
Диамагнетизм
Медь является полностью диамагнитным металлом. В отсутствии магнитного поля она не магнитится. При условии воздействия магнитного поля она намагничивается ему навстречу, в результате чего не притягивается магнитом.
Бактерицидность и лечебные свойства
Медь является природным антибактериальным препаратом. Широко известна ее инактивирующая способность против вируса гриппа A/H1N1 («свиной грипп»), кишечной палочки, метициллин-устойчивого золотистого стафилококка и др. Кроме того, еще с древних времен медь использовали в качестве лечебного препарата, что сохранило свою популярность и на сегодняшний день.
Способы получения меди
В настоящее время можно выделить три основных способа получения меди из медных руд и минералов:
1. Пирометаллургический. Получение меди происходит при высоких температурах, в результате чего расплавленная масса разделяется на штейн-сплав (промежуточный продукт, подлежащий дальнейшей обработке) и шлак-сплав (отход от производства металла). Данный метод является самым распространенным.
2. Гидрометаллургический. Основа данного метода состоит в получении меди с помощью определенных водных растворов. Минералы меди растворяют в разбавленной серной кислоте или аммиаке, после чего уже из полученного раствора выделяют медь.
3. Электролизный. Производство меди осуществляется под действием электрического тока, путем выделения металла из раствора сульфата меди с содержанием свободной серной кислоты.
Как происходит получение чистой меди
Медь как золото и серебро встречается в самородном виде и поэтому в древности человек, который ещё не знал металлургии (восстановление металла из руд) уже мог находить и применять медь. В настоящее время медь производят металлургическим способом, отделением ее от кислорода и серы. Не смотря на то, что содержание меди в земной коре невелико (0,01%), она не рассеянный метал и концентрируется в медных рудах, где содержание её порядка 5%. По свойствам медь близка к серебру и золоту. Последние на воздухе не окисляются и поэтому называются благородными металлами; медь окисляется слабо, поэтому её называют полублагородным металлом. Чистая медь имеет ряд ценных технических свойств. Высокая пластичность, высокая электро- и теплопроводность, малая окисляемость — всё это обусловило широкое применение меди. Кроме того медь является основой важнейших сплавов — латуней и бронз. Высокая электропроводность меди обусловливает её преимущественное применение в электротехнике как проводникового металла. После серебра медь стоит на втором месте по электропроводности. Все примеси уменьшают электропроводность меди, наклеп так же уменьшает её электропроводность. Поэтому, если провода не должны быть особо прочными, то применяют отожженную медь. Для подвесных же проводов, где требуется прочность, применяют нагартованную медь или медь с небольшими добавками активных упрочнителей.
Получение цветных металлов и сплавов, на английском языке.
Медь получают главным образом пирометаллургическим способом, сущность которого состоит в производстве меди из медных руд, включающем ее обогащение, обжиг, плавку на полупродукт — штейн, выплавку из штейна черновой меди и ее очистку от примесей (рафинирование).
Для производства меди применяют медные руды, содержащие 1 — 6% Cu, а также отходы меди и ее сплавов. В рудах медь обычно находится в виде сернистых соединений, оксидов или гидрокарбонатов. Перед плавкой медные руды обогащают и получают концентрат. Для уменьшения содержания серы в концентрате его подвергают окислительному обжигу. Полученный концентрат переплавляют в отражательных или электрических печах. Восстанавливаются оксид меди (CuO) и высшие оксиды железа.
Сульфиды меди и железа сплавляются и образуют штейн, а расплавленные силикаты железа растворяют другие оксиды и образуют шлак. После этого расплавленный медный штейн заливают в конвертеры и продувают воздухом для окисления сульфидов меди и железа и получения черновой меди. Черновая медь содержит 98,4-99,4% Cu и небольшое количество примесей. Эту медь разливают в изложницы. Черновую медь рафинируют для удаления вредных примесей и газов. Сначала производят огневое рафинирование в отражательных печах. Примеси S, Fe, Ni, As, Sb и другие окисляются кислородом воздуха, подаваемым по стальным трубкам, погруженным в расплавленную черновую медь. Затем удаляют газы, для чего снимают шлак и погружают в медь сырое дерево. Пары воды перемешивают медь и способствуют удалению других газов. Ванну жидкой меди покрывают древесным углем и погружают в нее деревянные жерди. При сухой перегонке древесины, погруженной в медь, образуются углеводороды.
После огневого рафинирования получают медь чистотой 99-99,5%. Из нее отливают чушки для выплавки сплавов меди (бронзы и латуни) или плиты для электролитического рафинирования.
Электролитическое рафинирование проводят для получения чистой от примесей меди (99,5% Cu). Электролиз ведут в ваннах, покрытых изнутри винипластом или свинцом. Аноды делают из меди огневого рафинирования, а катоды — из листов чистой меди. При пропускании постоянного тока анод растворяется, медь переходит в раствор, а на катодах разряжаются ионы меди.
Примеси (мышьяк, сурьма, висмут и др.) осаждаются на дно ванны, их удаляют и перерабатывают для извлечения этих металлов. Катоды выгружают, промывают и переплавляют в электропечах.
Изготовление бронзовых втулок.
Втулки бронзовые, изготовленные методом центробежного литья (диаметры от 200 мм до 1500мм и более, по отливаемому весу до 5000 кг бронзы) или кокильного литья, с токарной механической обработкой.
Центробежное литьё: (по ТУ 84 402-22-83) заполнение формы расплавом, его затвердевание происходит строго направленно в поле действия центробежных сил, отливка получается очень плотной, особенно в наружных слоях. Метод обеспечивает высокие механические свойства, дополнительный ресурс изделий, минимальные припуски на механическую обработку и снижение себестоимости.
Кокильное литьё: (по ГОСТ 613-79) металлическая форма заполняется расплавом под действием гравитационных сил. Метод обеспечивает многократность использования форм при серийном производстве, формирование конфигурации и высокие прочностные свойства отливок.
Как происходит получение чистой меди
Металлопрокат
Металлоконструкции
Обработка металла
Получение особо чистой меди (99,999% Cu и выше) возможно осуществить тремя способами: повторным электролитическим рафинированием, зонной плавкой и электронно-лучевой плавкой.
Повторное электролитическое рафинирование может быть осуществлено в сульфатном и азотнокислом электролите.
На рис. 33 дана схема повторного электролитического рафинирования меди. Согласно этой схеме, электролитные ванны соединяют последовательно, причем катодная медь из первых ванн предназначена в качестве анодов для последующих, в которых получается особо чистая медь. Электролит (1—2-н. Cu2+1 — 1,5-н. H2SO4) готовят из обрезков получаемой особо чистой меди. Температура процесса 55—60° С, плотность тока 120—150 а/м2. При образовании дендритной меди в электролит добавляют чистый спирт (4 г/л). Полученная этим способом медь (99,995% Cu) содержит следующие примеси: 2*10в-4% As, 2*10в-4% Sb, 1*10в-4% Ag, 2*10в-4 — 5*10в-4% S и 5*10в-3% О.
Для получения еще более чистой бессернистой меди Баймаковым и Сыровегиным исследовалась возможность рафинирования меди в хлоридных и азотнокислых электролитах. Недостатком применения хлоридного электролита (200 г/л NaCl+ 150 г/л HCl и 50 г/л CuCl2) является переход в катодную медь примесей мышьяка и сурьмы, что объясняется более электроположительными потенциалами этих примесей в хлоридном электролите по сравнению с равновесным потенциалом меди (0,02 в). Для сурьмы он равен 0,087 в, для мышьяка 0,275 в и для висмута 0,06 в.
Для получения особо чистой меди целесообразнее применять азотнокислый электролит. Электропроводность растворов азотнокислой меди значительно выше растворов сульфата меди и достигает наибольшего значения при концентрации меди в растворе около 100 г/л. Концентрация свободной кислоты в растворе должна быть достаточной, чтобы препятствовать выпадению основных солей примесей. Выделение на катоде примесей сурьмы и мышьяка наступает при более электроотрицательных потенциалах, чем равновесный потенциал меди, значение которого несколько выше, чем величина стандартного потенциала меди в сульфатном растворе, и при 20° С составляет 0,346 в. Разряд ионов сурьмы и мышьяка протекает с исключительно высокой поляризацией, чем и объясняется малая вероятность совместного разряда ионов меди и примесей. Высокая химическая поляризация разряда ионов примесей объясняется образованием адсорбционного прикатодного слоя из гидроокисей и основных солей примесей, что требует более высокой энергии активации, а также разрядом этих примесей из сложных ионов (AsO3- и SbO3-).
Резкое повышение содержания примесей в катодной меди наблюдалось при концентрации кислоты менее 0,1—0,15-н., что объясняется усилением гидролиза солей сурьмы и мышьяка и захватом коллоидных частиц гидроокисей в катодный осадок.
Оптимальный состав электролита: 1,5—2,5-н. Cu и 0,1— 0,15-н. HNO3 (своб.). Для более глубокой очистки электролита от серы с целью связывания ионов SO4-в него добавляют около 0,5 г/л х. ч. Ba(NO3)2- После суточного отстаивания подогретого раствора его декантируют и тщательно фильтруют. Это позволяет понизить содержание примеси серы в электролите до 1*10в-3 г/л SO2-.
Если же раствор электролита обработать азотнокислым барием, то можно получить медь, содержащую не более 1*10в-8% S. Оптимальная температура процесса 35° С, плотность тока 150—250 а/м2.
Электролиз ведут в ваннах из винипласта с анодными диафрагмами из целлофана или ткани, пропитанной коллодием (рис. 34). Анолит, обогащенный примесями и взвесью, периодически (1 раз в 12—24 ч )выводят из анодного пространства, ограниченного диафрагмами, и заменяют обедненным католитом.
Применяя указанный процесс электролитического рафинирования, удается получить медь чистотой 99,999%, содержащую следующие количества примесей: Содержание серы в таком металле не удается обнаружить обычными способами анализа.
Зонная перекристаллизация меди
Впервые очистку меди методом зонной плавки изучали Верник, Кунцлер и Олсен. Плавку проводили в графитовой лодочке в кварцевой трубке с индукционным нагревом в атмосфере очищенного азота. Согласно этому исследованию, неблагоприятными примесями являются сера, селен, кальций и мышьяк.
Тольми и Робинс подвергали зонной плавке чистую медь, содержащую 99,99% Cu и практически свободную от кислорода. Содержание основных примесей в ней было 3*10в-3% S, 3*10в-3% Ag и 7*10в-4% Ni.
Медь помещали в лодочки, изготовленные из графита высокой чистоты и дегазированные в вакууме при 2800° С. Длина медного слитка 200 мм, диаметр 9 мм. Слитки перед зонной плавкой механически очищали и обрабатывали в 60%-ной азотной кислоте. Лодочку со слитком устанавливали в кварцевую трубку диаметром 25 мм, через которую пропускали очищенный сухой водород под давлением несколько выше атмосферного. Длина расплавленной зоны — 22 мм, отношение длины зоны к длине слитка l/z = 1/10, скорость перемещения зоны 11 мм/ч, нагрев зоны — индукционный.
После трех проходов зоны наблюдалось оттеснение примесей хрома, серебра, марганца и олова к противоположному концу слитка, а примесь свинца полностью удалялась из начальной части слитка. Медь не очищалась от примесей кобальта, железа и никеля.
На рис. 35 показано распределение основных примесей по длине слитка меди после девяти проходов зоны. После восемнадцати проходов зоны примерно 1/4 слитка была спектральночистой от примесей свинца, серебра, кремния, марганца и олова, а на расстоянии 12 см, т. е. в центре слитка, содержание всех примесей значительно понизилось.
Согласно фазовым диаграммам медь — примесь, коэффициент распределения для железа, кобальта и никеля должен быть больше единицы, а для других примесей — меньше. На основе фазовых диаграмм были вычислены равновесные, а по экспериментальным данным найдены эффективные коэффициенты распределения отдельных примесей в меди при ее зонном рафинировании. Эти данные собраны в табл. 16.
Из данных табл. 16 следует, что значения коэффициентов распределения приведенных примесей недостаточно благоприятны, так как они сравнительно близки к единице. Лучше других при зонном рафинировании должны удаляться примеси кремния и серебра.
По данным рассматриваемого исследования, в центральной части слитка все примеси в среднем удалились на 70%. А так как в исходной меди суммарное содержание примесей составляло примерно 0,01%, то, следовательно, в результате зонной плавки была получена медь чистотой 99,997% .
Электронно-лучевая плавка меди повышает ее чистоту, резко снижает содержание в ней газов и летучих примесей, повышая пластичность и электропроводность металла. При этом наблюдаются некоторые потери меди вследствие заметной упругости ее паров в условиях электронно-лучевой плавки.
- Электролитическое рафинирование меди
- Свойства и области применения чистой меди
- Получение чистого алюминия
- Свойства и области применения чистого алюминия
- Техника безопасности при работе с бериллием и его соединениями