Принцип работы генераторов постоянного и переменного тока
Машины, преобразующие механическую энергию в электрическую, называются генераторами.
Простейший генератор постоянного тока (рис. 1) представляет собой помещенную между полюсами магнита рамку из проводника, концы которого присоединены к изолированным полукольцам, называемым пластинами коллектора. К полукольцам (коллектору) прижимаются положительная и отрицательная щетки, которые замыкаются внешней цепью через электрическую лампочку. Для работы генератора рамку проводника с коллектором необходимо вращать. В соответствии с правилом правой руки при вращении рамки проводника с коллектором в ней будет индуктироваться электрический ток, изменяющий свое направление через каждые пол-оборота, так как магнитные силовые линии каждой стороной рамки будут пересекаться то о одном, то в другом направлении. Вместе с этим через каждые пол-оборота изменяется контакт концов проводника рамки и полуколец коллектора со щетками генератора. Во внешнюю цепь ток будет идти в одном направлении, изменяясь только по величине от 0 до максимума. Таким образом, коллектор в генераторе служит для выпрямления переменного тока, вырабатываемого рамкой. Для того чтобы электрический ток был постоянным не только по направлению, но и по величине, (по величине — приблизительно постоянным), коллектор делают из многих (36 и более) пластин, а проводник представляет собой много рамок или секций, выполненных в виде обмотки якоря.
Рис. 1. Схема простейшего генератора постоянного тока: 1 — полукольцо или коллекторная пластина; I — рама проводника; 3 — щетка генератора
Принципиальное устройство простейшего генератора переменного тока показано на рис. 4. В этом генераторе концы рамки проводника присоединяются каждый к своему кольцу, а к кольцам прижимаются щетки генератора. Щетки замыкаются внешней цепью через электрическую лампочку. При вращении рамки с кольцами в магнитном поле генератор даст переменный ток, изменяющий через каждые пол-оборота величину и направление. Такой переменный ток называется однофазным. В технике применяются генераторы трех-
Рис. 2. Схема простейшего генератора переменного тока:
1 — полюс электромагнита; 2 — катушка возбуждения; 3 — контактное кольцо; 4 — щетка генератора; S — внешняя цепь; 6 — рамка проводника; 7 — источник постоянного тока
фазного тока, которые по ряду причин являются наиболее удобными для использования. Простейший трехфазный генератор имеет три рамки (обмотки) проводов, сдвинутых относительно друг друга по окружности вращения на 120 °. Трехфазный ток изменяет свою величину и направление через каждые 120° оборота. Время на совершение одного колебания называется периодом, а число периодов в секунду — частотой переменного электрического тока.
Немного из истории изобретения генератора.
Прототип генератора электрического тока, основанный на принципе электромагнитной индукции, был сконструирован Фарадеем в 1831 г. Он состоял из медного диска, вращающегося вручную между полюсами постоянного магнита. При этом в диске индуцировалась электродвижущая сила (ЭДС); полюсами служили ось диска и неподвижная щетка, имеющая скользящий контакт с краем диска. После этого были предложены различные конструкции электромагнитных генераторов. Магнито-электрические машины были изготовлены многими изобретателями: У. Риччи, И. Пикси, Ю. Кларком и др., но все они были трудно применимы для практического использования. По заказу А.М. Ампера в 1832 г. И. Пикси (1808-1835) изготовил первый электрический генератор с коммутатором для получения постоянного тока. Он приводился в движение вручную. В 1842 г. Д.С. Вулрич изготовил мощный генератор постоянного тока, соединив его ременной передачей с паровой машиной. Такой генератор использовали для питания гальванических ванн. 1842 год считается годом рождения электроснабжения предприятий. В 1856-1866 годах появилась идея самовозбуждения электрогенератора (без гальванического элемента). Многие исследователи, инженеры независимо друг от друга, раньше или позже пришли к этому: венгр А. Йедлик (1800-1895); немец Э.В. Сименс (1816-1892); англичане Г. Уайлд (1833-1919), С.А. Варли; американец М.Г. Фармер (1820-1893); датчанин С. Хьерт (1802-1870) и др. Промышленное освоение электрогенераторов началось после 1870 г., когда француз З. Грамм создал генератор с кольцевым ротором, тороидальной обмоткой и коллектором почти современной конструкции. А. Пачинотти (1841-1912) на 10 лет раньше построил подобный электродвигатель. В 1880 г. американец Т. Эдисон предложил делать магнитопровод якоря электрогенератора наборным из изолированных стальных листов. Это уменьшило потери и реакцию якоря. В 1884 г. была предложена компенсационная обмотка, а в 1885 г. дополнительные полюса для уменьшения реакции якоря и улучшения коммутации. Создание электрогенераторов и электродвигателей на постоянном токе решало многие вопросы существующей в то время энергетики, но передача энергии на дальние расстояния оказалась затруднительной. В 1876 г. П.Н.Яблочков создал дуговые лампы, которые гораздо эффективнее работали на переменном токе. Для питания нескольких дуговых ламп от одного источника Яблочков использовал индукционные катушки с ответвлениями – прообраз трансформатора или простейший трансформатор с разомкнутым сердечником. Введение переменного тока должно было позволить передавать электроэнергию с помощью повышающих трансформаторов напряжения на большие расстояния. Но теперь встал вопрос о создании генераторов переменного тока. Впервые идею вращающегося электромагнитного поля высказал Д. Араго в 1821 г. В 1885 г. Г. Феррарис. (1847-1897) предложил использовать двухфазный ток (систему двух переменных токов, сдвинутых по фазе на 90°), который дает возможность получить «вращающееся магнитное поле», и построил двигатель переменного тока. Н. Тесла (1856 – 1943), удалось построить систему из двухфазного генератора, трансформатора и двигателя. Она была использована на Ниагарской гидростанции в США, система требовала четыре провода для передачи электроэнергии. В 1888 году русский изобретатель М.О. Доливо-Добровольский (1862-1919), создал трехфазную систему токов, которая затем получила признание и распространилась во всем мире как наиболее удобная и экономичная. Вращающееся магнитное поле было получено путем сдвига фаз между токами одинаковой амплитуды на 120°. М.О. Доливо-Добровольский разработал ротор с обмоткой в виде беличьей клетки и создал короткозамкнутый асинхронный двигатель. Трехфазная система, состоящая изтрехфазного генератора, трехфазного двигателя, и трехфазного трансформатора, требовала для передачи и распределения электроэнергии всего три провода, являясь в то же время симметричной, уравновешенной и экономичной. Затраты металла были на 25 % меньше, чем в двухпроводной линии однофазной системы. Трехфазный синхронный генератор был построен Доливо-Добровольским в 1890 г. Впервые передача трехфазного тока на расстояние 170 км была продемонстрирована на Международной электротехнической выставке во Франкфурте-на-Майне в 1891 г. во время Международного конгресса электротехников. На базе электрических генераторов и электродвигателей стал конструироваться индивидуальный привод станков, механизмов и устройств. Первое защитное заземление электрических машин предложили русский инженер Р.Э. Классон и француз М. Депре. Генераторы электрического тока предъявили к первичному двигателю следующие требования: большое число оборотов, высокая равномерность вращения и непрерывно возрастающая мощность. Паровая машина уже не отвечала этим требованиям, Она имела 400-600 об/мин. Паровую машину вы теснила паровая турбина, которая имела большую скорость и более высокий КПД. Сейчас мощность паровых турбин достигает 1200 МВт. Турбина вместе с электрическим генератором называется турбогенератором.
Виды генераторов электрического тока
Генераторы представляют собой устройства, которые преобразуют механическую энергию в электрическую. Как правило, они производят электрический ток двух видов – постоянный и переменный.
Генераторы постоянного и переменного тока
Если рассматривать генератор постоянного тока, то в его состав его конструкции входит неподвижный статор с вращающимся ротором и дополнительной обмоткой. За счет движения ротора вырабатывается электрический ток. Генераторы постоянного тока в основном используются в металлургической промышленности, морских судах и общественном транспорте.
Генераторы переменного тока вырабатывают энергию за счет вращения ротора в магнитном поле. Путем вращения прямоугольного контура вокруг неподвижного магнитного поля, механическая энергия преобразуется в электрический ток. Данный вид генератора имеет преимущество в том, что ротор (основной движущий элемент) вращается быстрее, чем в генераторах переменного тока.
Синхронные и асинхронные генераторы
Генераторы, вырабатывающие переменный ток бывают синхронными и асинхронными. Они отличаются друг от друга своими возможностями. Мы не будем подробно рассматривать их принцип работы, а остановимся лишь на некоторых особенностях.
Синхронный генератор конструктивно сложнее асинхронного, вырабатывает более чистый ток и при этом легко переносит пусковые перегрузки. Синхронные агрегаты отлично используются для подключения техники, которая чувствительно реагирует на перепады напряжения (компьютеры, телевизоры и различные электронные устройства). Также, отлично справляются с питанием электродвигателей и электроинструментов.
Асинхронные генераторы, благодаря простоте конструкции достаточно стойки к короткому замыканию. По этой причине они используются для питания сварочной техники и электроинструментов. К данным агрегатам ни в коем случае нельзя подключать высокоточную технику.
Однофазные и трехфазные генераторы
Необходимо учитывать характеристику, связанную с типом вырабатываемого тока. Однофазные модели выдают 220 В, трехфазные — 380 В. Это очень важные технические параметры, которые необходимо знать каждому покупателю.
Однофазные модели считаются самыми распространенными, поскольку часто используются для бытовых нужд. Трехфазные позволяют напрямую снабжать электроэнергией крупные промышленные объекты, здания и целые поселки.
Перед покупкой генератора, необходимо владеть определенной технической информацией, понимать, чем они отличаются, поскольку это поможет Вам выбрать достойную модель, конкретно для ваших нужд, а также избавиться от лишних хлопот и сэкономить средства.
Компания «ООО «4АКБ-ЮГ»» реализует и изготавливает бензиновые, дизельные, и газовые электростанции, которые вы можете купить по выгодной цене.
Принцип работы генераторов постоянного и переменного тока
По способу генерации электроэнергии генераторы бывают постоянного и переменного тока, каждый из которых имеет свою сферу применения.
Устройство генератора постоянного тока
Дизельный генератор постоянного тока состоит из двух основных узлов:
- Неподвижный статор, который является и корпусом генератора. На его внутренней поверхности зафиксировано несколько пар электромагнитов.
- Вращающийся якорь, который имеет стальной сердечник и коллектор. В пазах сердечника находится рабочая обмотка якоря.
Эксплуатационные характеристики генератора постоянного тока позволяют использовать его на крупных промышленных предприятиях и судах, где применяется оборудование с большим пусковым моментом. Постоянный ток сложно трансформировать и для повышения или понижения напряжения необходимо использовать дополнительное специализированное оборудование, поэтому такие модели чаще всегда не применяются в частных домах, магазинах и дачах.
Как работает генератор переменного электрического тока?
Принцип действия генератора переменного тока заключается в электромагнитной индукции. Электроток образуется в замкнутом контуре, который состоит из проволочной рамки, она вращается в магнитном поле.
По конструкционным особенностям генераторы бывают:
- с подвижным якорем и статическим магнитным полем;
- с неподвижным якорем и вращающимся магнитным полем.
Агрегаты с вращающимися магнитными полюсами пользуются большим спросом, поскольку с неподвижной стационарной обмотки напряжение снимается произвольным образом, поэтому нет необходимости в применении сложных токосъемных конструкций.
Подобные установки чаще всего используются для подключения бытового оборудования, так как оно отличается простотой передачи тока на большие расстояния и легкостью его генерации. А при помощи специальных устройств напряжение однофазной сети 220 В можно изменять по величине в зависимости от конкретных потребностей техники. Бытовые модели дизельных генераторов обладают мощностью до 25 кВт и станут прекрасным дополнительным источником электроэнергии для частного дома.
В каталоге компании «МЕТАЛИСТ» представлен широкий выбор дизельных генераторов от 6,6 до 1500 кВт. Подобрать подходящую модель с учетом дальнейшей сферы применения всегда помогут опытные менеджеры.
Как устроены генераторы постоянного и переменного тока
Термин «генерация» в электротехнику пришел из латинского языка. Он обозначает «рождение». Применительно к энергетике можно сказать, что генераторами называют технические устройства, занимающиеся выработкой электроэнергии.
При этом надо оговориться, что производить электрический ток можно за счет преобразования различных видов энергии, например:
- химической;
- световой;
- тепловой и других.
Исторически сложилось так, что генераторами называют конструкции, которые преобразуют кинетическую энергию вращения в электричество.
Электрический генератор можно определить как устройство, которое работает путем преобразования механической энергии в электрическую. Электрический генератор — это вращающаяся электрическая машина, которая преобразует энергию вращающегося ротора в универсально используемую электрическую энергию. Так что, по сути, генератор — это противоположность двигателя.
По виду вырабатываемой электроэнергии генераторы бывают:
1. постоянного тока;
Электрический генератор на тепловой электростанции
Принцип работы простейшего генератора
Физические законы, которые позволяют создавать современные электрические установки для выработки электроэнергии за счет преобразований механической энергии, открыты учеными Эрстедом и Фарадеем.
В конструкции любого генератора реализуется принцип электромагнитной индукции, когда происходит наводка электрического тока в замкнутой рамке за счет пересечения ее вращающимся магнитным полем, которое создается постоянными магнитами в упрощенных моделях бытового использования или обмотками возбуждения на промышленных изделиях повышенных мощностей.
При вращении рамки изменяется величина магнитного потока.
Электродвижущая сила, наводимая в витке, зависит от скорости изменения магнитного потока, пронизывающего рамку в замкнутом контуре S, и прямо пропорциональна его значению. Чем быстрее осуществляется вращение ротора, тем выше величина вырабатываемого напряжения.
Для того чтобы создать замкнутый контур и отвести с него электрический ток, потребовалось создать коллектор и щеточный узел, обеспечивающий постоянный контакт между вращающейся рамкой и стационарно расположенной частью схемы.
За счет конструкции подпружиненных щеток, прижимающихся к коллекторным пластинам, происходит передача электрического тока на выходные клеммы, а с них дальше он поступает в сеть потребителя.
Принцип работы простейшего генератора постоянного тока
При вращении рамки вокруг оси ее левая и правая половинки циклически проходят около южного или северного полюса магнитов. В них каждый раз происходит смена направлений токов на противоположное так, что у каждого полюса они протекают в одну сторону.
Для того чтобы в выходной цепи создавался постоянный ток, на коллекторном узле создано полукольцо для каждой половинки обмотки. Прилегающие к кольцу щетки снимают потенциал только своего знака: положительный или отрицательный.
Поскольку полукольцо вращающейся рамки разомкнуто, то в нем создаются моменты, когда ток достигает максимального значения или отсутствует. Чтобы поддерживать не только направление, но и постоянную величину вырабатываемого напряжения, рамку изготавливают по специально подготовленной технологии:
- у нее используют не один виток, а несколько — в зависимости от величины запланированного напряжения;
- число рамок не ограничивается одним экземпляром: их стараются сделать достаточным количеством для оптимального поддержания перепадов напряжения на одном уровне.
У генератора постоянного тока обмотки ротора располагают в пазах магнитопровода. Это позволяет сокращать потери наводимого электромагнитного поля.
Конструктивные особенности генераторов постоянного тока
Основными элементами устройства являются:
- внешняя силовая рама;
- магнитные полюса;
- статор;
- вращающийся ротор;
- коммутационный узел со щётками.
Корпус изготавливают из стальных сплавов или чугуна для придания механической прочности общей конструкции. Дополнительной задачей корпуса является передача магнитного потока между полюсами.
Полюса магнитов крепят к корпусу шпильками или болтами. На них монтируют обмотку.
Статор , называемый еще ярмом или остовом, изготавливают из ферромагнитных материалов. На нем размещают обмотку катушки возбуждения. Сердечник статора оснащен магнитными полюсами, образующими его магнитное силовое поле.
Ротор имеет синоним: якорь. Его магнитопровод состоит из шихтованных пластин, снижающих образование вихревых токов и повышающих КПД. В пазы сердечника заложены обмотки ротора и/или самовозбуждения.
Коммутационный узел со щетками может иметь разное количество полюсов, но оно всегда кратно двум. Материалом щеток обычно используют графит. Коллекторные пластины изготавливают из меди, как наиболее оптимального металла, подходящего по электрическим свойствам проводимости тока.
Благодаря использованию коммутатора на выходных клеммах генератора постоянного тока образуется сигнал пульсирующего вида.
Основные типы конструкций генераторов постоянного тока
По типу питания обмотки возбуждения различают устройства:
1. с самовозбуждением;
2. работающие на основе независимого включения.
Первые изделия могут:
- использовать постоянные магниты;
- или работать от внешних источников, например, аккумуляторных батарей, ветряной установки…
Генераторы с независимым включением работают от собственной обмотки, которая может быть подключена:
- последовательно;
- шунтами или параллельным возбуждением.
Один из вариантов подобного подключения показан на схеме.
Примером генератора постоянного тока может служить конструкция, которая раньше часто применялась на автомобильной технике. Ее устройство такое же, как у асинхронного двигателя.
Подобные коллекторные конструкции способны работать в режиме двигателя или генератора одновременно. За счет этого они получили распространение в существующих гибридных автомобилях.
Процесс образования якорной реакции
Она возникает в режиме холостого хода при неправильной настройке усилия прижатия щеток, создающее неоптимальный режим их трения. Это может привести к снижению магнитных полей или возникновению пожара из-за повышенного образования искр.
Способами ее снижения являются:
- компенсации магнитных полей за счет подключения дополнительных полюсов;
- настройка сдвига положения коллекторных щеток.
Преимущества генераторов постоянного тока
- отсутствие потерь на гистерезис и образование вихревых токов;
- работа в экстремальных условиях;
- пониженный вес и маленькие габариты.
Принцип работы простейшего генератора переменного тока
Внутри этой конструкции используются все те же детали, что и у предыдущего аналога:
- магнитное поле;
- вращающаяся рамка;
- коллекторный узел со щетками для отвода тока.
Основное отличие заключается в устройстве коллекторного узла, который создан так, что при вращении рамки через щетки постоянно создается контакт со своей половинкой рамки без циклической смены их положения.
За счет этого ток, сменяющийся по законам гармоники в каждой половинке, полностью без изменений передается на щетки и далее через них в схему потребителя.
Естественно, что рамка создана намоткой не из одного витка, а рассчитанного их количества для достижения оптимального напряжения.
Таким образом, принцип работы генераторов постоянного и переменного тока общий, а отличия конструкции заключаются в изготовлении:
- коллекторного узла вращающегося ротора;
- конфигурации обмоток на роторе.
Конструктивные особенности промышленных генераторов переменного тока
Рассмотрим основные части промышленного индукционного генератора, у которого ротор получает вращательное движение от рядом расположенной турбины. В конструкцию статора включен электромагнит (хотя магнитное поле может создаваться набором постоянных магнитов) и обмотка ротора с определённым числом витков.
Внутри каждого витка индуктируется электродвижущая сила, которая последовательно складывается в каждом из них и образует на выходных зажимах суммарное значение напряжения, выдаваемого на схему питания подключенных потребителей.
Чтобы повысить на выходе генератора амплитуду ЭДС используют специальную конструкцию магнитной системы, выполненную из двух магнитопроводов за счет применения специальных сортов электротехнической стали в виде шихтованных пластин с пазами. Внутри их смонтированы обмотки.
В корпусе генератора расположен сердечник статора с пазами для размещения обмотки, создающей магнитное поле.
Вращающийся на подшипниках ротор тоже имеет магнитопровод с пазами, внутри которых смонтирована обмотка, получающая индуцируемую ЭДС. Обычно для размещения оси вращения выбирается горизонтальное направление, хотя, встречаются конструкции генераторов с вертикальным расположением и соответствующей конструкцией подшипников.
Между статором и ротором всегда создается зазор, необходимый для обеспечения вращения и исключения заклинивания. Но, в то же время в нем происходит потеря энергии магнитной индукции. Поэтому его стараются делать минимально возможным, оптимально учитывая оба этих требования.
Расположенный на одном валу с ротором возбудитель является электрогенератором постоянного тока, обладающим относительно небольшой мощностью. Его назначение: питать электроэнергией обмотки силового генератора в состоянии независимого возбуждения.
Подобные возбудители применяют чаще всего с конструкциями турбинных или гидравлических электрогенераторов при создании основного либо резервного способа возбуждения.
На картинке промышленного генератора показано расположение коллекторных колец и щеток для съема токов с конструкции вращающегося ротора. Этот узел при работе испытывает постоянные механические и электрические нагрузки. Для их преодоления создается сложная конструкция, которая при эксплуатации требует периодических осмотров и выполнения профилактических мероприятий.
Чтобы снизить создаваемые эксплуатационные затраты применяется другая, альтернативная технология, при которой тоже используется взаимодействие между вращающимися электромагнитными полями. Только на роторе располагают постоянные или электрические магниты, а напряжение снимают со стационарно расположенной обмотки.
При создании подобной схемы такую конструкцию могут называть термином «альтернатор». Она применяется в синхронных генераторах: высокочастотных, автомобильных, на тепловозах и судах, установках электрических станций энергетики для производства электроэнергии.
Особенности синхронных генераторов
Название и отличительный признак действия заключен в создании жесткой связи между частотой переменной электродвижущей силы, наводимой в статорной обмотке «f» и вращением ротора.
В статоре вмонтирована трехфазная обмотка, а на роторе — электромагнит с сердечником и обмоткой возбуждения, запитанной от цепей постоянного тока через щеточный коллекторный узел.
Ротор приводится во вращение от источника механической энергии — приводного двигателя с одинаковой скоростью. Его магнитное поле совершает такое же движение.
В обмотках статора наводятся одинаковые по величине, но сдвинутые на 120 градусов по направлению электродвижущие силы, создающие трехфазную симметричную систему.
При подключении на концы обмоток цепей потребителей в схеме начинают действовать токи фаз, которые образуют магнитное поле, вращающееся точно так же: синхронно.
Форма выходного сигнала наводимой ЭДС зависит только от закона распределения вектора магнитной индукции внутри зазора между полюсами ротора и пластинами статора. Поэтому добиваются создания такой конструкции, когда величина индукции меняется по синусоидальному закону.
Когда зазор имеет постоянную характеристику, то вектор магнитной индукции внутри зазора создается по форме трапеции, как показано на графике линий 1.
Если же форму краев на полюсах исправить на косоугольную с изменением зазора до максимального значения, то можно добиться синусоидальной формы распределения, как показано линией 2. Этим приемом и пользуются на практике.
Схемы возбуждения синхронных генераторов
Магнитодвижущая сила, возникающая на обмотке возбуждения «ОВ» ротора, создает его магнитное поле. Для этого существуют разные конструкции возбудителей постоянного тока, основанные на:
1. контактном методе;
2. бесконтактном способе.
В первом случае используется отдельный генератор, называемый возбудителем «В». Его обмотка возбуждения питается от дополнительного генератора по принципу параллельного возбуждения, именуемого подвозбудителем «ПВ».
Все роторы размещаются на общем валу. За счет этого они вращаются совершенно одинаково. Реостаты r1 и r2 служат для регулирования токов в схемах возбудителя и подвозбудителя.
При бесконтактном способе отсутствуют контактные кольца ротора. Прямо на нем монтируют трехфазную обмотку возбудителя. Она синхронно вращается с ротором и передает через совместно вращающийся выпрямитель электрический постоянный ток непосредственно на обмотку возбудителя «В».
Разновидностями бесконтактной схемы являются:
1. система самовозбуждения от собственной обмотки статора;
2. автоматизированная схема.
При первом методе напряжение от обмоток статора поступает на понижающий трансформатор, а затем — полупроводниковый выпрямитель «ПП», вырабатывающий постоянный ток.
У этого способа первоначальное возбуждение создается за счет явления остаточного магнетизма.
Автоматическая схема создания самовозбуждения включает использование:
- трансформатора напряжения ТН;
- автоматизированного регулятора возбуждения АВР;
- трансформатора тока ТТ;
- выпрямительного трансформатора ВТ;
- тиристорного преобразователя ТП;
- блока защиты БЗ.
Особенности асинхронных генераторов
Принципиальное отличие этих конструкций состоит в отсутствие жесткой связи между частотами вращения ротора (nr) и индуцируемой в обмотке ЭДС (n). Между ними всегда существует разница, которую называют «скольжением». Ее обозначают латинской буквой «S» и выражают формулой S=(n-nr)/n.
При подключении нагрузки на генератор создается тормозной момент для вращения ротора. Он влияет на частоту вырабатываемой ЭДС, создает отрицательное скольжение.
Конструкцию ротора у асинхронных генераторов изготавливают:
- короткозамкнутой;
- фазной;
- полой.
Асинхронные генераторы могут иметь:
1. независимое возбуждение;
В первом случае используется внешний источник переменного напряжения, а во втором — полупроводниковые преобразователи или конденсаторы в первичной, вторичной или обоих видах схем.
Таким образом, генераторы переменного и постоянного тока имеют много общих черт в принципах построения, но отличаются конструктивным исполнением определённых элементов.
Первые электрические генераторы
Все началось в начале 19 века с экспериментов с новым явлением – электрическим током, когда было обнаружено, что ток, протекающий по проводнику, каким-то образом влияет на стрелку компаса.
Это означает, что электрический ток создает определенное магнитное поле, на которое реагирует стрелка. За счет увеличения силы тока и увеличения числа токонесущих проводников (например, в виде витков катушки на железном сердечнике) создается более сильное магнитное поле.
Электрический заменитель природных постоянных магнитов — электромагнит — увидел свет. В то время гальванические элементы (батареи) были эксклюзивным поставщиком постоянного тока.
Несколько лет спустя английский физик Майкл Фарадей предположил, что может существовать и обратное явление, когда магнитное поле вызывает появление электрического тока.
Путем ряда экспериментов он подтвердил свое предположение и открыл электромагнитную индукцию, которая до сих пор является основой всей электротехники и энергетики.
Электрогенератор с паровым двигателем. Гравюра из немецкого справочника 1907 года.
Закон электромагнитной индукции гласит, что при изменении магнитного поля вблизи проводника на его концах создается (индуцируется) напряжение и по замкнутой цепи начинает протекать ток. Здесь важно слово «изменения», само по себе наличие постоянного магнитного поля не вызывает создания тока.
Первый электрический генератор Майкла Фарадея открыл человечеству многообещающий путь замены используемых в то время гальванических элементов (количество энергии которых очень ограничено) более мощными источниками и таким образом сделать электроэнергию доступной для более широкой области использования.
Скользящее взаимное движение магнита и проводника заменено вращением нити в поле статических магнитов (это упростило изменение поля) и простая нить заменена катушкой (больше витков последовательно давало большее выходное напряжение). Это создало основу для первых генераторов постоянного тока — динамо-машин.
Со временем мощность динамо увеличилась, и обычные магниты пришлось заменить более сильными электромагнитами с большим количеством катушек.
Электрический ток, производимый во вращающихся катушках, проходил через кольцо на валу ротора — своего рода механический переключатель, называемый коммутатором, который, вращая ротор, всегда подключал к выходу катушку с наибольшим наведенным напряжением. Динамо-машина вырабатывала постоянное напряжение.
После того, как было решено, что энергия и дальше будет идти по пути переменного тока, динамо-машины стали заменять генераторами переменного тока.
Генератор переменного тока на электростанции
Вместо коммутатора было всего два полных коллекторных кольца, на которых менялась полярность протекающего тока при каждом витке катушки. В более мощных генераторах роли статора и ротора поменялись местами.
Постоянный ток, подаваемый через кольца на подвижные катушки ротора, создавал вращающееся магнитное поле, а в неподвижных катушках статора генерировалось выходное переменное напряжение.
Еще более высокая мощность потребовала утроения количества катушек статора и получения трехфазного напряжения.
Все генераторы, поставляющие электроэнергию в одну и ту же электрическую сеть, должны соответствовать как минимум трем условиям: одинаковая частота, одно и тоже напряжение и одинаковая последовательность фаз.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети: