Физики получили самый тяжелый изотоп кальция
Физики впервые синтезировали самый тяжелый на сегодняшний день изотоп кальция 60 Ca, ядро которого содержит 20 протонов и 40 нейтронов. Также впервые были получены самые тяжелые изотопы для других элементов: фосфора, серы, хлора, аргона, калия и скандия. Полученные результаты подтвердили теоретические модели, которые существуют для границы стабильности атомных ядер. Это означает, что, вероятнее всего, для кальция возможно образование и более тяжелых ядер, вплоть до 70 Ca, пишут ученые в Physical Review Letters.
Максимальное количество нейтронов в ядре каждого элемента, при котором это ядро будет жить хоть какое-то время, определяется силами, связывающими нуклоны между собой. Для описания устойчивых конфигураций атомных ядер существует несколько теоретических моделей, ни одна из которых на сегодняшний день не может однозначно определить границу нуклонной устойчивости. Самые устойчивые нуклонные конфигурации часто описываются с использованием магических чисел, которые соответствуют полностью заполненным оболочкам нейтронов или протонов.
Например, ядро кальция интересно тем, что число протонов в нем всегда магическое — 20, а при определенных числах нейтронов ядро кальция становится «дважды магическим». Для этого в ядре должно быть 20, 28, 32 или 34 нейтрона. Так, в природе чаще всего встречается изотоп кальция, который имеет массовое число 40 — с 20 протонами и 20 нейтронами, самый тяжелый из устойчивых изотопов кальция содержит 28 нейтронов. У радиоактивных изотопов кальция с коротким периодом полураспада, число нейтронов в ядре может быть и больше: например, существование устойчивых ядер предполагалось для ядер с 40 и 50 нейтронами, однако получить их экспериментально не удавалось.
Каждое открытие самых легких и самых тяжелых изотопов для отдельных элементов позволяет сместить границу нуклонной стабильности и подтвердить или опровергнуть существующие теоретические модели. Группа физиков из России, США, и Японии под руководством Олега Тарасова (O. B. Tarasov) из Университета штата Мичиган предложили новый метод синтеза тяжелых изотопов с большим количеством нейтронов. Для этого ученые облучали вращающуюся мишень из бериллия 9 Be пучком ядер цинка 70 Zn с энергией 345 электронвольт. Образующиеся при этом частицы фиксировались с помощью спектрометра для идентификации частиц.
В результате ученым зарегистрировали восемь новых изотопов, которые не удавалось получить ранее. Все эти изотопы (фосфор 47 P, сера 49 S, хлор 52 Cl, аргон 54 Ar, калий 57 K, кальций 59, 60 Ca и скандий 62 Sc) оказались самыми тяжелыми из известных на сегодняшний день для своих элементов. Также было зарегистрировано одно ядро 59 K, однако эти данные пока нельзя считать статистически значимыми. Самым важным из синтезированных ядер ученые называют именно изотоп кальция 60 Ca, устойчивость которого косвенно подтверждает «магичность» числа нейтронов 40. Время жизни такого изотопа составляет несколько тысячных секунды.
По словам авторов работы, полученные результаты позволили подтвердить некоторые из теоретических моделей, которые предполагают, что для кальция возможно образование и более тяжелых ядер, вплоть до 70 Ca.
Стоит отметить, что интерес вызывают не только изотопы с большим количеством нейтронов, но нейтрон-дефицитные ядра. Так, в 2015 году физикам удалось синтезировать сразу несколько изотопов, которые, наоборот, были самыми легкими из известных для урана, нептуния, берклия и америция. Эти ядерные структуры, которые находятся на границе нуклонной стабильности могут помочь в развитии теоретических моделей ядра атома.
Александр Дубов
Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Демон Пайнса нашелся в рутенате стронция спустя 67 лет после теоретического предсказания
Ее до сих пор не удавалось зарегистрировать из-за акустичности, электро-нейтральности и отсутствия взаимодействия со светом
Физики экспериментально обнаружили в рутенате стронция Sr2RuO4 особый вид плазмона — демон Пайнса. Существование этой частицы было предсказано 67 лет назад, но из-за акустичности, электро-нейтральности и из-за отсутствия взаимодействия со светом ее до сих пор не удавалось зарегистрировать. Чтобы обнаружить демона, ученые применили метод спектроскопии характеристических потерь энергии электронов с разрешением по импульсу. Статья опубликована в журнале Nature. В 1952 году американские физики Дэвид Пайнс и Дэвид Бом описали коллективное поведение электронного газа в плазме, которое можно представить в виде квазичастицы, которую назвали плазмоном. Некоторые виды плазмонов уже научились регистрировать. В 1956 году Пайнс предположил, что в металлах могут существовать особые плазмоны, которые возникают при колебании электронов из разных зон в противофазе, что приводит к модуляции заселенности этих зон. Такие плазмоны назвали демонами: они не обладают ни массой, ни электрическим зарядом, да и со светом не взаимодействуют, — поэтому их крайне сложно зарегистрировать обычными методами. Группа физиков под руководством Петра Аббамонте (Peter Abbamonte), профессора Университета Иллинойса, изучала рутенат стронция Sr2RuO4. Этот металл обладает тремя вложенными зонами, пересекающими энергию Ферми, и поэтому может быть кандидатом на появление в нем демона. Ученые использовали метод электронной спектроскопии потерь энергии электронов с высоким разрешением по импульсу в режиме отражения. Этот метод позволяет измерять как поверхностные, так и объемные возбуждения в металле при ненулевой передаче импульса q, где сигнатура демона ожидалась наиболее четкой. Спектры потерь энергии электронов при большой передаче энергии и больших переданных импульсах — более 0,28 единиц обратной решетки — демонстрируют бесхарактерный энергонезависимый континуум. При малых переданных импульсах — q менее 0,16 единиц обратной решетки — ученые обнаружили широкую плазмонную особенность с максимумом в районе 1,2 электронвольта. Ученые обнаружили, что в низкоэнергетическом режиме, при q менее 0,08 единицы обратной решетки, метод выявляет акустическую моду. Дисперсия моды оказалась линейной в большом диапазоне импульсов, с групповой скоростью примерно в 100 раз больше скорости акустических фононов, которые распространяются со скоростью звука, но на три порядка меньше, чем для поверхностного плазмона, распространяющегося со скоростью, близкой к скорости света. Однако скорость моды находится в пределах 10 процентов от предсказанной расчетами скорости для демона. Как отмечают ученые, это возбуждение явно электронное и это как раз и есть демон, предсказанный Пайнсом 67 лет назад. Наблюдение демона стало возможным, благодаря высокому разрешению в миллиэлектронвольт в используемом методе. Однако для дальнейшего изучения демонов ученые предлагают повысить точность, используя высокоэнергетические электроны в сканирующем просвечивающем электронном микроскопе с высоким разрешением, работающем в расфокусированной конфигурации. Физики отмечают, что требуется новая теория демонов, которая точнее опишет полученные экспериментальные данные. Эти квазичастицы могут быть ответственны за возникновение сверхпроводимости и играть важную роль в низкоэнергетической физике многих многозонных металлах. Изучение демонов и других видов плазмонов важно для описания коллективного поведения электронов в разных веществах. Например, недавно мы писали как физикам удалось увидеть часть плазмонной матрицы плотности.
Сколько нейтронов содержит ядро изотопа кальция 44 20Ca? — №26360
Записаться на Курс: https://vk.cc/cfAMSt или https://t.me/EXAMhack0_bot Мой Телеграм с файлами: https://t.me/EXAMhack_physics/ Информационный сайт: https://global-ee.ru Стать наставником на курсе: https://forms.gle/rF2PJtoEe91J71Xq8 Занятия Годового Курса по физике 2023 / 2024 проходят трижды в неделю А каждую субботу с 15:00 до 22:00 по МСК они проходят тут в открытом формате Хочу, чтобы у тебя была возможность готовиться даже самостоятельно. Изучай материалы с канала, смотри видеоразборы нужных тебе задач. Всё это бесплатно! Global_EE. Любознательность меняет мир #ЕГЭФизика #Global_EE #ОГЭФизика
Показать больше
Войдите , чтобы оставлять комментарии
Сколько нейтронов содержит ядро изотопа кальция
3-х месячный курс «Во все тяжкие»
3-х месячный курс для 10 классов
Подготовка к ЕГЭ-2025
Подготовка 10 класс — 2025
Обществознание с HISTRUCTOR
История с HISTRUCTOR
Математика с математиком МГУ
- Главная
- Каталог задач
- Каталог заданий по ОГЭ — Физика
- Атом и атомное ядро (задачи про протоны, нейтроны, электроны и их число в атоме)
- Задача # 73859
Тема 10 . Ядерная физика
10 .01 Атом и атомное ядро (задачи про протоны, нейтроны, электроны и их число в атоме)
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами — ЛЕГКО!
Подтемы раздела ядерная физика
Решаем задачу:
Ошибка.
Попробуйте повторить позже
Задача 1 # 73859
Сколько нейтронов содержит ядро изотопа кальция ?
Показать ответ и решение
Число нейтронов равно разности массового и зарядового числа:
Нужна консультация? Задайте нам вопрос в чате.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное обучение
в Школково
Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное обучение
в Школково
Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!
Физики раскрыли загадку аномально медленных бета-распадов
МОСКВА, 12 мар – РИА Новости. Необъяснимо низкая частота бета-распадов нестабильных изотопов оказалась связана с тем, что в этом процессе участвует не один протон, как раньше считали ученые, а пары частиц в ядре атомов. Об этом пишут ученые из США, опубликовавшие статью в журнале Nature Physics.
«Никто не понимал, что именно подавляло эти распады. Этот феномен словно возникал сам по себе. Мы выяснили, что эти аномалии можно объяснить, включив второй нуклон в процесс распада, к примеру, если два протона распадаются в протон и нейтрон или протон и нейтрон превращаются в два нейтрона», — заявил Гот Хаген (Gaute Hagen) из Национальной лаборатории Ок-Ридж в Ноксвилле (США).
Все ядра элементов тяжелее водорода состоят из двух типов элементарных частиц – протонов, заряженных положительно, и нейтронов, не имеющих заряда. То, как много протонов и нейтронов содержит атом, определяет то, насколько стабильным он является. При избытке и того, и другого типа частиц ядро старается избавиться от «лишних» протонов или нейтронов, выбрасывая или альфа-частицу, «голое» ядро гелия-4, или же превращая один из нейтронов в протон или наоборот.
Более полувека назад физики заметили одну крайне необычную аномалию – бета-распады нестабильных атомов происходили примерно на 25% реже, чем предсказывали теоретические расчеты, построенные на базе наблюдений за поведением свободных нейтронов. Объяснений этой аномалии у ученых не было, что заставляло их активно искать возможные следы «новой физики» в этом «глушении», как начали называть данный феномен теоретики.
«Борода Менделеева»: где кончается периодическая таблица элементов
1 февраля 2019, 08:00
Хаген и его коллеги смогли разгадать эту загадку благодаря двум вещам – мощному суперкомпьютеру Titan, который позволил физикам просчитать взаимодействия протонов и нейтронов внутри сложно устроенных ядер атомов, а также опытам с оловом-100, «двойным магическим изотопом» этого металла.
Так ученые называют определенные версии разных элементов, чьи ядра содержат в себе определенное число протонов или нейтронов – к примеру, 2, 8, 20, 28 или 50. Соответственно, изотоп называется «двойным магическим» если число и тех, и других нуклонов входит в эту последовательность. Все носители «магических чисел» обладают заметно более высокой стабильностью, чем предсказывает теория, и их поведение гораздо проще просчитывать.
Что самое интересное, олово-100, как объясняет Хаген, «нарушает» эту аномалию и превращается в индий-100, вырабатывая позитрон и нейтрино несколько чаще, чем другие атомы. В свою очередь, индий-100 превращается в кадмий-100 уже с «нормальной» низкой частотой, укладывающейся в общую закономерность.
Эти расхождения заставили ученых проследить за распадами и того, и другого изотопа в лаборатории и просчитать их структуру при помощи Titan, используя методы квантовой химии. Эта компьютерная модель, в отличие от многих других попыток просчитать свойства нестабильных ядер, включала в себя взаимодействия двух, трех или большего числа нуклонов.
Как оказалось, этого небольшого дополнения вполне хватило для того, чтобы объяснить существование аномалий в частоте бета-распадов не только для олова-100, но и для более легких элементов, чье поведение ученые просчитали впоследствии. В ближайшее время американские физик планируют уточнить и перепроверить свои выкладки, проведя аналогичные расчеты на базе другого двойного магического изотопа, кальция-48, распадающегося несколько иным путем.
Физики ЦЕРН открыли еще один двойной «магический» изотоп
19 декабря 2018, 18:40
Хаген и его коллеги надеются, что их текущие и новые выкладки помогут ученым не только ускорить поиски новой физики, других «магических» изотопов, измерить массу нейтрино и раскрыть тайны устройства ядра, но и решить другие проблемы, связанные уже с астрономией, а не физикой частиц.
К примеру, теперь астрофизики смогут точно просчитать то, как устроены недра нейтронных звезд, где подобные превращения играют ключевую роль в охлаждении этих «мертвых светил». Это крайне важно для определения их возраста и того, какую роль они играют в формировании запасов всех тяжелых элементов Вселенной.