Расчет режима работы транзистора на постоянном токе
Вычислим напряжение между коллектором и эмиттером транзистора:
0К = КЭ = К – Э = 6 – 1,2 = 4,8 В
Вычислим напряжение на базе: Б = БЭ + Э = 0,6 +1,2 = 1,8 В
ℎ 21 = √ ℎ 21 × ℎ 21 = 89
По заданному току покоя ОК вычисляем ток базы ОБ = ОК /h21=2* 10−3 /89= 0,022мА Ток делителя Д = 10 ОБ =10*0,022мА= 0,22мА
Ток эмиттера ОЭ = (1 + h21)* ОБ = (1+89)*0,022мА= 1,98мА
Вычисляем сопротивления резисторов:
Э = Э / ОЭ = 1,2/(1,98* 10−3 ) = 606 Ом
Б1 = ( Е0 − Б ) / ( Д + ОБ ) = (12-1,8)/(0,22* 10−3 + 0,022* 10−3) = 42 кОм
Б2 = Б / Д =1,8/0,22* 10−3 = 8 кОм
К = ( Е0 − К ) / ОК = (12-6)/2* 10−3 = 3кОм
Выбираем значения резисторов по номинальному ряду.
Расчет элементов модели транзистора.
Входное сопротивление на постоянном токе Н11 = БЭ / ОБ = 0,6/ 0,022* 10−3 = 27 кОм Коэффициент усиления тока базы h21 = 89
Эквивалентная схема каскада
Вычисление на Fastmean тока покоя коллектора i0к.
Погрешность значений не превышает 5%, что соответствует допустимому значению.
Построение нагрузочной линии по постоянному току
По полученным результатам построить нагрузочную линию для постоянного тока в исследуемом усилителе, отметить на ней точку покоя А.
Рис.4. Нагрузочная линия по постоянному току в исследуемом усилителе
3.2. Исследование свойств каскада оэ по сигналу на переменном токе
Построение нагрузочной линии по сигналу.
Переменная составляющая коллекторного тока протекает через резистор К и сопротивление внешней нагрузки 2Н .
Таким образом, эквивалентной нагрузкой транзистора Н переменному току на средних частотах оказывается параллельное соединение этих двух элементов схемы. Нагрузочная линия по сигналу проходит (как и нагрузочная линия постоянному току) через точку покоя А. Полагая, что максимальная неискаженная амплитуда выходного тока к равна току покоя 0К , находим амплитуду выходного напряжения.
R H = R K ║ R 2Н = (R K ∗ R 2H )/(R K + R 2H ) = (3 ∗ 103 ∗ 2 ∗ 103)/((3 + 2) ∗ 103) = 1,2 кОм
U2m max = Iк max RН = 2 ∗ 10 −3 ∗ 1,2 ∗ 10 3 = 2,4В
Отложим на рис. 4 по горизонтальной оси напряжение, равное 0К + 2 (точка В). Соединив точки А и В прямой, получим отрезок нагрузочной линии переменному току (по сигналу) для данной точки покоя при отрицательной полярности сигнала. При положительной полярности сигнала нагрузочная прямая пойдет вверх от точки А.
Рис. 5. Нагрузочная линия для переменного тока
Биполярные транзисторы. For dummies
Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.
Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.
Необходимые пояснения даны, переходим к сути.
Транзисторы. Определение и история
Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)
Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.
Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.
Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.
В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.
Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.
И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.
Биполярный транзистор. Принцип работы. Основные характеристики
Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.
Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.
Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».
Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.
Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.
Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.
Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.
Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.
Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.
Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.
Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной.
- обратный ток коллектор-эмиттер
- время включения
- обратный ток колектора
- максимально допустимый ток
Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.
Режимы работы биполярного транзистора
- Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
- Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
- Режим отсечки. Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
- Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.
Схемы включения биполярных транзисторов
Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.
Схема включения с общим эмиттером
Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.
Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.
Схема включения с общей базой
Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.
В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.
Схема включения с общим коллектором
Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.
Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала
Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.
В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.
Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).
Два слова о каскадах
Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.
Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.
Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).
Другие области применения биполярных транзисторов
Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.
Ток коллектора
В начале вопрос: может ли быть ток коллектора бесконечно большим? Теоретически, увеличением тока базы, вы можете свободно увеличивать ток коллектора.
Тем не менее, в той или иной схеме максимальный ток коллектора транзистора только в состоянии насыщении и, главное, не определяется транзистором, а только напряжением питания и сопротивлением нагрузки. При снижении сопротивления нагрузки увеличивается ток.
Как вы догадались, этот ток нельзя увеличивать произвольно. Каждый транзистор имеет максимальный ток коллектора, обозначается в каталогах производителей — ICmax.
Значение этого тока, зависит от конструкций и толщины переходов транзистора.
При протекании тока через сопротивление, выделяется тепло. Вы наверное, догадываетесь, или, может быть, вы видели своими глазами, что связи между слоями кремния транзистора и проводники сделаны из тонкой проволоки. Хотя ее часто делают из золотой проволоки, они при избыточном токе ведут себя как самые обычные предохранители – разогреваются и перегорают.
Не только проводники. Кремниевая структура транзистора так же имеет не большие геометрические размеры. Если пропустить большой ток через эту структуру имеющую малое сечение, мы получим, ток очень большой плотности. Не забывайте, мы имеем дело с чувствительной структурой полупроводника и чрезмерное увеличение плотности тока приводит не только к повышению температуры, а также целый ряд других негативных явлений. Я буду говорить только об уменьшении коэффициента усиления по току (β) с ростом тока коллектора.
Таким образом. Ограничение коллекторного тока производителем обосновано допустимой плотностью тока, и температурой плавления структуры, вы не можете ее превышать.
Если вы думаете о мгновениях, то можно придти к выводу, что если транзистор будет работать в импульсном режиме, открылся, пропустил ток только на короткое мгновение, за это мгновение структура не успевает разогреться и расплавиться. Таким образом, ток в импульсе может быть и больше максимальной ток в не прерывном режиме.
Вы правы! В каталогах часто приводят максимальном токе коллектора при непрерывной работе и максимальный ток коллектора для импульса. Вы можете это увидеть в характеристиках силового транзистора.
Но сейчас, мы не будем связываться с этим вопросом. Как вы думаете или если не превышать ток Icmax каталога, и напряжения UCEmax, ваш транзистор не находится в опасности?
Рассеиваемая мощность
Мы начинаем обсуждать важную и, как выясняется – трудную тему. Но вы должны понять ее! Самую сложную информацию я дам вам в следующем месяце, а сейчас все элементарно.
Наверное, вы слышали такой термин: мощность транзистора.
Что такое мощность транзистора? И что такое общая мощность?
Термин мощность относиться ко многим устройствам:
Двигатель имеет мощность 100 Вт,
Электрический обогреватель имеет мощность до 2000 Вт,
Паяльник 40 Вт,
У нас есть две лампочки в 60 Вт, одна на 220 Вольт, другая на автомобильные 12 Вольт.
Все эти машины используют электроэнергию от источника и конвертируют ее в другие формы энергии: тепло в механическую энергию (двигатель) энергию света (лампа).
Чем больше мощность, тем больше энергии потребляет в каждый момент это устройство. Обе эти лампы потребляют ту же мощность 60 Вт. В чем разница? Конечно, что одна работает при напряжении 12 вольт и потребляет 5 ампер тока (12Вх5A=60W) а другая, которая работает при напряжении 220 В, потребляет немного больше чем 0,27 ампер (что также дает 220×0,27=60 Вт).
Таким образом, одни и те же мощности могут быть достигнуты с различными токами и напряжениями. Вот простые формулы, необходимые для расчета мощности. Я беру электрические оборудование, работающего на постоянном токе (переменный ток работающий на активное сопротивление). Запомните раз и навсегда:
Возвращаясь к вопросу о мощности транзистора: это мощность, рассеиваемая нагрузкой? Может мощность, рассеиваемая транзистором? Или, может быть даже что-то еще? Ранее я объяснил вам, что коллекторная цепь – это регулируемый источник тока, а не переменный резистор, однако это не меняет тот факт что, когда через структуру транзистора будет течь ток будут потери мощности на тепло. Величина этих потер, определяется по формуле: P UCE IC Где Uce это напряжение между коллектором и эмиттером, Ic – ток коллектора. Строго говоря, мы должны так взять во внимание потери мощности в базовой цепи Ube*Ib, но так как эта мощность очень маленькая, по сравнению с мощностью рассеваемой на коллекторе, она не учитывается.
И что происходит дальше с этим теплом? Если оно остается в транзисторе?
Ни в коем случае! У вас нет ни каких сомнений, что если транзистор не будет хорошо термоизолирован от окружающей среды, это выделяемое тепло приведет к повышению температуры. И это вредное тепло необходимо рассеять во внешней среде. Смотри рисунок 43.
Тут работает простой принцип: тепло передается от горящего к холодному.
Вы уже знаете, что такое потери мощности транзистора. Но именно здесь, кроиться кардинальная ошибка начинающих. Они рассуждают следующим образом: если транзистор может работать при максимальном напряжении коллектора UCE0 и максимальном токе коллектора Icmax, максимальная «мощность транзистора» равна Р = UCE0 × ICmax.
Это абсолютная ерунда, нельзя так просто рассчитать мощность. Посмотрите в каталог любого транзистора и найдите там его мощность, она обозначается Ptot. Запомните раз и навсегда: общая мощность транзистора всегда меньше чем произведение Р = UCE0 × ICmax.
А теперь вычислите. Какая мощность рассеивается на транзисторе, а какая на нагрузке схем на рисунке 44. Возьмем схему 44а, сначала рассчитаем напряжение на резисторе, потом на транзисторе, а потом обе мощности. Напряжение на резисторе:
Мощность рассеиваемая на резисторе:
(То же самое можно вычислить по формуле ) Напряжение на транзисторе:
Мощность рассеиваемая на транзисторе:
Для других схем на рисунке 44, рассчитайте самостоятельно.
Как вы можете видеть, расчеты совсем не сложные. Таким образом, мы идем дальше. Вы уже знаете три условия работы транзистора:
1 Напряжение питания не должно быть больше, чем указанное в каталоге напряжение UCE0. Самое высокое напряжение присутствует на коллекторе транзистора в состоянии отсечки.
2 Ток коллектора не может быть больше, чем ICmax. Самый большой ток протекает через транзистор в состоянии насыщения.
3 Рассеиваемая мощность транзистора, ни при каких обстоятельствах не превышает допустимую Ptot.
Рассмотрим эти три ограничений на примере транзистора с параметрами (UCE0 = 25В, ICmax = 100mA, Ptot = 500 мВт) смотри рисунок 45. Если напряжение и ток на графике это прямые лини, тогда линия, представляющая мощность Р = U × I) будет иметь вид гиперболы, как это показано на рисунке 45. Однако если ток и напряжение отложить на логарифмических шкалах, то кривая мощности станет прямой. Что видно на рисунке 46. Тут нет никакого мошенничества — рисунки 45 и 46 показывают одни и те же значения, но не много по разному: в линейном масштабе, и в логарифмическом. В каталогах приводятся характеристики похожие на рисунок 46. На Рисунке 47 вы можете найти копии конкретных характеристик транзисторов BD243 и BD244, взятых из каталога. Тут для вас есть масса информации, если транзистор будет работать в импульсном режиме, то мгновенный ток и мгновенную мощность можно будет взять больше чем при постоянной работе. Заметим, однако, что характеристика на рисунке 47 имеет еще одно ограничение по сравнению с рисунком 46. Это «отсечение», что является дополнительным ограничением, связанным с явлением так называемого вторичного пробоя (второй пробой). Появление вторичного пробоя приводит к повреждению транзистора. Подробнее об этом можно найти в книгах. Я не буду сейчас объяснять, потому что это сейчас не нужно. В любом случае, у нас есть еще одно ограничение.
В любом случае, мы достигли пиковой точки нашего сегодняшнего обсуждения: проектируемая схема должны вписываться в безопасную рабочую область транзистора. В каталогах она часто обозначается SOAR или SOA. Это сокращение от английского область безопасной работы (Area). Рисунок 47 показывает безопасную рабочую область для транзистора BD243 и BD244.
Строго говоря, при проектировании схемы вы должны найти график показывающий область безопасной работы транзистора (такой, как на рисунке 47), выполнять расчеты, или выбрать на графике ток транзистора и убедиться что мощность находиться в разрешенной зоне. Примеры, которые мы обсуждали несколько минут назад это простейшие случай – транзистор работает на активное сопротивление нагрузки. Во многих схемах, дело обстоит сложнее. Так, например, транзисторы в усилителе мощности выходного каскада также должны работать в безопасной зоне работы при любых условиях — даже в случае короткого замыкания на выходе, подключении к емкостной нагрузкой (длинный кабель) или индуктивной (динамик). В базовый курс мы не будет иметь дело с такими расчетами. Я просто хочу, чтобы указать, на проблему, а вы получите для себя со временем достаточно знаний, чтобы справиться с более сложными задачами.
На данный момент, вы можете придерживаться простого правила: используйте транзисторы с параметрами выше необходимого минимума. На практике, как правило, для безопасной работы используют транзисторы с параметрами на 50…100% выше, чем расчетные, напряжение, ток, мощность. Тогда у нас есть запас прочности, и не придется беспокоиться о надежности. Использование транзисторов «больше и сильнее» также выгодно по ряду других причин при возможной небольшая разнице в цене, которая не имеет значения. Но не подобает использовать силовые транзисторы и транзисторы высокого напряжения, там где это не нужно.
Казалось бы, что все просто и легко, при выборе условий работы транзистора (напряжение питания и сопротивление нагрузки) и можете сами установить транзистор в разрешенный диапазон. Действительно учесть напряжение и максимальный ток, это просто, но потери мощности определить не так просто. На кону здесь два важных вопроса вы должны понять:
— Зависимость потерь мощности от напряжения питания и сопротивления нагрузки,
— Вопрос отвода тепла от транзистора.
Сегодня мы ответим только на первый вопрос.
Часто, не требуется считать потери мощности указанным выше способом. На практике, как правило, нас интересует самый худший случай. Если рассчитать потери мощности в худшем случае нет необходимости проводить дальнейшие расчеты.
Рисунок 48 помогает понять, что я имею в виду, говоря о худшем случае. Транзистор работает с сопротивлением нагрузки RL при постоянном напряжении питания (в данном случае, RL = 250 Ом, Usup = 20В).
Рисунок 48b относится к принципиальной схеме, показанной на рис 48а, но очень похожая ситуация в схеме, показанной на рисунке 48c. Идя дальше, мы можем расширить вопрос: интегральная схема состоит из транзисторов, аналогичные расчеты применяются к интегральных схемам, в частности к стабилизаторам. Пример 48d. Во всех случаях (рис. 48а, 48с, 48d) напряжение транзистора UT, напряжения на нагрузке UL.
Что можно понять из того рисунка?
Рисунок 48b это то же самое что и на рисунке 44г. Когда нет базового тока, то нет и коллекторного тока и напряжение на коллекторе равно напряжению питания. Когда вы пустите ток в базу, и начнете его увеличивать, увеличиться ток коллектора а напряжение на нем уменьшиться. Зная напряжение питания и сопротивление нагрузки RL можно выполнять вычисления для нескольких или нескольких десятков значений напряжения UT. Вы можете рассчитывать не только ток коллектора, но и мощность, рассеиваемая на нагрузке, и на транзисторе для различных напряжений коллектора (т.е. различных токах базы). По этим значениям можно построит график такой как на рисунке 48г.
На этом рисунке синей линей я изобразил зависимость тока от напряжения Uсе (напряжение на транзисторе), шкала тока находиться слева. Здесь простая нагрузка Rl. Красная линия – потери мощности на транзисторе. Фиолетовая, какая мощность рассеивается на нагрузочном резисторе. (Внимание! Шкала мощности нарисована справа).
Примечание: в отсутствие тока базы и тока коллектора, потери мощности транзистора равны нулю, потому что P = Usup × 0. На рисунке 48б показана точка А. Очевидно в состоянии отсечки ток не течет, и нет потери мощности на транзистор и на нагрузке.
Теперь обратите внимание на то, что происходит в состоянии насыщения – посмотрите на точку B. Хотя сейчас ток очень большой, но напряжение на транзисторе очень мало (Ucesat напряжения насыщения десятки или сотни милливольт). Таким образом, рассеивание тепла в режиме насыщения транзистора мало, можно сказать, близко к нулю, потому что P = Ucesat × I. Вы удивлены?
Оказалось, что в состоянии насыщения, когда ток самый большой, рассеиваемая мощность транзистора практически равна нулю! Да, это так! Высокая мощность (P = Usup × I) рассеивается, на сопротивлении нагрузки, а не на транзисторе. Короче говоря, если транзистор работает как переключатель, во время открытия и насыщения он выделяет очень мало тепла. Прямо сейчас вы должны знать, что потери при импульсе будут только на короткое время переключения. К этой проблеме мы еще вернемся. В настоящее время нас интересует работа в линейном режиме.
Как вы можете видеть на рисунке 48b, сама большая мощность рассеивается на транзисторе когда напряжение на коллекторе равно половине напряжения питания. И это тот самый худший случай, о котором я упоминал. Худший, так как потери мощности на транзисторе самые большие. На рисунке 48б это показано точкой С.
Как вы можете видеть, потери мощности на транзисторе при этом равна потери мощности на нагрузке. Если это так, то максимальная рассеиваемая мощность, при каких пропорциях, может быть рассчитана очень просто: потому что в худшем случае рассеиваемая мощность транзистора равна рассеиваемой мощности на сопротивлении нагрузки RL. Тогда значение напряжения делим на две равные части и считаем
Это расчетная мощность, очевидно, не может быть больше чем указанная в каталоге мощность транзистора Ptot.
Эта формула позволяет вычислить минимальное сопротивление нагрузки для данного напряжения питания и мощности из каталога:
По ней также можно рассчитать максимальное напряжение для данного сопротивления нагрузки и выбранной мощности
Вы можете не быть орлом в математике, но эти формулы нужно запомнить или записать себе на видном месте.
Можно спросить, как эти расчеты соотнести с кривой допустимой мощности рассеивания на рисунках 45 и 46?
Это интересный вопрос!
Давайте посмотрим вместе, смогут ли наши транзисторы с характеристиками на рисунках 45 и 46 работать в схеме, показанной на рисунке 48а при напряжении 25В с сопротивлением нагрузки 250Ω, где напряжение на транзисторе может плавно изменяться от нуля до полного напряжения?
Рассчитаем потери мощности в худшем случае:
Потому что во время работы может возникнуть самая тяжелая ситуация, и наш транзистор будет перегружен. Но если он будет работать в ключевом режиме, т.е. находиться в одном из двух состояний: отсечки или насыщения. Так как в обоих этих условиях мощность, рассеиваемая на транзисторе равна или близка к нулю, насколько это возможно. И нам не нужно, прибегать в расчетах к наихудшему случаю, потому что в схемах переключения такое состояние не встречается.
Возвращаясь к рисунку 45, можно сказать, что мы не превысили допустимые потери мощности, и наша нагрузка находиться в безопасной рабочей области транзистора. Некоторые примеры можно найти на рисунке 49 при простой нагрузке для различных напряжений питания и различные сопротивлений.
На рисунке 49 нагрузка показана прямой линией. Попробуйте самостоятельно построить подобных линий на рисунках 46 и 47. Будет ли это легко? Проверьте, построив несколько точек.
В реальной схеме транзистор будет работать при напряжениях Usup гораздо меньше, чем допустимо напряжения UCE0, и сопротивление нагрузки в коллекторе будет ограничивать максимальный ток до величины, значительно меньше, чем ICmax. Как я уже сказал, нормальный запас здесь 50 .. 100%. А теперь поупражняйтесь самостоятельно.
Задача 1
Транзистор имеет следующие параметры: UCE0=25V, ICmax=300mA, Ptot=100mW. Дорисуйте на рисунке 50 кривые максимальной выходной мощности 100 мВт. Рассчитайте максимально мощность (в худшем случае) при условии транзистора в следующих условиях:
1.Uzas = 10V, RL = 1kΩ
2.Uzas = 25V, RL = 390Ω
3.Uzas = 9V, RL = 51Ω
4.Uzas = 25V, RL = 100Ω
Отметьте эти случаи на рисунке 50. Может ли транзистор может работать при таких условиях?
Задача 2
Транзистор с параметрами как в предыдущей задаче, вычислите минимальное сопротивление в цепи на рисунке 51. И в какой пропорции будет выделяться мощность на транзисторе и его нагрузке в состоянии насыщения?
Задача 3
В схеме на рисунке 52 мы хотим использовать транзистор со следующими параметрами: UCE0 = 45В, ICmax = 500mA, Ptot = 300 мВт. Рассчитать, при каком напряжении питания он не будет перегружен.
Задача 4
Транзистор T1 схемы стабилизатора показаной на рисунке 53 имеет следующие параметры: UCE0 = 50В, ICmax = 100mA, Ptot = 300 мВт. Рассчитать максимальный ток транзистора, когда напряжение стабилизации равно 5В. Выполнить расчеты для двух напряжений питания:
а) за счет напряжения питания = 25В
б) за счет напряжения питания = 7В
Если вы думаете, что вы знаете все рассеиваемой мощности транзистора, я вас расстрою. Все наши соображения относятся только к маломощным транзисторам, для них этого достаточно. Но для мощных транзисторов необходимо учитывать дополнительные факторы. Указанная в справочнике мощность Ptot тесно связана с температурой кристалла и эффективности отвода тепла. Этот важный вопрос будет в следующем месяце.
Как рассчитать работу транзистора на постоянном токе
ЭЛЕКТРОННЫЕ КЛЮЧИ
ОБЩИЕ СВЕДЕНИЯ
Одним из основных элементов импульсной и цифровой техники является ключевое устройство. Ключевые устройства (ключи) служат для коммутации (переключения) цепей нагрузки под воздействием внешних управляющих сигналов. Ключи входят в качестве отдельных элементов в состав сложных устройств — триггеров, мультивибраторов и т. д. Ключ может находиться либо в замкнутом, либо в разомкнутом состоянии. В замкнутом состоянии (ключ включен) сопротивление ключа мало, через него течет большой ток и все напряжение источника выделяется на резисторе R. Напряжение на выходе Uвых равно нулю. В разомкнутом состоянии (ключ выключен) сопротивление ключа бесконечно большое, поэтому ток через него практически не протекает. Напряжение на выходе Uвых равно Е. Следовательно, при коммутации ключа на выходе создаются перепады напряжения с амплитудой Um=E. В зависимости от вида элемента, применяемого для коммутации, ключевые устройства подразделяются на механические, электромеханические и электронные. Примером механического ключа является обычный выключатель. Электромагнитное реле выполняет функции электромеханического ключа, который под воздействием электрического управляющего сигнала производит коммутацию контактов.
Для построения электронных ключей используют диоды, транзисторы, электронные лампы и т. д. В зависимости от того, какой прибор использован, различают диодные, транзисторные, ламповые и т. п. ключи.
При создании транзисторных ключей используются биполярные или полевые транзисторы.
ПРОЦЕССЫ В КЛЮЧЕ НА БИПОЛЯРНОМ ТРАНЗИСТОРЕ
Принцип работы ключа. В качестве основного примера рассмотрим транзисторный ключ на кремниевом транзисторе типа п-р-п. Такие ключи являются одним из основных элементов интегральных микросхем, они также могут быть реализованы и на дискретных элементах. Переход к транзисторам типа р-п-р сводится лишь к изменению полярности источников питания (в тех случаях, когда такой переход связан со схемными изменениями, они оговариваются дополнительно). Наибольшее распространение получил транзисторный ключ по схеме с общим эмиттером. Его принципиальная схема приведена на рис. 1. Транзисторный ключ может находиться в одном из двух состояний: ВЫКЛЮЧЕНО, когда транзистор закрыт и ключ разомкнут, и ВКЛЮЧЕНО, в этом случае транзистор открыт и ключ замкнут.
Ключем управляют, подавая на его вход управляющее напряжение Uвых. Включенному состоянию соответствует низкий положительный уровень входного сигнала Uвых=U0. Включенное состояние обеспечивается высоким положительным уровнем входного сигнала Uвых=U1. Ключ удерживается в одном из состояний, пока на входе сохраняется соответствующий уровень сигнала. Резистор R ограничивает ток базы,, Rк — коллекторная нагрузка, Ек — источник коллекторного напряжения. Транзистор ключа описывается с помощью семейства входных и выходных характеристик, изображенных на рис.2.
Особенностью входных характеристик кремниевого транзистора является наличие достаточно большого порога отпирания Uп.. При напряжении на базе, меньшем порога отпирания, транзистор всегда закрыт.
Для анализа работы ключа на семейство выходных характеристик наносят нагрузочную прямую, соответствующую определенному сопротивлению резистора Rк и пересекающую координатные оси в точках Ек и Ек/Rк. При изменении базового тока iб рабочая точка перемещается вдоль этой прямой, определяя в каждый момент времени коллекторный ток , напряжение между коллектором и эмиттером и режим работы транзистора.
Режимы транзистора. В соответствии с функциями ключа транзистор может находиться в одном из двух статических режимов: режиме отсечки (транзистор закрыт) и режиме насыщения (транзистор открыт и насыщен). Активный режим работы обусловлен переходом из одного статического режима в другой.
Режим отсечки (транзистор закрыт). На входе действует напряжение . В этом режиме ток коллектора равен обратному току коллекторного перехода. Напряжение на выходе ключа практически равно напряжению источника питания Uвых=Ек (определяя ивых, необходимо суммировать все напряжения, проходя по внешней цепи от коллектора к эмиттеру).
Рабочая точка находится в точке А на нагрузочной прямой (см. рис. 2). Для обеспечения такого режима в кремниевых транзисторах необходимо выполнить условие: Uп > Uвых=U0 .
Напряжение Uб, приложенное к базе транзистора, определяют, проходя от базы к эмиттеру по внешней цепи (см. рис. 1). Оно равно сумме двух составляющих: падения напряжения на сопротивлении R от тока /КБО ; остаточного напряжения источника входного сигнала Uвых=U0 , которое, как правило, снимается с другого аналогичного ключа и не равно нулю (см. ниже режим насыщения). Оба напряжения имеют одинаковую полярность и стремятся открыть эмиттерный переход.
Таким образом, Uвых=U0 + R * /КБО и условие отсечки для кремниевых транзисторов определяется неравенством: Un > U0 + R * /КБО .
Это условие должно выполняться при максимальной температуре коллекторного перехода, когда напряжение Un минимально, а обратный ток коллектора максимален. Нужно иметь в виду, что ток кремниевых транзисторов достаточно мал.
При выполнении условия отсечки оба перехода транзистора будут закрыты. Коллекторный переход (верхний по схеме) смещен в обратном направлении, так как напряжение на коллекторе равно +Ек. Учитывая это, часто считают, что в режиме отсечки все выводы транзистора разъединены.
Активный режим (транзистор открыт, но не насыщен). Напряжение на входе лежит в пределах Un < Uвых < U1 . В этом режиме транзистор находится короткое время, равное времени переключения из одного статического состояния в другое. Через электроды транзистора протекают прямые токи базы, коллектора и эмиттера. При изменении Uвых меняется ток базы и рабочая точка перемещается по нагрузочной прямой от точки А к точке Б (см. рис. 2). Входной (базовый) и выходной (коллекторный) токи связаны между собой линейно с помощью статического коэффициента передачи тока в схеме с общим эмиттером. Напряжение на выходе равно разности напряжений источника коллекторного питания и падения напряжения на Rк от тока коллектора, протекающего через коллекторный переход:
С увеличением тока базы увеличивается коллекторный ток. Это ведет к увеличению падения напряжения на резисторе Rк, а следовательно, и уменьшению напряжения на коллекторе ик= ивых. При некотором токе базы, называемом током базы в режиме насыщения /Б нас, рабочая точка попадает в точку Б (см. рис. 2), которой соответствует значение коллекторного тока /к нас, называемое током коллектора в режиме насыщения, и транзистор переходит в режим насыщения.
Режим насыщения (транзистор открыт и насыщен). В режиме насыщения на входе действует напряжение Uвых = U1, которое вызывает появление тока, втекающего в базу iб > / Б нас. Этот ток соответствует границе между активным режимом и режимом насыщения (см. точку Б рис. 2). В этой точке тoк базы еще связан линейной зависимостью с током коллектора.
В режиме насыщения транзистор полностью открыт, т. е. оба перехода смещены в прямом направлении, и коллекторный ток ограничивается только резистором Rк. Пренебрегая падением напряжения на открытом транзисторе, можно записать: iк = / К нас = Ек/Rк.
Выходное напряжение ключа Uвых= U0, где U0 — остаточное напряжение на коллекторе открытого транзистора.
Для количественной оценки глубины насыщения часто используют понятие коэффициента насыщения S, который показывает, во сколько раз ток iб , втекающий в базу транзистора, превышает ток базы, при котором транзистор оказывается на границе насыщения.
Поскольку на границе насыщения напряжения между выводами транзистора составляют доли вольта, а дифференциальные сопротивления значительно меньше внешних сопротивлений ключевого устройства, часто считают, что все выводы транзистора в этом режиме замкнуты между собой и транзистор представляет собой точку.
Динамический режим ключа. При анализе работы транзисторного ключа предполагалось, что переход его из состояния ВЫКЛЮЧЕНО в состояние ВКЛЮЧЕНО происходит мгновенно. В действительности, даже если подавать на вход ключа идеальный прямоугольный импульс или перепад, соответствующие изменения выходного напряжения будут происходить не мгновенно, а в конечные промежутки времени, определяемые длительностью переходных процессов.
Инерционные факторы, влияющие на работу ключа. Возникновение переходных процессов объясняется инерционными свойствами, которыми обладают как сам транзистор, так и внешние цепи, подключенные к нему. Инерционность таких цепей связана с наличием паразитных емкостей (монтажа, нагрузки и т. д.), которые при переключении ключа заряжаются и разряжаются за конечное время. Учтем эту емкость введением в схему ключа некоторой нагружающей емкости Сн (рис. 3).
Инерционность транзистора, обусловленная процессами накопления и рекомбинации заряда в базе при коммутации ключа, называется внутренней, а инерционность транзистора, вызванная наличием барьерных емкостей переходов, называется внешней.
Внутренняя инерционность транзистора учитывается введением некоторой постоянной времени r. С параметром r связаны процессы накопления и рекомбинации заряда в базе, определяющие механизм действия транзистора. Вспомним физическую сущность параметра r. В процессе работы транзистора под действием тока в базе накапливается заряд. Если базовый ток прекращается, то заряд, накопленный в базе, будет убывать по экспоненциальному закону благодаря рекомбинации зарядов. Время, в течение которого число неосновных носителей в базе уменьшается в е раз (где е-основание натурального логарифма), обозначается постоянной времени r. Постоянная времени r определяет внутренние инерционные свойства транзистора в схеме с общим эмиттером и называется временем жизни неосновных носителей в базе. Время жизни неосновных носителей в базе может меняться в зависимости от режима работы и типа транзистора. Так, при работе дрейфовых транзисторов в режиме насыщения постоянная времени, обозначаемая Тнас, увеличится, Тнас=(2-6)*r . Для бездрейфовых транзисторов можно считать, что Тнас>>р .
Внутренняя инерционность — общее свойство транзистора — проявляется не только в ключевом, но и в усилительном режиме работы транзистора. В усилительном режиме наличие внутренних инерционных свойств приводит к тому, что динамический коэффициент передачи по току зависит от частоты. Так как на практике эту зависимость легко измерить, то параметр r определяют, пользуясь этой зависимостью.
Время жизни носителей оказывается обратно пропорциональным частоте, на которой коэффициент передачи равен 1.
Следует иметь в виду, что такую же зависимость коэффициентa передачи от частоты имеет не только транзистор, но и интегрирующая цепь. Поэтому упрощенно можно полагать, что переходные процессы, возникающие вследствие внутренней инерционности транзистора, описываются дифференциальным уравнением первого порядка с постоянной времени r. В этом случае для расчетов применимо общее соотношение, являющееся решением дифференциального уравнения первого порядка с постоянной правой частью.
Барьерные емкости Су и Ск, являющиеся причиной внешней инерционности транзистора, нелинейны и зависят от приложенных к переходам напряжений. Усреднив их по всему диапазону, напряжения Сэ и Ск можно отнести к внешней схеме ключа, как постоянные. Поэтому Сэ и Ск и называют внешними инерционными параметрами транзистора.
При работе транзистора в активном режиме возникает обратная связь с коллектора на базу транзистора через емкость коллекторного перехода Ск, что также является причиной внешней инерционности транзистора. Внешнюю инерционность из-за действия обратной связи через Ск учитывают, вводя постоянную времени rк Общая постоянная времени транзистора в схеме ключа для активного режима равна сумме постоянных времени, обусловленных внутренними и внешними инерционными факторами транзистора.
Описание переходных процессов. Рассмотрим переходные процессы, происходящие в ключе при подаче на его вход прямоугольного импульса. Временные диаграммы, иллюстрирующие изменение тока базы iб(t), заряда Q(t),.тока коллектора Iк(t) и т. д. изображены на рис. 4.
Исходное состояние. В исходном состоянии транзистор находится в режиме отсечки, поскольку напряжение на входе Uвх= U0 меньше порога отпирания. Рабочая точка на семействе выходных характеристик и на передаточной характеристике находится в точке А (см. рис. 1.14, 1.17).
Включение. В момент t=t1 на вход ключа подается положительный импульс, амплитуда которого больше порогового значения. Этот импульс вызывает появление в цепи базы перепада тока. Ток базы во время действия входного импульса можно считать практически неизменным, так как входное сопротивление транзистора обычно много меньше сопротивления R. Под воздействием входного перепада тока транзистор переходит последовательно из области отсечки в активную область и далее в область насыщения.
Процесс включения транзисторного ключа обычно подразделяют на два этапа: задержка включения (или подготовка включения) и формирование фронта выходного импульса.
Задержка включения. Интервал времени t1-t2 от момента подачи входного импульса до начала нарастания коллекторного тока, определяет время задержки включения tЗ. Транзистор в это время находится в режиме отсечки.
Возникновение задержки при включении ключа объясняется зарядом барьерных емкостей Сэ и Ск током БАЗЫ. В процессе заряда напряжение на емкостях Сэ и Ск под действием входного импульса нарастает от значения U0, стремясь к U1. В тот момент, когда напряжение на базе достигает порогового значения Un, эмиттерный переход открывается и транзистор переходит из режима отсечки в активный режим.
Рабочая точка на нагрузочной прямой за время задержки не меняет своего положения.
Заряд барьерных емкостей происходит в цепи первого порядка с постоянной времени rЗ=R(Ск+Сэ). Практически время задержки весьма мало, поэтому им часто пренебрегают.
Формирование фронта происходит в интервале t2-t3 . В момент времени t2 напряжение на базе становится равным пороговому, транзистор открывается и переходит в активный режим. Начинается накопление заряда неосновных носителей, инжектированных в базу. По мере увеличения заряда увеличивается ток коллектора, который пропорционален Q(t), и уменьшается напряжение на коллекторном переходе. Скорость накопления заряда в базе определяет скорость нарастания коллекторного тока.
В момент t3, когда заряд достигает граничного значения коллекторный переход смещается в прямом направлении и транзистор переходит в состояние насыщения. Рост коллекторного тока прекращается, поскольку он оказывается ограниченным параметрами внешней цепи:
/К = / К нас = Ек / Rк .
За время формирования фронта рабочая точка по нагрузочной прямой перемещается из точки А в точку Б (см. рис. 2). Интервал времени t2-t3, в течение которого коллекторный ток меняется от 0 до /К нас, называется длительностью фронта. Транзистор в это время находится в активном режиме.
Накопление избыточного заряда. После окончания формирования фронта в момент времени t3 транзистор переходит в режим насыщения. Коллекторный переход смещается в прямом направлении. Коллекторный ток практически постоянен и равен / К нас . Однако заряд в базе продолжает нарастать, стремясь к стационарному значению, определяемому входным током.
Избыточный заряд возникает только в том случае, если ток базы превышает значение /Б нас. В режиме насыщения нарушается пропорциональность между током базы и током коллектора. Коллекторный ток уже не может следовать за базовым, так как он ограничен сопротивлением Rк- В противном случае закон изменения коллекторного тока повторял бы закон изменения заряда Q(t), вызываемое током базы. Необходимо отметить, что при переходе транзистора в режим насыщения изменяется время жизни неосновных носителей в базе, которое для области насыщения обозначается символом Тнас и называется постоянной времени транзистора в области насыщения. Постоянная времени Тнас определяет как процесс накопления, так и стационарный уровень заряда в базе. Стационарного значения заряд достигает за время, не меньшее, чем 2,3* Тнас после начала накопления. Если длительность входного импульса меньше этого значения, то заряд в базе к концу будет меньше Qст.
В режиме насыщения рабочая точка на нагрузочной прямой остается в точке Б, а на передаточной характеристике перемещается из точки Д в точку Б.
Выключение. В момент времени t4 действие входного отпирающего импульса заканчивается. Возникает обратный ток базы. Под воздействием процесса рекомбинации заряд неосновных носителей в базе уменьшается. Спустя некоторое время транзистор выходит из насыщения и переходит в активную область, а затем запирается.
Процесс выключения можно разделить на два этапа: рассасывание избыточного заряда и формирование спада импульса.
Рассасывание избыточного заряда. Происходит в течение интервала времени t4-t5. Этот процесс является причиной возникновения задержки при выключении ключа. Заряд неосновных носителей в базе мгновенно измениться не может, поэтому требуется время, чтобы он уменьшился от стационарного значения в режиме насыщения Qст до граничного значения. В течение этого времени транзистор остается в режиме насыщения, ток коллектора постоянен и равен /Кнас, а Uк_=Uк нас=Uo.
Время, в течение которого транзистор продолжает оставаться в режиме насыщения после окончания входного импульса, называется временем рассасывания.
К концу процесса рассасывания рабочая точка на передаточной характеристике перемещается в точку Д, а положение рабочей точки на нагрузочной прямой не меняется.
Формирование среза импульса. Начинается в момент времени t5,, когда избыточный заряд уменьшается до нуля. Коллекторный переход смещается в обратном направлении, и транзистор из режима насыщения переходит в активный режим. В течение интервала t5-t6, называемого длительностью среза, заряд в базе продолжает убывать, уменьшаясь от Qrp до нуля, рабочая точка как на нагрузочной прямой, так и на передаточной характеристике возвращается в точку А. Коллекторный ток в активном режиме пропорционален заряду и изменяется от /Кнас, стремясь по экспоненциальному закону к 0. В момент t6 транзистор запирается и /к=0.
Далее в течение некоторого времени t6,-t7 происходит изменение заряда барьерных емкостей переходов Сэ и Ск. За время этого процесса ток базы уменьшается до нуля, а на базе устанавливается исходное напряжение Uo.
ВЛИЯНИЕ ИЗМЕНЕНИЯ ПАРАМЕТРОВ СХЕМЫ КЛЮЧА НА ЕГО РАБОТУ
Значения элементов и напряжений в схеме транзисторного ключа влияют на длительности соответствующих процессов.
Изменение параметров коллекторной цепи Rк и Ек приводит к изменению тока /к нас и влияет на длительности всех трех процессов. Например, уменьшение Ек до Е’к ведет к уменьшению /К нас до /’К нас. При включении ключа амплитуда коллекторного тока будет нарастать до меньшего значения /К нас в цепи с неизменной постоянной времени; это приведет к уменьшению длительности фронта. При уменьшении
/K нас транзистор выходит на границу насыщения при меньшем токе базы, поэтому все дальнейшее увеличение тока базы вызывает накопление избыточного заряда, что ведет к увеличению времени рассасывания.
Спадать коллекторный ток начнет с меньшего значения, поэтому время среза уменьшится. Уменьшение /К нас из-за увеличения Rк влияет на изменение времен двояко. С одной стороны, при уменьшении /К нас уменьшаются длительности фронта и среза и увеличивается время рассасывания. Но, с другой стороны, особенно при использовании дрейфовых транзисторов, увеличивается постоянная времени транзистора в активном режиме вследствие увеличения слагаемого, обусловленного внешним инерционным фактором. Это увеличение приводит к увеличению tc, поэтому изменением Rк можно изменять потребляемую мощность и пропорционально ей изменять быстродействие при условии, что длительность рассасывания сравнительно мала.
Прямой ток включения базы /Б можно увеличить, повысив напряжение Uвх. При этом длительность фронта уменьшается из-за увеличения скорости нарастания тока, а длительность рассасывания увеличивается вследствие накопления избыточного заряда. Длительность среза остается неизменной. При изменении сопротивления R, например уменьшении, происходит пропорциональное увеличение тока базы, процесс включения протекает быстрее. Сокращается и процесс выключения, поскольку ток /К спадает от /К нас до нуля с большей скоростью, стремясь к более низкому уровню. Время рассасывания увеличивается.
Рассмотренные примеры показывают, что изменение режимов работы транзистора, работающего по схеме ключа, не позволяет заметно повысить его быстродействие, поскольку при неизменной потребляемой мощности уменьшение длительности одних процессов сопровождается увеличением длительности других. Для повышения быстродействия используют более . сложные схемы ключей.
СХЕМЫ КЛЮЧЕЙ С ПОВЫШЕННЫМ БЫСТРОДЕЙСТВИЕМ
Как следует из рассмотренного выше, быстродействие ключа можно увеличить, переключив его током базы, временная диаграмма которого представляет на рис. 5,а. В момент t1 для ускорения процесса ключ включается большим током /Б1, затем в момент времени t2 ток уменьшается до значения /’Б1, т. е. транзистор выводится на границу режима насыщения для уменьшения длительности рассасывания. В момент t3 транзистор запирается большим базовым током /Б2.
Ключ с форсирующей (ускоряющей) емкостью. Форму тока, близкую к оптимальной, можно получить, шунтировав резистор R конденсатором (рис. 1.23,6). При появлении входного напряжения в момент t1 транзистор начинает открываться. Базовый ток транзистора в первый момент замыкается через конденсатор, так как последний представляет собой малое сопротивление, близкое к короткому замыканию для скачка тока. Вследствие этого в момент /1 базовый ток имеет большое значение: /Б1 =( Uвх — Uбэ ) / RИ
где Ru — внутреннее сопротивление источника сигнала (например, выходное сопротивление предыдущего ключа); обычно Ru >> R.
Этот ток быстро заряжает барьерные емкости и накапливает заряд в базе транзистора. Благодаря большому току уменьшаются длительности задержки и фронта. По мере заряда конденсатора ток базы уменьшается до значения /’Б1 = Uвх / R , определяемого сопротивлением R, которое выбирается из условия насыщения. Благодаря этому к моменту окончания входного импульса в базе накапливается сравнительно небольшой избыточный заряд.
В момент t3 окончания входного сигнала конденсатор С разряжается через базу транзистора, создавая большой запирающий ток базы /Б2 = Uc / Ru .
Этот ток ускоряет процессы рассасывания и выключения транзистора.
Емкость С не должна быть слишком малой, иначе длительность всплесков токов будет меньше, чем длительность процессов переключения, которую они уменьшают. При этом процесс переключения будет протекать в основном при сравнительно малых токах базы, т. е. не будет ускоряться.
Нельзя выбирать ускоряющий конденсатор и слишком большой емкости, поскольку в этом случае: во-первых, ток базы не успеет уменьшиться до уровня /Б2 к концу входного импульса и в базе накопится весьма большой избыточный заряд; во-вторых, конденсатор не будет успевать заряжаться до уровня входного импульса к моменту его окончания, процессы рассасывания и включения будут протекать медленнее.
Ключ с нелинейной обратной связью. Обеспечить большой базовый ток включения и одновременно уменьшить время рассасывания можно, используя схему ключа с отрицательной обратной связью, в которой не допускается насыщенный режим работы транзистора. Особенно важно это при использовании высокочастотных дрейфовых транзисторов, отличающихся тем, что у них время жизни неосновных носителей в режиме насыщения значительно больше, чем в активном режиме. Схема ненасыщенного ключа приведена на рис. 6.
Нелинейная отрицательная обратная связь осуществляется через диод VD. Состояние диода определяется полярностью и величиной напряжения, действующим между анодом и катодом диода. В исходном состоянии диод закрыт за счет высокого положительного потенциала на катоде. Отрицательная обратная связь не действует. При подаче большого входного сигнала Uвх = U1, входной ток вначале течет через R1 и R2 в базу транзистора, обеспечивая большой ток включения /Б1. В процессе отпирания транзистора напряжение на коллекторе уменьшается от Ек, стремясь к 0, и в тот момент, когда напряжение между базой и коллектором уменьшаясь достигнет значения, равного падению напряжения от входного тока на R2, диод VD открывается и часть входного тока будет протекать через диод и коллектор на землю в обход базы. В результате ток базы уменьшается до значения /’Б1 , и транзистор не входит в насыщение. Сопротивление R2 выбирают таким, чтобы падение напряжения на нем за счет тока базы было больше падения напряжения на открытом диоде. В этом случае напряжение между коллектором и базой остается положительным, хотя и небольшой величины, и вхождение транзистора в насыщение предотвращается.
При изготовлении ключа методами микроэлектроники в цепи обратной связи иногда используются диоды Шотки, выполненные в едином технологическом процессе с интегральным транзистором также с барьером Шотки. Диод Шотки представляет собой переход металл — полупроводник.
Для работы ключа с нелинейной обратной связью необходимо, чтобы диод, включенный параллельно коллекторному переходу транзистора, открывался при сравнительно малом напряжении, когда коллекторный переход еще закрыт. Это и обеспечивает диод с барьером Шотки.