Как проверить сопротивление изоляции кабеля мультиметром
Перейти к содержимому

Как проверить сопротивление изоляции кабеля мультиметром

  • автор:

Как проверить целостность изоляции

Обрыв силового кабеля — самая распространенная причина неработающей розетки. Речь про его случайное повреждение при выполнении ремонтных работ, некачественный монтаж и другие причины, когда отсутствует подача напряжения. Проверить целостность силового кабеля поможет, так называемая «прозвонка», которую обязательно делают после выполнения электромонтажных работ, при поиске причин неисправности в первую очередь.

Кроме этого, подобная проверка силового кабеля на целостность позволяет определить состояние изоляции, что важно для обеспечения безопасности, выполнить идентификацию отдельных проводов, когда цифровая или цветовая маркировка отсутствуют.

Как проверить силовой кабель?

Как проверить силовой кабель?

Для проверки используют тестеры или мультиметр. Мультиметр более предпочтителен за счет более широких возможностей. При использовании мультиметра можно вести работу в режиме прозвонки и контроля сопротивления.

Для прозвонки достаточно выполнить следующие действия:

  • перевести мультиметр в режим прозвона (значок обычно представляет набор из нескольких скобок разного размера);
  • подключить контрольные щупы к концам контролируемого провода;
  • если появился звук, то кабель целый, а если его нет, то возможен обрыв или неправильное подключение.

В режиме прозвона можно определить наличие замыкания между двумя проводниками. В этом случае один щуп подключают к первому проводу, а второй к другому. Если появился звуковой сигнал, то есть КЗ.

Чтобы проверить силовой кабель на целостность в режиме сопротивления, надо выполнить следующие действия:

  • настроить режим измерения на минимально возможное значение (обычно 200 Ом);
  • подключить контрольные щупы к контролируемому проводу;
  • проверить значение (если оно равно нулю или какому-то значению, отличному от единицы, то кабель целый).

Для контроля наличия замыкания в этом режиме при подключении щупов к двум разным соседним проводам сопротивление должно быть бесконечным.

При отсутствии мультиметра можно использовать самодельный тестер, представляющий комплект из источника питания (батарейки) и лампочки. Если последняя после подключения будет гореть, то цепь целая.

Проверка состояния изоляции

Проверка состояния изоляции

Регулярная перегрузка сети может приводить к перегреву и разрушению изоляции, что ведет к короткому замыканию, утечкам тока с риском поражения человека или домашних животных. Для контроля подобной ситуации надо проверить силовой кабель на целостность с помощью измерения его изоляции.

Для этого используют мультиметр или мегаомметр следующим образом:

  • устанавливается максимальный диапазон измерения сопротивления;
  • щупы подключаются к проводам и выжидается несколько секунд стабилизации показателей;
  • если на индикаторе отображается единица, то с изоляцией все в порядке, а при нуле есть короткое замыкание (промежуточное значение может говорить про наличие утечки либо электромагнитных помехах, которые можно исключить переключением прибора на диапазон в 200 кОм, где параметры в последнем случае будут «прыгать»).

Как найти место обрыва?

Как найти место обрыва?

Если прозвонка проводов мультиметром показала обрыв, то надо определить место для выполнения ремонта. Поможет здесь тон генератора, который определяет место прокладки скрытой проводки, обрывы с точностью до сантиметра. Прибор представляет генератора звука с датчиком, которым проводится в месте потенциального расположения проводки. Для работы с устройством надо отключить напряжение и контролировать изменение звука.

Если у вас возникли проблемы с целостностью силовых кабелей, и вы подозреваете их обрыв, появление короткого замыкания, то для замены подобрать и купить подходящие маркоразмеры вы всегда можете в нашей компании.

Как измерить защитный слой изоляции проводов мультиметром

Мультиметры могут измерять только напряжение, ток и сопротивление или вообще что-то еще. Мультиметр просто не способен измерить свойства изоляции проводов.

Провода и кабели испытываются местными бюро качества и технического надзора или испытательными центрами на специальных испытательных приборах, либо поручаются производителям для испытаний.

Например, в соответствии со стандартом GB/T5023.3-2008; обычно используемый провод с медным сердечником из поливинилхлорида (ПВХ) или силовой кабель BV450 / 750 1 × 1,5 провод, для которого требуется длина 5 метров, в специально изготовленной раковине. Дайте температуре воды постепенно подняться до (температура 70 ± 2 град.) и выдержать не менее 2 часов. Значение сопротивления изоляции следует проверить, подав соответствующее напряжение постоянного тока на профессиональном испытательном приборе. Этот процесс будет разделен на 5 раз.

Напряжение постоянного тока внутренней батареи питания мультиметра, используемого людьми, обычно составляет 9 В, и возможности определить и обнаружить характеристики изоляции провода с таким напряжением недостаточны.

Для измерения изоляции кабеля лучше всего использовать шейкер. Результат измерения мультиметром является неточным и может быть только оценен. Однако изоляция кабеля серьезно повреждена, поэтому для выяснения проблемы удобнее воспользоваться мультиметром. Сопротивление между линиями должно быть больше 1 МОм. Если он меньше 1М, будьте осторожны при его использовании, но кабель должен быть защищен от воды или влаги. Если он есть, его необходимо высушить перед тестированием.

Советы по измерению сопротивления цифровым мультиметром

Вот несколько советов по измерению сопротивления цифровым мультиметром:

1) Поскольку тестовый ток измерителя протекает по всем возможным путям между двумя щупами, значение сопротивления, измеренное на резисторе в цепи, обычно отличается от номинального значения резистора.

2) При измерении сопротивления измерительный провод дает погрешность от 0,1 Ом до 0,2 Ом. Если вы хотите измерить сопротивление провода, вы можете соединить кончики щупа и считать сопротивление провода. Вы можете использовать режим относительного значения мультиметра (REL) для автоматического вычитания этого значения сопротивления, если это необходимо. (Информацию об использовании функции относительного значения см. на веб-сайте ресурсов мультиметра Fluke.)

3) В режиме сопротивления выходного напряжения амперметра достаточно, чтобы включить прямое напряжение смещения кремниевого диода или транзистора в цепи. Если вы сомневаетесь, нажмите C, чтобы подать меньший ток на следующий более высокий диапазон. Если полученное значение больше, выберите большее значение. Непрерывность — это быстрый тест сопротивления «годен/не годен», который различает разомкнутые и замкнутые цепи.

Можно ли проверить сопротивление изоляции мультиметром?⚡

Иногда к нам в чат или на почту приходят вопросы вроде «как измерить сопротивление изоляции мультиметром?» или «можно ли проверить сопротивление изоляции мультиметром?». Не буду создавать интригу, и скажу сразу: мультиметром проверить сопротивление изоляции нельзя. Для решения такой задачи он не предназначен: во-первых, он не рассчитан на измерение таких больших сопротивлений, во-вторых, не может генерировать испытательное напряжение.

Да, чисто технически вы можете подключить два «крокодила» к паре жил кабеля и измерить сопротивление. Прибор покажет, что полученное значение лежит за пределами его шкалы измерений. На самом деле смысла в таком измерении нет абсолютно никакого, поскольку для измерения сопротивления изоляции прибор должен создавать повышенное напряжение, при котором и происходит замер. Величину испытательного напряжения нужно смотреть в таблице 37 приложения 3.1 к ПТЭЭП. Вы найдете это приложение в разделе «Файлы для скачивания» в конце статьи.

Для того чтобы измерить сопротивление изоляции существуют специальные приборы, способные замерять большие величины сопротивлений — мегомметры!

Заказать проверку изоляции

Для того чтобы измерить сопротивление изоляции существуют специальные приборы, способные замерять большие величины сопротивлений — мегомметры!

Заказать проверку изоляции

Почему невозможно замерить сопротивление изоляции мультиметром?

  1. отключить кабель в щите и снять нагрузку, т.е. разомкнуть цепь с обоих концов;
  2. подключить измерительный прибор к двум жилам, между которыми будем мерить сопротивление;
  3. подать повышенное напряжение и измерять наличие тока утечки с одной жилы на другую через изоляцию;
  4. зная значения напряжения и тока прибор рассчитывает величину сопротивления.

Выбор испытательного напряжения зависит от требований нормативно-технической документации (ПУЭ, ПТЭЭП, ГОСТов и т.д.). Например, кабели и провода с сечением жил до 16 мм2 включительно относят к электропроводкам и измеряют их сопротивление изоляции на напряжение 1000В, а кабели с сечением 25 мм2 и более считаются силовыми кабельными линиями и для них используют напряжение 2500В. Это надо учитывать при выборе мегомметра, поскольку многие приборы способны генерировать только напряжение до 1000В.

Работать с мегомметром может обученный электротехнический персонал с группой допуска по электробезопасности не ниже II, но чтобы составленный по результатам измерений протокол имел юридическую силу, необходимо, чтобы замеры сопротивления изоляции проводили работники электроизмерительной лаборатории!

Также существуют мультиметры со встроенным мегомметром, например, Fluke 1577 или Fluke 1587, но стоимость таких приборов, сейчас составляет от 50000 до 100000 рублей, что делает их недоступными для большинства потребителей. Целесообразнее заказать в специализированной организации весь комплекс испытаний или, если отчет об испытаниях электроустановки или протокол проверки сопротивления изоляции не нужен, можно арендовать мегомметр на сутки и проверить все самостоятельно.

Измерение сопротивления изоляции: руководство!

Измерение сопротивления изоляции

Для безопасной работы все электрические установки и оборудование должны иметь сопротивление изоляции, соответствующее определенным характеристикам. Независимо от того, идет ли речь о соединительных кабелях, оборудовании секционирования и защиты, трансформаторах, электродвигателях и генераторах – электрические проводники изолируются с помощью материалов с высоким электрическим сопротивлением, которые позволяют ограничить, насколько это возможно, электрический ток за пределами проводников.

Из-за воздействий на оборудование качество этих изоляционных материалов меняется со временем. Подобные изменения снижают электрическое сопротивление изоляционных материалов, что увеличивает ток утечки, который, в свою очередь, приводит к серьезным последствиям, как с точки зрения безопасности (для людей и имущества), так и с точки зрения затрат на остановки производства.

Регулярная проверка изоляции, проводимая на установках и оборудовании в дополнение к измерениям, выполняемым на новом и восстановленном оборудовании во время ввода в эксплуатацию, помогает избегать подобных инцидентов за счет профилактического обслуживания. Данные испытания дают возможность обнаружить старение и преждевременное ухудшение изоляционных свойств прежде, чем они достигнут уровня, способного привести к описанным выше инцидентам.

Проверка: испытание или измерение?

На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.

 испытание электрической прочности изоляции

Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования установок для испытания кабелей повышенным напряжением. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.

измерение сопротивления изоляции является неразрушающим тестированием.

При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).

Типовые причины неисправности изоляция

Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.

Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.

1. Электрические нагрузки

В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.

2. Механические нагрузки

Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.

3. Химические воздействия

Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.

4. Напряжения, связанные с колебаниями температуры:

В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

5. Загрязнение окружающей среды

Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.

В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.

Типовые причины неисправности изоляция

Внешние загрязнения изоляции

В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.

Принцип измерения сопротивления изоляции и влияющие на него факторы

Принцип измерения сопротивления изоляции и влияющие на него факторы

Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.

На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.

Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:

  • Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
  • Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
  • Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.

На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.

Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.

На графике три тока показаны в зависимости от времени

Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.

Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

Влияние температуры

Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.

Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.

Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

Коррекция сопротивления изоляции в зависимости от температуры

Методы тестирования и интерпретация результатов

Кратковременное или точечное измерение

Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.

Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.

На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.

пример показаний сопротивления изоляции для электродвигателя

В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.

Резкое падение в точке B указывает на повреждение изоляции.

В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.

Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

Показатель поляризации (PI)

При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.

Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.

Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.

PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение PI (нормы)

Коэффициент диэлектрической абсорбции (DAR)

Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:

DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение DAR (нормы)

Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)

Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.

Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.

Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.

Метод испытания рассеиванием в диэлектрике (DD)

Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.

Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.

Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:

DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)

Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *