§12. Строение электронных оболочек атома

Общее число электронов в атоме известно — оно равно заряду ядра. Но электроны, обладая различным запасом энергии, по-разному располагаются в атоме. Чем выше энергия электрона, тем дальше он может находиться от ядра, и, следовательно, тем больше по размеру его орбиталь. И наоборот, электроны, обладающие меньшей энергией, движутся в основном вблизи ядра. Так образуются как бы оболочки (слои) из электронов с близкими значениями энергии, которые так и называются — электронные оболочки (электронные слои).
Электронный слой — это совокупность электронов с близкими значениями энергии.
Число электронов на том или ином слое различно и в основном определяется их энергией. На первом электронном слое максимально может находиться 2 электрона. Схематично для атомов водорода и гелия это можно изобразить так, как показано на рисунке.


У атомов следующего элемента периодической системы лития Li имеется уже три электрона. Два расположены на первом электронном слое, который считается завершенным. Третий электрон обладает большей энергией, поэтому находится дальше от ядра, начиная формирование второго электронного слоя, который является внешним по отношению к первому слою.

Графическое изображение распределения электронов по слоям называется электронной схемой атома.
У элементов, следующих за литием, возрастает заряд ядра атомов, а следовательно, и число электронов. Они постепенно заполняют второй электронный слой вплоть до 8 электронов у атома неона Ne.

Восемь — это максимальное число электронов второго электронного слоя. У атома натрия Na, следующего за неоном элемента, начинается заполнение третьего электронного слоя: от одного электрона у атома натрия Na до восьми у атома аргона Аr.


Упрощенно электронные схемы атомов изображают таким образом:

Внешний электронный слой, который содержит 8 электронов, называется завершенным.
Нетрудно сделать вывод, что число электронных слоев в атоме любого элемента совпадает с номером периода, в котором он находится. В этом заключается физический смысл (сущность) номера периода.
Сопоставим электронное строение атомов элементов первых трех периодов. На внешнем электронном слое атомов элементов одной группы содержится одинаковое число электронов. Так, литий Li, натрий Na, калий К имеют на внешнем слое по одному электрону, бериллий Be, магний Mg — по два, бор В, алюминий Аl — по три и т. д. У атомов благородных газов неона Ne и аргона Аr на внешнем слое по 8 электронов. Следовательно, строение внешнего электронного слоя атомов периодически повторяется.

Электроны внешнего слоя связаны с ядром слабее, чем остальные, поэтому подвижны.
Они определяют химические свойства данного атома, т. е. его способность взаимодействовать с другими атомами. Такие электроны называют валентными.
Нетрудно заметить, что у атомов элементов A-групп число валентных электронов равно номеру группы, обозначенному римской цифрой. Эта закономерность отражает физический смысл номера А-группы.
Именно в этом заключается физический смысл (сущность) периодическою закона.
ЭТО ИНТЕРЕСНО
Посмотрим в таблицу Д.И. Менделеева на количественное распределение элементов в периодах:
в первом периоде 2 элемента,
во втором периоде 8 элементов,
в третьем периоде 8 элементов,
в четвертом периоде 18 элементов,
в пятом периоде 18 элементов,
в шестом периоде 32 элемента,
в седьмом периоде 32 элемента.
А теперь посмотрим на распределение электронов по слоям:
на первом слое максимум 2 электрона,
на втором слое максимум 8 электронов,
на третьем слое максимум 8 электронов,
на четвертом слое максимум 18 электронов,
на пятом слое максимум 18 электронов,
на шестом слое максимум 32 электрона,
на седьмом слое максимум 32 электрона.
Если вы забыли максимальное количество электронов на слоях, достаточно посмотреть в таблицу Д. И. Менделеева на количество элементов в периоде, помня, что номер периода соответствует количеству электронных слоев.
Итак, сегодня мы узнали:
1. Электроны с близкими значениями энергии составляют электронный слой.
2. Число электронных слоев в атоме любого элемента равно номеру периода, в котором он находится.
3. На внешнем электронном слое атомов максимально может находиться не более восьми электронов. Такой электронный слой называется завершенным.
4. Электроны внешнего слоя называются валентными.
5. Периодическая повторяемость свойств атомов химических элементов объясняется периодическим повторением строения их внешних электронных слоев.
Пройти тест по параграфу
Строение атома и электронные конфигурации 1.0
Атом можно представить как конструктор «Лего», который можно собрать из более простых (элементарных) частиц. У разных атомов число «деталек» может быть различным. Об этом и о других особенностях строения атома поговорим в статье.
Строение атома
Великие ученые и философы древности упорно бились над вопросом, из чего же состоят вещества, которые их окружают. Впервые идею о том, что все тела живой и неживой природы состоят из мельчайших частиц — атомов — высказал древнегреческий ученый Демокрит целых 2500 лет назад!
Что же из себя представляет атом?
Атом — это мельчайшая химически неделимая частица вещества.
Атомы могут соединяться друг с другом с помощью химических связей в различной последовательности, образуя более сложные частицы — молекулы.
Можно провести аналогию: атом — это отдельный человек, а молекулы — группы людей, объединенные общим признаком (семья, одноклассники, коллеги, любители кошек, любители собак).
Молекулы — это мельчайшие частицы, которые состоят из атомов. Они являются химически делимыми.
Долгое время считалось, что атом нельзя разделить далее на составляющие. Но с развитием науки ученые-физики выяснили, что атом состоит из более мелких, или элементарных частиц — протонов (p), нейтронов (n) и электронов (ē). В центре атома располагается ядро, которое состоит из протонов и нейтронов (их общее название нуклоны), а вокруг ядра вращаются электроны.
Электроны являются элементарными частицами, то есть неделимыми мельчайшими частицами. Протоны и нейтроны состоят из более мелких кварков, однако в рамках школьной программы кварки не рассматриваются, поэтому протоны и нейтроны мы также относим к элементарным частицам.

Каждая из элементарных частиц в атоме имеет свой заряд и массу.

Можно представить атом как Солнечную систему, где вокруг ядра (Солнца) по орбитам вращаются электроны (планеты). Это так называемая планетарная модель атома.

Тогда более точно определение атома будет звучать так.
Атом — электронейтральная химически неделимая частица, которая состоит из положительно заряженного ядра и вращающихся вокруг него отрицательно заряженных электронов.
Перейдем от теоретической информации к практической и научимся определять количество элементарных частиц в заданном атоме. Этот навык очень пригодится нам при решении заданий первой части!
Как определить количество элементарных частиц
Сейчас мы научимся определять количество протонов, нейтронов и электронов в атоме любого химического элемента. В этом нам поможет периодическая система Д. И. Менделеева.
Давайте рассмотрим ячейку с углеродом в Периодической системе:

В верхней части ячейки располагается порядковый номер элемента (целое число) — номер элемента в таблице Менделеева по порядку.
Под ним располагается относительная атомная масса (нецелое число) — масса атома данного элемента, выраженная в атомных единицах массы (атомная единица массы (а. е. м.) равна 1/12 массы атома углерода). Относительная атомная масса, округленная до целого числа, называется массовым числом.
Все эти характеристики связаны с количеством элементарных частиц в атоме следующим образом.
- Порядковый номер элемента = число протонов в ядре = заряд ядра атома = число электронов в атоме
(№ элемента = p = Z = ē)
- Число нейтронов = массовое число – порядковый номер
(n = Ar — № элемента)
Разберем на примере углерода. Его порядковый номер — 6, значит, число протонов и электронов равно 6, заряд ядра +6.
Атомная масса равна 12,01115, округлим до 12 и получим массовое число. Тогда количество нейтронов будет равно 12 — 6 = 6.
| Элементарная частица | Как нашли? | Значение |
| Число электронов | Порядковый номер | 6 |
| Число протонов | Порядковый номер | 6 |
| Число нейтронов | Массовое число — порядковый номер | 6 = 12-6 |
Не всегда мы встречаемся только с атомами из таблицы Менделеева, иногда нам попадаются атомы элементов с заданной массой, отличной от табличной. Что это за атомы и как с ними работать? Сейчас узнаем.
Изотопы
В разновидностях одного и того же химического элемента может быть различное число элементарных частиц. Такие разновидности атома называются изотопами.
Изотопы — атомы одного химического элемента с разной атомной массой, имеющие равное число электронов (е) и протонов (p), но разное число нейтронов (n).
Давайте рассмотрим это на примере атома водорода.

Первый случай: ядро атома водорода состоит из одного протона (масса ядра = 1 атомная единица массы или а.е.м.). Такой атом называется протием, именно он указан в периодической системе Д.И. Менделеева.

Добавим к этому ядру один нейтрон, тогда масса ядра будет равна 2 а.е.м. Мы получили вторую разновидность атома водорода — дейтерий.
Если добавить второй нейтрон к такому ядру, то мы получим тритий. Все три варианта водорода являются изотопами.
На главную сцену выходит электрон! Поговорим о его уникальных свойствах и разберем одну из самых трудных и интересных тем в химии.
Квантовые числа
У каждого взрослого человека есть жизненно важные документы: паспорт, СНИЛС, медицинский полис и другие. У электрона тоже есть свои важнейшие «документы» — набор квантовых чисел:
- главное квантовое число (n);
- орбитальное квантовое число (l);
- магнитное квантовое число (ml);
- спиновое квантовое число (ms).
Главное квантовое число (n) характеризует номер энергетического уровня атома.
Главное квантовое число численно равно номеру периода.
Принимает значения: 1, 2, 3,….∞. Однако на сегодняшний день максимальным главным квантовым числом является 7, так как в таблице Менделеева всего 7 периодов. Например, главное квантовое число атома фосфора (P) равно трем, так как этот элемент находится в третьем периоде.
Орбитальное квантовое число (l), или его еще называют побочным квантовым числом, определяет форму атомных орбиталей (траекторий движения электрона).

Определить l можно по формуле:
l=n-1, где
n — это главное квантовое число.
Максимально возможное орбитальное число всегда будет на единицу меньше главного квантового числа.

Важно помнить, что количество атомных орбиталей на каждом уровне равно номеру этого уровня.
Например, фосфор, находящийся в третьем периоде, имеет на первом энергетическом уровне одну атомную орбиталь (s), на втором — две (s и p), на третьем — три (s, p и d). То есть атом фосфора имеет три разных по энергии, но одинаковые по форме s-орбитали – на первом, втором и третьем энергетических уровнях.
Магнитное квантовое число (ml) определяет количество атомных орбиталей (ячеек).
Оно рассчитывается по формуле:
ml =2l+1, где
l – это орбитальное квантовое число.
Например, у атома фосфора главное квантовое число n=3; орбитальное квантовое число l=3-1=2 (d-орбиталь); магнитное квантовое число ml =2 · 2+1=5. Таким образом делаем вывод, что на третьем (n) энергетическом уровне у фосфора находится пять (ml) различных по энергии d-орбиталей (l).
Спиновое квантовое число (ms) характеризует собственное движение электрона — спин.
Как мы уже сказали, спиновое квантовое число характеризует движение электрона вокруг ядра атома. То есть атом может двигаться как по часовой, так и против часовой стрелки. Это очень напоминает спиннер (вращающаяся игрушка). Более того, понятия «спиновый» и «спиннер» созвучны, что позволяет без труда вспомнить смысл этого квантового числа.

Электроны на атомной орбитали мы схематично изображаем стрелками вверх (↑) и вниз (↓), обозначая, что они имеют различный спин: для ↑ ms = +½; для ↓ ms = -½. Например, для каждого неспаренного электрона атома фосфора на 3p орбитали ms = +½.
Расчеты главного, орбитального и магнитного квантовых чисел приведены в таблице.

Квантовые числа позволяют нам собрать информацию о строении атома химического элемента, о распределении его электронов, чтобы затем составить «паспорт».
Какой «паспорт» у атомов?
Знания о числе энергетических уровней, форме атомных орбиталей и их количестве изложены в «паспорте» атома. Речь идет о распределении электронов по энергетическим уровням. Такой «паспорт» называется электронной конфигурацией.

Электронная конфигурация — это формула, отражающая распределение электронов по электронным оболочкам атома (энергетическим уровням).

Заполнение орбиталей определяется принципом Паули.
Принцип Паули гласит: «На любой орбитали может быть не более двух электронов, при этом их спины (и заряды) противоположны».
То есть при заполнении орбитали один электрон будет обозначаться ↑, а второй направлен противоположно и обозначается ↓, итого ячейка будет выглядеть вот так:

Заполнение подуровней тоже регулируется определенным образом, согласно правилу Гунда (Хунда):
«Суммарное значение спинового квантового числа электронов на подуровне должно быть максимальным».
Это означает, что в каждой из орбиталей подслоя заполняется сначала один электрон, а второй электрон добавляется только после заполнения всех орбиталей хотя бы одним электроном.
Тут все как в общежитии — сначала каждому студенту дают собственную комнату, но если после этого кому-то еще не хватило места, то новый студент подселяется к кому-то со своей комнатой.

Атомные подуровни заполняются электронами в порядке увеличения их энергии. Этот порядок выглядит следующим образом:
1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s → …
Почему так? Данный порядок определяется правилом Клечковского.
- Заполнение электронами атомных орбиталей идет от орбиталей, обладающих меньшим значением суммы главного и орбитального квантового числа (n+l), к орбитали с большим значением суммы.
- Если сумма n+l одинакова, то электрон располагается на орбитали с меньшим значением n, то есть ближе к ядру.

При заполнении электронами ячеек мы описываем так называемое основное состояние. Это такое состояние атома, при котором энергия системы минимальна. Его состояние можно определить как «веселое»: в атоме все спокойно и в порядке.
Но может быть и другая ситуация, когда на электроны оказывается какое-то воздействие. Тогда происходит процесс, похожий на развод пары в человеческом мире. В результате воздействия те электроны, которые находились на орбитали вдвоем и были спаренными, могут друг с другом «поссориться» и «разъехаться» по разным орбиталям.
Тогда атом можно определить как «грустный»: электроны ссорятся, атом грустит. В химии это состояние и называется возбужденным. Такой «развод» возможен только в пределах одного энергетического уровня.

Теперь мы знаем, что такое «паспорт» атома химического элемента. Однако, как расписать электронную конфигурацию иона?
Ион — это заряженная частица, которая образуется в результате отдачи или присоединения электронов атомами или группой атомов.
Анион — отрицательно заряженный ион.
Катион — положительно заряженный ион.
Электронную конфигурацию ионов можно написать по тем же правилам, что и электронную конфигурацию атомов. Однако при этом нужно учесть количество электронов, которое отдает или принимает атом, чтобы верно определить конфигурацию внешнего (последнего) уровня.

Чтобы легче было запомнить, рассмотрим следующую аналогию: анион своровал электроны, плохо поступил и стал отрицательным персонажем. Воруют, как правило, у кого-то. В данном случае у катиона. Он явно в этой ситуации является положительным персонажем.

Атом может отдать или принять электроны таким образом, чтобы внешний энергетический уровень был максимально заполнен, так как это энергетически выгодно.
Рассмотрим пример с образованием сульфид-аниона S 2- .
- Третий энергетический уровень является внешним для атома серы, на нем располагается 6 электронов, 2 из которых являются неспаренными.
- К этим электронам могут добавиться два «соседа», благодаря которым p-подуровень заполняется полностью и обретает стабильную конфигурацию.
- Так как каждый из электронов имеет отрицательный заряд, равный единице, то суммарно после их присоединения к сере образуется сульфид-анион S2-.

Полностью заполненный подуровень является очень устойчивым. Такую конфигурацию имеют все благородные газы, и к ней стремятся ионы. Однако не стоит забывать, что и полностью пустой подуровень является устойчивым.
Благородные газы — элементы, расположенные в VIIIA группе, имеющие на внешнем энергетическом уровне предельное число электронов — 8.

«Всем привет! Я молекула соли с формулой NaCl. Атомы в моем составе имеют заряд: Na + и Cl – . Как же образовалась моя молекула? Хлору из VIIА группы не хватало всего одного электрона, чтобы стать более устойчивым (иметь на внешнем слое 8 электронов), в то время как у атома натрия из IA группы был лишний электрон, который он был не против отдать, чтобы тоже стать более устойчивым (не иметь электронов на внешнем слое). Передача электрона позволила обоим атомам иметь ту конфигурацию, о которой они мечтали, а также образоваться веществу, которое вы, люди, в обычной жизни зовете поваренной солью».
Почему химические элементы стремятся быть похожими на благородные газы?
Благородные газы, они же как настоящие королевские особы, отличаются от всех остальных атомов своей стабильностью. А стабильность им обеспечивает главное богатство всех атомов — предельное число электронов на внешнем уровне — 8 электронов. Благородные газы находятся в отдельной группе (VIIIA), как короли живут в замках, расположенных отдельно от обычных домов.

Вот мы и узнали, что предел мечтаний всех химических элементов иметь схожую с благородным газом электронную конфигурацию. А теперь можно и попрактиковаться.
Закрепим теорию, решив задание, которое может встретиться в №1 ЕГЭ по химии.
Задание. Из указанных в ряду химических элементов выберите два элемента, которые образуют устойчивый положительный ион, содержащий 10 электронов:
1) Na 2) K 3) N 4) O 5) Cl
Решение:
1) Атом натрия (Na) находится в таблице Менделеева под порядковым номером 11. Следовательно, число электронов равно 11. Чтобы образовать ион, содержащий 10 электронов, атому натрия необходимо отдать один электрон. Если атом отдает электроны, он становится положительно заряженным. Значит, этот вариант ответа подходит.
2) Атом калия (K) находится в таблице Менделеева под порядковым номером 19. Следовательно, число электронов равно 19. Чтобы образовать ион, содержащий 10 электронов, атому калия необходимо отдать девять электронов. Однако максимально атом может отдать только 7 электронов. Значит, этот вариант ответа не подходит.
3) Атом азота (N) находится в таблице Менделеева под порядковым номером 7. Следовательно, число электронов равно 7. Чтобы образовать ион, содержащий 10 электронов, атому азота необходимо принять три электрона. Если атом принимает электроны, он становится отрицательно заряженным. Значит, этот вариант ответа не подходит.
4) Атом кислорода (O) находится в таблице Менделеева под порядковым номером 8. Следовательно, число электронов равно 8. Чтобы образовать ион, содержащий 10 электронов, атому кислорода необходимо принять два электрона. Если атом принимает электроны, он становится отрицательно заряженным. Значит, этот вариант ответа не подходит.
5) Атом хлора (Cl) находится в таблице Менделеева под порядковым номером 17. Следовательно, число электронов равно 17. Чтобы образовать ион, содержащий 10 электронов, атому хлора необходимо отдать семь электронов. Если атом отдает электроны, он становится положительно заряженным. Значит, этот вариант ответа подходит.
Ответ: 15
Мы разобрались с тем, что элементы стремятся полностью заполнить внешний энергетический уровень, либо оставить его пустым. А что же такого особенного в этом внешнем слое? На внешнем энергетическом уровне располагаются особенные валентные электроны.
Валентные и неспаренные электроны
Валентные электроны — электроны, способные участвовать в образовании химических связей.
Представим вкусный большой многослойный ягодный торт. Каждый слой — своего рода уровень. На слоях располагаются ягоды, они же электроны. Но самые вкусные (валентные) всегда располагают сверху на торте. То есть валентные электроны могут быть как на внешнем (в качестве украшения торта), так и на предвнешнем (верхнем бисквитном слое) энергетическом уровне.

Поэтому важно научиться определять количество валентных электронов для различных элементов:
- для элементов главных подгрупп — это все электроны внешнего уровня;
- для элементов побочных подгрупп — это электроны внешнего слоя и предвнешнего d-подуровня.
Среди валентных электронов есть как спаренные электроны, так и неспаренные.
Неспаренными называют электроны, которые находятся поодиночке на орбитали атома, соответственно, спаренные — всегда вдвоем.
Например, у атома водорода один неспаренный электрон на внешнем энергетическом уровне, а вот у атома гелия неспаренных электронов уже нет, но так как оба они находятся на внешнем (и в данном случае единственном) энергетическом уровне, они будут валентными.

Запоминалка: существует последовательность чисел, которая позволяет определить количество неспаренных электронов для атомов главных подгрупп: 1-0-1-2-3-2-1-0.
Таким образом, все неспаренные электроны являются валентными, но не все валентные электроны должны быть неспаренными.
Разберем еще один пример задания №1 ЕГЭ по химии.
Задание. Определите, атомы каких из указанных в ряду элементов имеют одинаковое количество неспаренных электронов.
1) Li 2) Ca 3) N 4) Ne 5) H
Решение. Чтобы решить задание, нужно вспомнить последовательность чисел, которая позволяет определить количество неспаренных электроновдля атомов главных подгрупп: 1-0-1-2-3-2-1-0.
Li — элемент IA группы (1-0-1-2-3-2-1-0), значит, у него один неспаренный электрон.
Ca — элемент IIA группы (1-0-1-2-3-2-1-0), значит, у него нет неспаренных электронов.
N — элемент VA группы (1-0-1-2-3-2-1-0), значит, у него три неспаренных электрона.
Ne — элемент VIIIA группы (1-0-1-2-3-2-1-0), значит, у него нет неспаренных электронов.
H — элемент IA группы (1-0-1-2-3-2-1-0), значит, у него один неспаренный электрон.
Ответ: 15
Строение атома — это тема, с которой всегда начинают познание химии, потому что приступать к изучению химических свойств веществ можно только с пониманием поведения элементарных частиц на атомарном уровне. Изучить тему подробнее и разобрать все ее тонкости поможет статья «Особенности строения электронных оболочек атомов переходных элементов».
Фактчек
- Атом — электронейтральная частица, состоящая из ядра и вращающихся вокруг него электронов.
- Электроны располагаются на электронных подуровнях, причем их число определяется порядковым номером элемента.
- Существует группа атомов одного и того же химического элемента, у которых имеется разное число нейтронов. Такие элементы называют изотопами.
- Электроны характеризуются 4 квантовыми числами: n — главное квантовое число, l— орбитальное квантовое число, ml— магнитное квантовое число, ms— спиновое квантовое число.
- Электроны располагаются по ячейкам так, чтобы энергия системы была минимальна.
- Атом стремится обладать наиболее устойчивой электронной конфигурацией, при которой внешний энергетический уровень/подуровень является заполненным. Если к нейтральному атому добавить электроны, то он превращается в анион, если же у него отобрать электроны — образуется катион.
- Для элементов главных подгрупп валентными являются все электроны внешнего уровня. Для элементов побочных подгрупп — это электроны внешнего слоя и предвнешнего d-подуровня.
Проверь себя
Задание 1.
Из чего состоит ядро атома?
- Протонов и нейтронов
- Протонов и электронов
- Нейтронов и электронов
- Протонов, нейтронов и электронов
Задание 2.
Количество каких элементарных частиц отличается у изотопов?
- Протонов
- Нейтронов
- Электронов
- Нейтронов и электронов
Задание 3.
Сколько электронов может максимально находиться на 3 энергетическом уровне?
- 8 электронов
- 18 электронов
- 2 электрона
- 32 электрона
Задание 4.
Какой из энергетических уровней можно назвать внешним?
- Первый энергетический уровень
- Последний энергетический уровень
- Энергетический уровень с наименьшей энергией
- Любой энергетический уровень
Задание 5.
Чему равно количество валентных электронов для элементов главных подгрупп?
- Номеру группы
- Номеру периода
- Порядковому номеру элемента
- Массовому числу элемента
Ответы: 1. — 1; 2. — 2; 3. — 2; 4. — 2; 5. — 1
Как определить число электронных слоев
6.1. Особенности микромира
Законы, по которым «живут»частицы микромира (электроны, нуклоны, атомы, молекулы) сильно отличаются от законов макромира (нашего мира – мира физических тел). Многое в поведении этих частиц наш мозг, эволюционировавший в макромире, просто не в состоянии себе представить. Поэтому с некоторыми особенностями таких частиц, особенностями, которые нам кажутся неожиданными и странными, нам придется просто смириться.
Из основного свойства заряженных тел и частиц следует, что неподвижными электроны в атоме быть не могут. Ведь в этом случае они, притянувшись к ядру, просто упали бы на него, и атом перестал бы существовать. Следовательно, электроны в атоме движутся. Но уже Резерфорду было ясно, что просто вращаться вокруг ядра электроны не могут. В то время уже были известны законы электродинамики, в соответствии с которыми вращающийся вокруг ядра электрон обязан постепенно терять свою энергию, что должно приводить в конце концов, к его падению на ядро. Эта исключительно сложная проблема хоть и не всегда последовательно, но была решена в первой трети ХХ века в результате работ многих выдающихся физиков: Нильса Бора, Альберта Эйнштейна, Эрвина Шрёдингера, Вернера Гейзенберга, Макса Борна и многих других ученых. С основными выводами из этих работ мы с вами и познакомимся.
Изучая электроны, атомы, молекулы, а также процессы их взаимодействия, мы будем использовать некоторые модели, позволяющие нам все же получить более или менее наглядное представление об изучаемых объектах. При этом необходимо помнить, что любая модель описывает реальность с той или иной степенью точности и может быть использована только в той области, для которой она создавалась.
Из частиц микромира нас интересует прежде всего электрон. И хотя свойства, проявляемые электроном в различных условиях, вы будете изучать в курсе физики, мы с вами кратко познакомимся с тремя основными особенностями поведения электронов в атоме.
Первая особенность.Энергия свободного электрона, так же как и энергия тела, может изменяться непрерывно, но энергия связанного электрона, в частности электрона в атоме, может принимать только вполне определенные значения.
Схематически это изображено на рис. 6.1, где слева на оси энергии жирной линией показаны возможные значения энергии свободного электрона, а справа на такой же оси отдельными точками – значения энергии электрона в атоме. Таким образом, электрон в атоме может находиться только во вполне определенных состояниях.
При переходе электрона из одного состояния в другое энергия поглощается или выделяется порциями – квантами энергии. Поэтому первая особенность поведения электрона часто называется принципом квантования его энергии. Эта особенность была постулирована датским физиком Нильсом Бором в 1913 году и в дальнейшем получила блестящее экспериментальное подтверждение.
Вторая особенность. Электрон в одних случаях проявляет свойства частицы вещества, а в других – волновые свойства. Такая двойственность поведения электрона и других микрочастиц (дуализм) – одно из общих свойств материи (и вещества, и поля). Оно называется «корпускулярно-волновой дуализм»или «дуализм волна-частица «.
Волновые свойства электрона проявляются, например, при прохождении потока электронов через тончайшую кристаллическую пленку. Поток электронов ведет себя так, как будто через эту пленку прошли волны, то есть, подвергается дифракции(огибание волнами встречающегося на их пути препятствия ,если его размер сопоставим с длиной волны) и интерференции(увеличение гребней и уменьшение впадин волн при наложении их друг на друга) (смысл этих явлений понятен из рисунка 6.2, на котором показаны схемы дифракции и интерференции волн на поверхности воды при встрече препятствия с одним, или двумя отверстиями). Эту особенность поведения электрона предсказал французский физик Луи де Бройль в 1924 году, а в 1926 году американский физик Клинтон Девиссон впервые наблюдал дифракционную картину при взаимодействии потока электронов с металлами. В настоящее время волновые свойства электронов широко используются при исследовании строения различных веществ.
Третья особенность. Чем с большей точностью определяют положение электрона в пространстве, тем с меньшей точностью можно определить его скорость. И наоборот, чем с большей точностью определяют скорость электрона (абсолютную величину и направление), тем с меньшей точностью можно определить его положение в пространстве. Это утверждение, а оно справедливо и для других микрочастиц, называется «принцип неопределенностей». Этот принцип был сформулирован немецким физиком Вернером Гейзенбергом в 1927 году. Принцип неопределенностей «лишает «летящий электрон траектории. Действительно, если мы в какой-то момент точно знаем положение электрона, то мы принципиально ничего не знаем о его скорости и в следующий момент времени можем обнаружить электрон в любой другой точке атома, правда, с разной вероятностью.
Теорию вероятностей изучает математика, а мы лишь воспользуемся несколько упрощенным определением этого понятия.
| Вероятность – отношение числа событий с «благоприятным «исходом к общему числу событий. |
В нашем случае вероятность обнаружения электрона в какой-либо точке электронной оболочки атома показывает, насколько часто «он там бывает».
- Земля вращается вокруг Солнца.
- Земля вращается вокруг Марса.
- Автобус подойдет к остановке в течение ближайшей минуты.
- Завтра будет дождь.
- Завтрашний день будет солнечным.
- Первый человек, встреченный вами завтра на улице, будет мужчина.
Попытайтесь оценить вероятность этих событий.
Необычные свойства электрона, его двойственная природа, особый характер движения не укладываются в рамки классической механики. Поведение электрона и других микрочастиц изучает квантовая или волновая механика.
В квантовой механике поведение электрона описывается довольно сложным уравнением, которое называется волновым уравнением или уравнением Шрёдингера (по имени Эрвина Шрёдингера – австрийского физика, предложившего это уравнение в 1926 году). Точное решение уравнения Шрёдингера возможно только для системы из двух частиц, например, для атома водорода. Для более сложных атомов уравнение решается приближенно с использованием ЭВМ. Решая уравнение Шрёдингера, можно найти возможные состояния электрона в атоме (атомные орбитали, АО).
| Атомная орбиталь – одно из многих возможных состояний электрона в атоме. |
Чтобы избежать громоздких приближенных вычислений, часто применяют упрощенную модель атома, которая называется «одноэлектронное приближение «. В рамках этой модели предполагается, что каждый электрон ведет себя в атоме независимо от остальных электронов этого атома – тогда решение уравнения Шрёдингера сильно упрощается. В химии в большинстве случаев бывает достаточно этой простейшей модели, поэтому ее чаще всего и используют.
Составив уравнение Шрёдингера для какого-нибудь атома и решив его, можно определить, какие состояния возможны для электрона в данном атоме (в рамках модели «одноэлектронное приближение «эти состояния и называют орбиталями). Затем можно вычислить, какой энергией обладает электрон в каждом из этих состояний, а также найти и другие, очень важные характеристики атома. С некоторыми из них мы еще познакомимся.
Уравнение Шрёдингера можно составить не только для атома, но и для молекулы (системы, состоящей из нескольких атомных ядер и электронов). Решая такое уравнение, можно найти возможные состояния электрона не в отдельном атоме, а в молекуле (правда, расчеты в этом случае очень сложны, трудоемки и, естественно, приближенны). Эти состояния тоже называются орбиталями, но в отличие от орбиталей атома – атомных орбиталей их называют молекулярными орбиталями (МО).
Чтобы найти возможные состояния электрона в атоме, нам не обязательно составлять и решать уравнение Шрёдингера. Эта работа проделана во второй четверти ХХ века как самим Шрёдингером, так и многими его последователями. В соответствии с этим уравнением каждая атомная орбиталь однозначно характеризуется набором из трех целых чисел, которые называются квантовыми числами. Числа эти получили особые названия и обозначения:
главное квантовое число – n,
орбитальное квантовое число – l и
магнитное квантовое число – m.
Так как не все состояния электрона в атоме возможны, то и сочетания этих чисел могут быть отнюдь не любые, а только те, которые удовлетворяют следующим трем правилам.
Главное квантовое число (n) может принимать любые целочисленные положительные значения:
n = 1, 2, 3, …,
Орбитальное квантовое число (l) может принимать любые целочисленные значения от нуля до n – 1:
l = 0, 1, 2, … , (n – 1).
Магнитное квантовое число (m) может принимать любые целочисленные значения от – l до + l, включая ноль:
m = – l, … , –1, 0, +1,… ,+ l.
Рассмотрев последовательно возможные наборы квантовых чисел, выясним, в каких состояниях может находиться электрон в атоме (то есть, какие АО возможны).
Пусть главное квантовое число n = 1, тогда орбитальное квантовое число l = 0 и магнитное квантовое число m = 0, и только нулю. Таким образом, при n = 1 возможна только одна АО.
При n = 2 орбитальное квантовое число l может уже принимать два значения: 0 и 1, но не больше. Каждому из этих значений соответствуют свои возможные значения m: при l = 0 магнитное квантовое число тоже равно только нулю, а при l = 1 магнитное квантовое число может принимать уже три значения: –1, 0 и 1. Таким образом, при n = 2 мы получаем следующие наборы квантовых чисел:
| n = 2 | n = 2 | n = 2 | n = 2 |
| l = 0 | l = 1 | l = 1 | l = 1 |
| m = 0 | m = –1 | m = 0 | m = 1 |
и всё, никакие другие наборы квантовых чисел при n = 2 невозможны. Следовательно, число АО при n = 2 равно четырем.
Рассуждая аналогично, мы можем получить и другие АО. Результат приведен в первых четырех столбцах таблицы 13. Эта таблица может быть продолжена и для других значений главного квантового числа.
Набор атомных орбиталей определяется ограничениями, наложенными на значения квантовых чисел.
Используя квантовые числа, мы можем «назвать «полученные орбитали, то есть приписать каждой из них свой символ. Символ АО состоит из цифры и строчной латинской буквы, например: 2s, 3p, 4f. Цифра соответствует главному квантовому числу, а буква символизирует значение орбитального квантового числа по следующему правилу: l = 0 соответствует буква s, l = 1 соответствует буква p, l = 2 – буква d, l = 3 – буква f и далее по алфавиту. Например:
1s-АО обозначает орбиталь с n = 1 и l = 0;
2p-АО обозначает орбиталь с n = 2 и l = 1;
3d-АО обозначает орбиталь с n = 3 и l = 2.
Символы орбиталей приведены в последней колонке таблицы 13.
Те же символы используются и для обозначения электронов, находящихся на этих орбиталях, то есть, в этих состояниях:
2p-электрон – электрон на 2p-АО,
4f-электрон – электрон на 4f-АО и т. д.
Поведение электрона на орбитали зависит еще от одной его необычной характеристики, называемой спином. Эта специальная (не имеющая аналогов в макромире) характеристика микрочастиц, определяющая их магнитные свойства. Для ее учета используется четвертое квантовое число – спиновое. Оно обозначается буквой s. У разных частиц спиновое квантовое число бывает разным, но для электрона оно может принимать только два значения: s = 1/2 и s = –1/2.
Таким образом, электрон в атоме полностью и однозначно характеризуется четырьмя квантовыми числами (n, l, m и s), три из которых (n, l и m) характеризуют орбиталь этого электрона, а четвертое (s) – его спин
Таблица 13.Наборы значений квантовых чисел для различных АО
В дальнейшем мы с вами будем использовать обозначения атомных орбиталей, приведенные в последней колонке таблицы 13.
АТОМНАЯ ОРБИТАЛЬ, МОЛЕКУЛЯРНАЯ ОРБИТАЛЬ, КВАНТОВЫЕ ЧИСЛА.
1.Составьте символы атомных орбиталей, для которых а) n = 2, l = 0; б) n = 3, l = 0; в) n = 3, l =
2.Какие значения n и l соответствуют а) 4s-АО, б) 4р-АО, в) 5dАО, a) 6p-АО?
3.Сколько в атоме s-орбиталей, р-орбиталей, d-орбиталей?
4.Сколько в атоме 2р-орбиталей, 3s-орбиталей, 4d-орбиталей, 4f-орбиталей? Докажите, что их именно столько.
5.Сколько орбиталей атома имеют символ 5p, 6s, 4d, 5f? Каким квантовым числом отличаются орбитали с одинаковым символом?
6.Среди приведенных наборов квантовых чисел n, l и m выберите те, которым соответствуют АО. Укажите символы этих АО: а) n = 2, l = 0, m = 0; б) n = 3, l = 3, m = 1; в) n = 2, l = 1, m = 2; г) n = 3, l = 2, m = – 1; д) n = 3, l = 0, m = 2; е) n = 3, l = 1, m = 0.
Узнав, какие орбитали возможны в атоме, постараемся теперь выяснить, какова их энергия, ведь роль энергии во всех процессах, протекающих во Вселенной, очень велика. Это относится и к микромиру, и к Космосу.
| Энергия АО – энергия электрона, находящегося на этой орбитали (то есть в этом состоянии). |
Энергия АО (ЕАО) может быть как рассчитана из уравнения Шрёдингера, так и определена экспериментально, что давно уже сделано для атомов практически всех элементов. Но при изучении химии эти точные абсолютные значения используются редко. Обычно бывает достаточно знать, энергия какой орбитали больше, а какой меньше, а также, сильно или слабо различаются по энергии соседние орбитали. Такую информацию дает, например, рис. 6.3, где на оси энергии нанесены значения энергии орбиталей атома менделевия (одного из последних элементов, электронное строение атома которого определено экспериментально), как занятых электронами, так и некоторых свободных. Значения нанесены на ось без строгого соблюдения масштаба, так как при увеличении главного квантового числа разница между значениями энергии АО уменьшается очень сильно, поэтому сделанный в масштабе рисунок был бы ненагляден. Есть и еще одна причина, по которой эту шкалу обычно изображают без соблюдения масштаба: по мере возрастания заряда ядра энергия одних и тех же орбиталей существенно уменьшается, но при этом общая закономерность распределения орбиталей по энергии остается неизменной. Изображенная на рис. 13 шкала точнее отражает одну из уже известных нам особенностей поведения электрона в атоме (сравни с рис. 11).
Как видите, последовательность состояний довольно сложная. Обычно для большей наглядности получившуюся шкалу несколько видоизменяют. Обратите внимание, что энергия АО зависит от n и от l, поэтому кроме оси ЕАО вводят еще одну ось. Чаще всего это ось l. На получившемся поле отмечают положение энергии различных орбиталей, но не точками, а маленькими квадратиками, так называемыми «квантовыми ячейками». При этом, кроме увеличения наглядности, появляется возможность показать число разных орбиталей с одинаковой энергией.
| Квантовая ячейка – символическое изображение орбитали на энергетической диаграмме. |
Рядом с квантовыми ячейками обязательно обозначают символы орбиталей. В результате получается так называемая энергетическая диаграмма атома.
Энергетическая диаграмма может отражать электронное строение реального атома, тогда на ней показывают положения электронов (как это делается мы подробно разберем в параграфе 6.5). Но можно составить энергетическую диаграмму так, чтобы показать последовательность энергий еще не занятых электронами орбиталей – для произвольного многоэлектронного атома такая диаграмма приведена на рис. 6.4.
В случае атома водорода, у которого – только один электрон, картина сильно упрощается. Как видно из энергетической диаграммы (рис. 6.5), у атома водорода энергия орбитали зависит только от главного квантового числа n.
От магнитного квантового числа m энергия орбитали не зависит, на энергетической диаграмме орбитали с одинаковыми n и l, но с разным магнитным квантовым числом m, имеющие одинаковую энергию, группируются вместе, образуя электронный подуровень (ЭПУ) (см. рис. 6.4).
Число орбиталей на любом ЭПУ равно числу возможных значений m (см. табл. 13). Так, 2p-, 3p-, 4p— и других орбиталей p-подуровней – по три, а 3d-, 4d-, 5d— и других d-орбиталей – по пять. В общем случае число орбиталей на любом подуровне равно 2l + 1.
Поскольку все орбитали подуровня имеют одинаковый символ, тем же символом обозначают и сам подуровень. Так, 1s-подуровень (1s-ЭПУ) образован одной 1s-АО, а 4f-ЭПУ – семью 4f-АО.
На энергетической диаграмме условно принято располагать орбитали по возрастанию магнитного квантового числа, например, для 3d-ЭПУ
| 3d | ||||
| –2 | –1 | 0 | +1 | +2 |
левая квантовая ячейка символизирует орбиталь с m = –2, следующая – с m = –1 и далее до m = 2.
Подуровни с одинаковым значением главного квантового числа объединяют в электронные уровни (ЭУ).
Так, 2s— и 2р-подуровни образуют второй электронный уровень; 3s-, 3p— и 3d-подуровни образуют третий электронный уровень.
На энергетических диаграммах, показанных на рис. 6.4 и 6.5, подуровни одного уровня соединены прямыми линиями. В случае атома водорода эти линии горизонтальны, а в случае многоэлектронного атома – наклонны. Полезно знать, что число подуровней на одном уровне равно номеру этого уровня (то есть главному квантовому числу n), а число орбиталей на том же уровне равно n 2 .
Иногда электронные уровни называют «энергетическими уровнями». Это устаревшее, но все еще часто употребляемое название справедливо для атома водорода, но совершенно не отражает характер электронных оболочек многоэлектронных атомов (энергия атомных орбиталей одного электронного уровня у них разная). Именно при изучении электронной структуры атома водорода (простейшего атома!) это название и возникло.
Точно так же электронные подуровни иногда называют «энергетическими подуровнями». Это название допустимо, так как отражает реальность: в пределах подуровня у любого атома энергии АО действительно равны. Но для того, чтобы не создавать лишней путаницы, его не стоит употреблять.
ЭНЕРГИЯ АО, КВАНТОВАЯ ЯЧЕЙКА, ЭНЕРГЕТИЧЕСКАЯ ДИАГРАММА АТОМА, ЭЛЕКТРОННЫЙ УРОВЕНЬ, ЭЛЕКТРОННЫЙ ПОДУРОВЕНЬ.
1.Энергия какого из электронов одного и того же атома, 1s или 2s, больше? Какой из них слабее связан с ядром?
2.На какой орбитали, 1s-АО атома водорода или 1s-АО атома гелия, электроны имеют большую энергию? Где они прочнее связаны с ядром?
3.Какие орбитали образуют четвертый электронный уровень?
4.Определите число АО на а) 3s-ЭПУ, б) 4f-ЭПУ.
5.Сколько электронных подуровней образуют
а) третий электронный уровень, б) пятый электронный уровень, в) седьмой электронный уровень?
Разобравшись с энергией электронов, попробуем понять, как же движутся электроны в атоме, обладая различными значениями энергии, и вообще, находясь в различных состояниях (на разных орбиталях).
Из-за особенностей поведения электрона, с которыми мы познакомились в первом параграфе, нам, жителям макромира, представить себе характер такого движения невозможно. Это связано с тем, что в макромире, в соответствии с представлениями современной физики, для него просто нет никаких аналогий. Однако положение не безнадежно – мы можем воспользоваться моделью поведения электрона в атоме, в которой используется представление об электронном облаке (ЭО).
Чтобы понять, что это такое, допустим, что мы можем очень много раз «сфотографировать» электрон в атоме (например, в атоме водорода), то есть точно зафиксировать его положение в каждый момент времени. Принцип неопределенностей нам это не запрещает. Наложив друг на друга эти «фотографии», мы получим картину, показанную на рисунке 6.6 а. Если же мы будем фиксировать только положение электрона на плоскости, в которой лежит ядро, то изображение получится несколько иным (см. рис. 6.6 б). Оба эти рисунка дают нам представление об электронном облаке: рисунок а – вид этого облака со стороны, а рисунок б – сечение облака плоскостью, проходящей через ядро. Рисунок а отражает внешний вид облака, а рисунок б дает представление о его внутреннем строении.
В разных местах электронного облака вероятность обнаружить электрон может быть разная.
Различная плотность точек в разных частях рисунка 6.6 соответствует разной вероятности нахождения электрона в этих частях электронного облака.
Вероятность обнаружить электрон в какой-либо части облака характеризуется физической величиной, называемой электронная плотность (r е). Она определяется как отношение числа электронов (Nе) к объему (V), который они равномерно заполняют (см. § 5.9):
Чем больше электронная плотность, тем выше вероятность нахождения электрона в этой части облака (и тем гуще расположены точки на рис. 6.6).
Электронная плотность резко уменьшается с увеличением расстояния от ядра, но теоретически равна нулю только на бесконечном от него расстоянии. Отсюда следует, что YI не имеет четких границ. В сторону ядра электронная плотность уменьшается еще более резко и вблизи него практически равна нулю.
Электронное облако характеризуется размером, формой и распределением в нем электронной плотности.
Все, что мы говорили об электронном облаке, относится к ЭО одной орбитали, но электрон может находиться на разных орбиталях. Естественно, что электронные облака в этих случаях тоже будут разные, то есть, будут отличаться по размеру, форме и распределению электронной плотности.
Как мы уже отмечали, электронное облако не имеет четких границ, края его как бы размыты в пространстве. Что же понимать под размером такого объекта, и как описать его форму?
Для ответа на эти вопросы нам придется более детально разобраться в том, как «устроены»некоторые электронные облака, то есть, каково их строение. А строение такого необычного объекта, как электронное облако, характеризуется лишь распределением по его объему электронной плотности. Сначала познакомимся со строением самых простых электронных облаков.
Начнем с 1s-ЭО. В верхней части рис. 6.7 изображено сечение этого облака плоскостью, проходящей через ядро атома. В нижней части рисунка помещен график, показывающий, как меняется электронная плотность в этом облаке. Такой график мог бы построить некий очень маленький «наблюдатель «, пролетающий через атом по оси x и непрерывно измеряющий при этом электронную плотность. Точно такой же график построил бы наш «наблюдатель», если бы пролетал через 1s-ЭО по любому другому направлению, но обязательно через центр облака. Следовательно, в 1s-ЭО распределение электронной плотности не зависит от направления, и форма этого облака – шарообразная.
Но не всегда легко представить себе форму электронного облака, рисуя лишь графики распределения электронной плотности. Поэтому обычно форму электронного облака характеризуют его граничной поверхностью.
В качестве граничной поверхности выбирают такую поверхность, внутри которой общая вероятность обнаружить электрон достаточно велика (например: 90; 95 или даже 99 %). Но таких поверхностей для каждого облака можно выбрать множество, поэтому среди них выбирают одну – поверхность, на которой в любой точке вероятность нахождения электрона одинакова. Есть и другой способ выбора граничной поверхности. В этом случае среди поверхностей с одинаковой (в любой точке) электронной плотностью выбирают поверхность, на которой электронная плотность крайне незначительна (например, 0,01 или 0,001 е/>A 3 , то есть 1,6? 10 9 или 1,6? 10 8 Кл/м 3 ). Выбранные этими двумя способами граничные поверхности по внешнему виду мало отличаются друг от друга.
Построим граничную поверхность 1s-ЭО. На рис. 6.7 вспомогательные линии, относящиеся к этому построению, изображены пунктиром. В результате мы получим две сферы: внешнюю (а) и внутреннюю (б), между которыми вероятность обнаружить электрон равна 90 %. Внутренняя сфера мала, находится вблизи ядра и при образовании атомом химических связей ее присутствие никак не проявляется, поэтому обычно говорят, что 1s-ЭО имеет форму шара.
По-иному устроено 2p-ЭО (рис. 6.8). Оно состоит из двух одинаковых частей, симметричных относительно центра облака. Между ними, на плоскости m (перпендикулярной плоскости чертежа), электрон находиться не может. Граничная поверхность 2p-ЭО (ее сечение обозначено на рисунке буквой а) похожа по форме на две половинки апельсина и представляет собой тело вращения (простейшими телами вращения являются цилиндр, конус, шар и тор (приближенную форму тора имеет бублик) с осью x. Если наш «наблюдатель»полетит через это облако вдоль оси x, то график, который он построит, не будет сильно отличаться от такого же графика для 1s-ЭО, только высота максимумов будет немного меньше. По любому другому направлению (кроме лежащих в плоскости m), например, вдоль прямой f, электронная плотность будет еще меньше, но максимумы кривой останутся на тех же расстояниях от ядра (см. нижний график). Это постоянство максимумов характерно и для других электронных облаков, что позволяет нам выбрать в каждом облаке сферу «с «с радиусом, в конце которого электронная плотность по этому направлению максимальна.
Такой постоянный радиус и характеризует размер электронного облака. Этот радиус называют радиусом электронного облака и обозначают rЭО. В случае рассмотренных нами орбиталей именно на этом расстоянии от ядра вращался бы электрон, если бы он не обладал волновыми свойствами.
2p-подуровень образован тремя орбиталями, следовательно, в атоме может быть три 2p-ЭО. А так как электроны взаимно отталкиваются, эти облака располагаются в пространстве так, чтобы максимумы их электронной плотности находились как можно дальше друг от друга. Это возможно только в том случае, если оси облаков будут взаимно перпендикулярны, например, направлены вдоль осей прямоугольной системы координат. Поэтому 2p-ЭО так и обозначают: 2рх-, 2рy— и 2pz-ЭО (рис. 6.9). Если каждое из этих облаков образовано одним или двумя электронами, то суммарное электронное облако всех электронов подуровня за счет сложения электронной плотности будет иметь шарообразную форму (как у 1s-ЭО). Такую же шарообразную форму будут иметь суммарные электронные облака любого подуровня, если, конечно, каждое из отдельных облаков будет образовано одним или двумя электронами.
Форма и строение других электронных облаков сложнее. Так 2s-ЭО, будучи также, как и все s-облака шарообразным, двухслойное (рис. 6.10 а). Внутри внешнего слоя с главным максимумом электронной плотности есть еще один слой со значительно меньшей электронной плотностью.
3p-ЭО состоит из четырех частей (рис. 6.10 б). Две большие области похожи по форме на половинки 2p-ЭО, но ближе к ядру расположены еще две маленькие области с меньшей электронной плотностью. В пространстве оси 3p-электронных облаков, так же, как и оси 2p-ЭО, взаимно перпендикулярны.
С увеличением главного квантового числа n форма электронных облаков (c одинаковым l) все более и более усложняется, но внешние области таких облаков остаются похожими, геометрически почти подобными.
Еще сильнее усложняется форма облаков с увеличением орбитального квантового числа. Рассмотрим форму 3d-облаков. Из пяти облаков этого подуровня четыре по форме совершенно одинаковы, а пятое от них отличается (рис. 6.11)( На самом деле ситуайция с пятым облаком несколько сложнее) Каждое из четырех одинаковых 3d-облаков образовано четырьмя областями, напоминающими по форме округлые апельсиновые дольки. Пятое облако состоит из трех частей, две из которых отдаленно напоминают 2р-облако, а третья образует похожий на тор поясок вокруг первых двух.
Размеры электронных облаков зависят от заряда ядра: чем больше заряд ядра, тем оно сильнее притягивает электрон и тем меньше размер электронного облака. При одном и том же заряде ядра размер облака зависит, прежде всего, от главного квантового числа n. Наглядно эта зависимость представлена на рис. 6.12 в виде диаграммы размеров электронных облаков. На этой диаграмме по вертикальной оси отложены (без строгого соблюдения масштаба) значения радиусов электронных облаков, а по горизонтальной оси – орбитальное квантовое число. Положения радиусов ЭО на диаграмме символически отмечены кружочками.
Радиусы электронных облаков с одинаковыми значениями главного квантового числа примерно равны, а с разными значениями n – сильно отличаются. Из-за этого электронная оболочка атома оказывается слоистой.(Точные квантово-механические расчеты показывают, что радиусы облаков одного слоя немного различаются, но эти различия незначительны)
Электронный слой образован облаками орбиталей одного электронного уровня. Так, первый электронный слой образован одним 1s-ЭО, второй – одним 2s-ЭО и тремя 2р-ЭО, третий – одним 3s-ЭО, тремя 3р-ЭО и пятью 3d-ЭО. Общее число электронных облаков в любом электронном слое равно n 2 , где n — главное квантовое число, которое служит одновременно и номером электронного слоя.
Облака одного слоя, отличающиеся только значениями магнитного квантового числа, соответствуют орбиталям одного подуровня. В случае р-подуровней разным значениям m соответствует только разная ориентация электронных облаков. У облаков одного ЭПУ с большим значением l, например, у 3d-облаков, отличается еще и форма.
ЭЛЕКТРОННОЕ ОБЛАКО, ГРАНИЧНАЯ ПОВЕРХНОСТЬ ЭО, ФОРМА ЭО, РАДИУС ЭО, ДИАГРАММА РАЗМЕРОВ ЭО, ЭЛЕКТРОННЫЙ СЛОЙ.
1.Существуют ли в Природе электронные облака? А электроны?
2.Попробуйте найти аналогии между электронной оболочкой и многоэтажным жилым домом оригинальной архитектуры.
3.Почему положение граничной поверхности электронного облака выбирается произвольно (точнее — конвенционально)?
4.Опишите изменение электронной плотности, зафиксированное «наблюдателем», пролетевшим через 1s-ЭО вдоль прямых а и б (рис. 6.13).
5.Опишите изменение электронной плотности, зафиксированное «наблюдателем», пролетевшим через 2р-ЭО а) сквозь центр атома по направлению, перпендикулярному оси x (рис.6.8); б) параллельно оси x, вне сферы наибольшей электронной плотности; в) параллельно оси x, захватывая сферу наибольшей электронной плотности.
6. Какие электронные облака образуют второй электронный слой?
7.Чем отличаются друг от друга электронные облака орбиталей со следующими наборами квантовых чисел: а) n = 2, l = 0, m = 0 и n = 2, l = 1, m = 0; б) n = 2, l = 1, m = 0 и n = 2, l = 1, m = 1; в) n = 1, l = 0, m = 0 и n = 2, l = 0, m = 0?
8.Сколько электронных облаков образуют полностью заполненный четвертый электронный слой?
9.Какое электронное облако одного и того же атома больше по размерам а) 2р-ЭО или 3р-ЭО, б) 2р-ЭО или 3s-ЭО, в) 1s-ЭО или 2р-ЭО?
10.Какое из электронных облаков больше: 1s-ЭО атома водорода, или 1s-ЭО атома гелия?
11.Как вы думаете, во сколько раз радиус 1s-ЭО атома урана меньше радиуса такого же облака атома водорода?
12.У каких из перечисленных ниже электронных облаков одного и того же атома примерно одинаковые размеры: 1s-ЭО, 4p-ЭОб 3d-ЭО, 4s-YI, 3s-ЭО?
В любом атоме число АО теоретически бесконечно, а число электронов конечно. Как же электроны «размещаются «в электронной оболочке?
Возьмем (конечно, мысленно) ядро атома с атомным номером Z и Z электронов. Будем последовательно «бросать «по одному электрону в сторону взятого ядра. Электроны будут притягиваться ядром и занимать (заполнять) какие-то орбитали. Какие? В какой последовательности?
Чтобы ответить на эти вопросы, мы должны познакомиться с законами (принципами, правилами) заполнения АО электронами, иными словами, с законами построения электронной оболочки.
Первый закон (принцип наименьшей энергии): электроны в атоме занимают орбитали с наименьшими из возможных значениями энергии. Иными словами, суммарная энергия всех электронов атома должна быть минимальной. Если это так, то такое состояние атома называется основным или невозбужденным. Это устойчивое состояние атома. Любое другое состояние атома называется возбужденным.
Используя энергетическую диаграмму атома и символически изображая на ней электроны в виде стрелок, направленных вверх (s = 1 /2) или вниз (s = – 1 /2), мы можем проиллюстрировать принцип наименьшей энергии:
При желании мы можем воспользоваться аналогией из макромира: электроны, заполняя орбитали, ведут себя подобно воде, заполняющей стакан. Вода всегда заполняет стакан снизу вверх и никогда – наоборот.
Если бы электроны «руководствовались»только принципом наименьшей энергии, то все Z электронов нашего атома оказались бы на 1s-орбитали. Но этого не происходит, потому что существует второй закон (принцип Паули): в атоме не может быть даже двух электронов со всеми четырьмя одинаковыми квантовыми числами (швейцарский физик Вольфганг Паули сформулировал, в несколько иной форме, этот принцип в 1925 году). Вспомним, что атомная орбиталь характеризуется тремя квантовыми числами (n, l, m), а спиновое квантовое число (s) может принимать только два значения, следовательно, на одной АО может быть не более двух электронов. Иными словами, электронное облако может быть образовано только одним или двумя электронами.
Орбиталь без электронов называют свободной орбиталью, орбиталь с одним электроном – орбиталью с неспаренным электроном, орбиталь с двумя электронами – заполненной орбиталью.
В обыденной жизни мы часто сталкиваемся с одним случайным аналогом принципа Паули: в железнодорожном вагоне дальнего следования действует принцип «один билет – один пассажир «. А ведь на железнодорожном билете тоже указаны четыре «дискретных параметра»: дата, номер поезда, вагон и место.
Чтобы правильно разместить в атоме первые пять электронов, достаточно воспользоваться принципом наименьшей энергии и принципом Паули. Попробуем это сделать для такого атома (атома бора).
Для наглядного изображения электронного строения, или, как говорят, электронной конфигурации атома воспользуемся энергетической диаграммой многоэлектронного атома (рис. 6.4). На этой диаграмме внутри квантовых ячеек, с помощью стрелочек, изобразим электроны, находящиеся в тех состояниях, которые символизируют квантовые ячейки. В результате для атома бора мы получим энергетическую диаграмму, показанную на рис. 6.14.
У шестого электрона, который есть, например, у атома углерода, «возникает проблема»: где ему на 2р-ЭПУ выгоднее разместиться – на свободной АО, или на АО с неспаренным электроном.
На этот вопрос отвечает третий закон, который называется правилом Хунда (немецкий физик Фридрих Хунд сформулировал его в 1927 году). Вспомним, что электрон – заряженная частица, и, следовательно, электроны друг от друга отталкиваются; а раз так, то им выгоднее находиться на разных орбиталях одного подуровня, так как электронные облака этих орбиталей в пространстве не совпадают. Несколько упрощенно правило Хунда звучит так: в пределах подуровня электроны распределяются по орбиталям таким образом, чтобы модуль суммы их спиновых квантовых чисел был максимальным.
Если шестой электрон сможет попасть на ту же орбиталь, что и предыдущий, то сумма спиновых квантовых чисел этих электронов по принципу Паули обязательно будет равна 1/2 + (–1/2) = 0 (электроны должны быть с разными спинами). А если этот электрон займет другую 2р-АО, то сумма спиновых квантовых чисел окажется равной 1/2 + 1/2 = 1, то есть больше, чем в первом случае. Модуль суммы окажется больше, чем в первом случае, и тогда, когда спиновые квантовые числа обоих электронов будут отрицательными. Следовательно, электроны занимают орбитали одного подуровня сначала по одному и только потом по два, и шестой электрон попадет на свободную р-орбиталь (рис. 6.15).
В жизни мы сталкиваемся с отдаленной аналогией правила Хунда: на конечной остановке незнакомые пассажиры, входя в троллейбус, обычно садятся сначала по одному на каждое сидение и только потом – по два.
Законы заполнения АО электронами
- Принцип наименьшей энергии: суммарная энергия всех электронов атома, находящегося в основном состоянии, минимальна.
- Принцип Паули: в атоме не может быть даже двух электронов со всеми четырьмя одинаковыми квантовыми числами.
- Правило Хунда: в пределах подуровня электроны распределяются по орбиталям таким образом, чтобы модуль суммы их спиновых квантовых чисел был максимальным.
Зная энергетическую структуру электронных оболочек атомов и законы, по которым электроны образуют эти оболочки, мы можем изобразить электронную конфигурацию атома почти любого элемента. Для этого нам нужно знать только заряд ядра. Можно, конечно, выбирать заряд ядра произвольно, но тогда мы вряд ли быстро обнаружим в строении электронных оболочек какую-то систему. Логично расположить атомы в порядке возрастания зарядов их ядер, начиная с +1е. Такой ряд называется естественным рядом элементов (ЕРЭ). То, что именно этот ряд может быть положен в основу классификации химических элементов, стало ясно после работ молодого английского физика Генри Мозли, вскоре после этого трагически погибшего в одном из сражений Первой мировой войны. Порядковый номер элемента в этом ряду равен числу протонов в ядре любого атома этого элемента и обозначается той же буквой – Z. Д. И. Менделеев, не доживший до открытия Мозли, располагал элементы в порядке возрастания атомных масс («атомных весов «, как тогда говорили), хотя и чувствовал, что в основе ряда лежит какая-то более глубинная характеристика.
«Конструируя «электронные оболочки атомов, мы будем изображать их электронные конфигурации. Один из способов их изображения – построение энергетической диаграммы – мы уже разобрали. Второй способ – написание электронной формулы атома. С ним мы познакомимся в процессе работы.
Первый элемент в ЕРЭ – водород. Единственный электрон его атома по принципу наименьшей энергии занимает 1s-орбиталь, и электронная формула атома водорода записывается так: 1s 1 . Верхний индекс при символе орбитали означает число электронов на ней. Единственное электронное облако этого атома (1s-ЭО) образовано одним (неспаренным) электроном.
Второй элемент – гелий. Второй электрон в его атоме также стремится к минимуму энергии и, если он обладает противоположным спином, по принципу Паули может занять ту же орбиталь. Электронная формула атома гелия 1s 2 . Также единственное электронное облако этого атома образовано двумя электронами (парой электронов).
Третий электрон, появляющийся у атома лития, по принципу Паули не может занять 1s-орбиталь и вынужден занимать большую по энергии 2s-орбиталь, образуя вокруг первого второе, большее по размеру, электронное облако. Электронная формула атома лития 1s 2 2s 1 .
Последний (четвертый) электрон атома следующего элемента – бериллия – должен занять ту же 2s-орбиталь, так как на ней есть еще свободное место. Электронная формула бериллия 1s 2 2s 2 , и его электронная оболочка состоит из двух облаков, каждое из которых образовано парой электронов. Энергетические диаграммы атомов бора и углерода мы уже разбирали (рис. 24 и 25). Электронные формулы атомов этих элементов – B 1s 2 2s 2 2p 1 и C 1s 2 2s 2 2p 2 .
2p-подуровень продолжает заполняться и у следующих элементов, до неона (Z = 10) включительно, у которого этот подуровень оказывается полностью заполненным. Электронная формула неона 1s 2 2s 2 2p 6 , а его электронная оболочка состоит из пяти облаков: одного облака первого слоя (1s-ЭО) и четырех облаков второго слоя (одно 2s— и три 2р-ЭО), причем все облака образованы парами электронов.
У атомов следующего элемента – натрия – последний электрон вынужден занимать уже 3s-орбиталь, и с его электронного облака начинается образование третьего электронного слоя. Электронная формула натрия 1s 2 2s 2 2p 6 3s 1 .
Третий электронный слой (и, естественно, третий электронный уровень) продолжает заполняться до аргона включительно, но не заполняется полностью, так как со следующего атома – атома калия – начинается заполнение четвертого слоя. Это происходит потому, что энергия оставшегося незаполненным 3d-подуровня больше, чем энергия 4s-подуровня. 3d-подуровень начинает заполняться только у атома скандия (Sc 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 ) после завершения заполнения 4s-подуровня.
Продолжая заполнять электронами атомные орбитали, можно получить электронные конфигурации и атомов следующих элементов. Необходимо только внимательно следить за последовательностью подуровней (по рис. 14) и строго соблюдать принцип наименьшей энергии, принцип Паули и правило Хунда.
Электронные формулы атомов всех элементов приведены в приложении 4.
ПРИНЦИП НАИМЕНЬШНЙ ЭНЕРГИИ, ПРИНЦИП ПАУЛИ, ПРАВИЛО ХУНДА, ЕСТЕСТВЕННЫЙ РЯД ХИМИЧЕСКИХ ЭЛЕМЕНТОВ.
1.Сколько всего электронов может находиться на а) 4s-ЭПУ, б) 4р-ЭПУ, в) 3d-ЭПУ, г) 5f-ЭПУ? 2.Сколько всего электронов может находиться на каждом из первых пяти ЭУ? Составьте общую формулу для такого подсчета.
3.Какое квантовое число – общее для всех электронов внешнего электронного слоя? Охарактеризуйте его значение.
4.Для атомов Na, Mg, Al, Si, P, S, Cl, Ar а) изобразите энергетические диаграммы, б) составьте полные электронные формулы.
Для того, чтобы мы могли качественно предоставить Вам информацию, мы используем cookies, которые сохраняются на Вашем компьютере (сведения о местоположении; ip-адрес; тип, язык, версия ОС и браузера; тип устройства и разрешение его экрана; источник, откуда пришел на сайт пользователь; какие страницы открывает и на какие кнопки нажимает пользователь; эта же информация используется для обработки статистических данных использования сайта посредством интернет-сервисов Google Analytics и Яндекс.Метрика). Нажимая кнопку «СОГЛАСЕН», Вы подтверждаете то, что Вы проинформированы об использовании cookies на нашем сайте. Отключить cookies Вы можете в настройках своего браузера.
Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору
Как определить число электронных слоев
Если вы внимательно посмотрели приложение 4, то, наверное, заметили, что у атомов некоторых элементов последовательность заполнения электронами орбиталей нарушается. Иногда эти нарушения называют «исключениями «, но это не так – исключений из законов Природы не бывает!
Первым элементом с таким нарушением является хром. Рассмотрим подробнее его электронное строение (рис. 6.16 а). У атома хрома на 4s-подуровне не два, как этого следовало бы ожидать, а только один электрон. Зато на 3d-подуровне пять электронов, а ведь этот подуровень заполняется после 4s-подуровня (см. рис. 6.4). Чтобы понять, почему так происходит, посмотрим, что собой представляют электронные облака 3d-подуровня этого атома.
Каждое из пяти 3d-облаков в этом случае образовано одним электроном. Как вы уже знаете из § 4 этой главы, общее электронное облако таких пяти электронов имеет шарообразную форму, или, как говорят, сферически симметрично. По характеру распределения электронной плотности по разным направлениям оно похоже на 1s-ЭО. Энергия подуровня, электроны которого образуют такое облако, оказывается меньше, чем в случае менее симметричного облака. В данном случае энергия орбиталей 3d-подуровня равна энергии 4s-орбитали. При нарушении симметрии, например, при появлении шестого электрона, энергия орбиталей 3d-подуровня вновь становится больше, чем энергия 4s-орбитали. Поэтому у атома марганца опять появляется второй электрон на 4s-АО.
Сферической симметрией обладает общее облако любого подуровня, заполненного электронами как наполовину, так и полностью. Уменьшение энергии в этих случаях носит общий характер и не зависит от того, наполовину или полностью заполнен электронами какой-либо подуровень. А раз так, то следующее нарушение мы должны искать у атома, в электронную оболочку которого последним «приходит»девятый d-электрон. И действительно, у атома меди на 3d-подуровне 10 электронов, а на 4s-подуровне только один (рис. 6.16 б).
Уменьшение энергии орбиталей полностью или наполовину заполненного подуровня является причиной целого ряда важных химических явлений, с некоторыми из которых вы еще познакомитесь.
В химии свойства изолированных атомов, как правило, не изучаются, так как почти все атомы, входя в состав различных веществ, образуют химические связи. Химические связи образуются при взаимодействии электронных оболочек атомов. У всех атомов (кроме водорода) в образовании химических связей принимают участие не все электроны: у бора – три электрона из пяти, у углерода – четыре из шести, а, например, у бария – два из пятидесяти шести. Эти «активные»электроны называются валентными электронами.
Иногда валентные электроны путают с внешними электронами, а это не одно и то же.
| Внешние электроны – электроны внешнего электронного слоя. |
Электронные облака внешних электронов имеют максимальный радиус (и максимальное значение главного квантового числа).
Именно внешние электроны принимают участие в образовании связи в первую очередь, хотя бы потому, что при сближении атомов электронные облака, образованные этими электронами, приходят в соприкосновение прежде всего. Но вместе с ними участие в образовании связи может принимать и часть электронов предвнешнего (предпоследнего) слоя, но только в том случае, если они обладают энергией, не сильно отличающейся от энергии внешних электронов. И те и другие электроны атома являются валентными. (У лантаноидов и актиноидов валентными являются даже некоторые «предвнешние» электроны)
Энергия валентных электронов намного больше, чем энергия других электронов атома, а друг от друга валентные электроны по энергии отличаются существенно меньше.
Внешние электроны – всегда валентные только в том случае, если атом вообще может образовывать химические связи. Так, оба электрона атома гелия – внешние, но назвать их валентными нельзя, так как атом гелия вообще никаких химических связей не образует.
Валентные электроны занимают валентные орбитали, которые в свою очередь образуют валентные подуровни.
| Валентные подуровни – электронные подуровни атома, на которых находятся, или могут находиться «свои «или «чужие «валентные электроны при образовании атомом химических связей. |
| Валентные орбитали – атомные орбитали, образующие валентные подуровни. |
В качестве примера рассмотрим атом железа, электронная конфигурация которого показана на рис. 6.17. Из электронов атома железа максимальное главное квантовое число (n = 4) имеют только два 4s-электрона. Следовательно, именно они и являются внешними электронами этого атома. Внешние орбитали атома железа – все орбитали с n = 4, а внешние подуровни – все подуровни, образуемые этими орбиталями, то есть 4s-, 4p-, 4d— и 4f-ЭПУ.
Внешние электроны – всегда валентные, следовательно, 4s-электроны атома железа – валентные электроны. А раз так, то и 3d-электроны, имеющие чуть большую энергию, также будут валентными. На внешнем уровне атома железа кроме заполненной 4s-АО есть еще свободные 4p-, 4d— и 4f-АО. Все они внешние, но валентные среди них только 4р-АО, так как энергия остальных орбиталей значительно больше, и появление электронов на этих орбиталях для атома железа не выгодно.
Итак, у атома железа
внешний электронный уровень – четвертый,
внешние подуровни – 4s-, 4p-, 4d— и 4f-ЭПУ,
внешние орбитали – 4s-, 4p-, 4d— и 4f-АО,
внешние электроны – два 4s-электрона (4s 2 ),
внешний электронный слой – четвертый,
внешнее электронное облако – 4s-ЭО
валентные подуровни – 4s-, 4p-, и 3d-ЭПУ,
валентные орбитали – 4s-, 4p-, и 3d-АО,
валентные электроны – два 4s-электрона (4s 2 ) и шесть 3d-электронов (3d 6 ).
Валентные подуровни могут быть заполнены электронами частично или полностью, а могут и вообще оставаться свободными. С увеличением заряда ядра уменьшаются значения энергии всех подуровней, но из-за взаимодействия электронов между собой энергия разных подуровней уменьшается с разной «скоростью». Энергия полностью заполненных d— и f-подуровней уменьшается настолько сильно, что они перестают быть валентными.
В качестве примера рассмотрим атомы титана и мышьяка (рис. 6.18).
В случае атома титана 3d-ЭПУ заполнен электронами только частично, и его энергия больше, чем энергия 4s-ЭПУ, а 3d-электроны являются валентными. У атома мышьяка 3d-ЭПУ полностью заполнен электронами, и его энергия существенно меньше энергии 4s-ЭПУ, и, следовательно, 3d-электроны не являются валентными.
В приведенных примерах мы анализировали валентную электронную конфигурацию атомов титана и мышьяка.
Валентная электронная конфигурация атома изображается в виде валентной электронной формулы, или в виде энергетической диаграммы валентных подуровней.
ВАЛЕНТНЫЕ ЭЛЕКТРОНЫ, ВНЕШНИЕ ЭЛЕКТРОНЫ, ВАЛЕНТНЫЕ ЭПУ, ВАЛЕНТНЫЕ АО, ВАЛЕНТНАЯ ЭЛЕКТРОННАЯ КОНФИГУРАЦИЯ АТОМА, ВАЛЕНТНАЯ ЭЛЕКТРОННАЯ ФОРМУЛА, ДИАГРАММА ВАЛЕНТНЫХ ПОДУРОВНЕЙ.
1.На составленных вами энергетических диаграммах и в полных электронных формулах атомов Na, Mg, Al, Si, P, S, Cl, Ar укажите внешние и валентные электроны. Составьте валентные электронные формулы этих атомов. На энергетических диаграммах выделите части, соответствующие энергетическим диаграммам валентных подуровней.
2.Что общего между электронными конфигурациями атомов а) Li и Na, В и Al, O и S, Ne и Ar; б) Zn и Mg, Sc и Al, Cr и S, Ti и Si; в) H и He, Li и O, K и Kr, Sc и Ga. В чем их различия
3.Сколько валентных подуровней в электронной оболочке атома каждого из элементов: а) водорода, гелия и лития, б) азота, натрия и серы, в) калия, кобальта и германия
4.Сколько валентных орбиталей заполнено полностью у атома а) бора, б) фтора, в) натрия?
5.Сколько орбиталей с неспаренным электроном у атома а) бора, б) фтора, в) железа
6.Сколько свободных внешних орбиталей у атома марганца? А сколько свободных валентных?
7.К следующему занятию подготовьте полоску бумаги шириной 20 мм, разделите ее на клеточки (20 ? 20 мм), и нанесите на эту полоску естественный ряд элементов (от водорода до мейтнерия).
8.В каждой клеточке поместите символ элемента, его порядковый номер и валентную электронную формулу, как показано на рис. 6.19 (воспользуйтесь приложением 4).
В основу систематизации химических элементов положен естественный ряд элементов и принцип подобия электронных оболочек их атомов.
С естественным рядом химических элементов вы уже знакомы. Теперь познакомимся с принципом подобия электронных оболочек.
Рассматривая валентные электронные формулы атомов в ЕРЭ, легко обнаружить, что у некоторых атомов они отличаются только значениями главного квантового числа. Например, 1s 1 у водорода, 2s 1 у лития, 3s 1 у натрия и т. д. Или 2s 2 2p 5 у фтора, 3s 2 3p 5 у хлора, 4s 2 4p 5 у брома и т. д. Это значит, что внешние области облаков валентных электронов таких атомов по форме очень похожи и отличаются только размерами (и, конечно, электронной плотностью). А раз так, то электронные облака таких атомов и соответствующие им валентные конфигурации можно назвать подобными. Для атомов разных элементов с подобными электронными конфигурациями мы можем записать общие валентные электронные формулы: ns 1 в первом случае и ns 2 np 5 во втором. Двигаясь по естественному ряду элементов, можно найти и другие группы атомов с подобными валентными конфигурациями.
Таким образом, в естественном ряду элементов регулярно встречаются атомы с подобными валентными электронными конфигурациями. Это и есть принцип подобия электронных оболочек.
Попробуем выявить вид этой регулярности. Для этого воспользуемся сделанным вами естественным рядом элементов.
ЕРЭ начинается с водорода, валентная электронная формула которого 1s 1 . В поисках подобных валентных конфигураций разрежем естественный ряд элементов перед элементами с общей валентной электронной формулой ns 1 (то есть, перед литием, перед натрием и т. д.). Мы получили так называемые «периоды» элементов. Сложим получившиеся «периоды» так, чтобы они стали строками таблицы (см. рис. 6.20). В результате подобные электронные конфигурации будут только у атомов первых двух столбцов таблицы.
Попробуем добиться подобия валентных электронных конфигураций и в других столбцах таблицы. Для этого вырежем из 6-го и 7-го периодов элементы с номерами 58 – 71 и 90 –103 (у них происходит заполнение 4f— и 5f-подуровней) и поместим их под таблицей. Символы остальных элементов сдвинем по горизонтали так, как это показано на рисунке. После этого у атомов элементов, стоящих в одной колонке таблицы, получатся подобные валентные конфигурации, которые можно выразить общими валентными электронными формулами: ns 1 , ns 2 , ns 2 (n–1)d 1 , ns 2 (n–1)d 2 и так далее до ns 2 np 6 . Все отклонения от общих валентных формул объясняются теми же причинами, что и в случае хрома и меди (см. параграф 6.6).
Как видите, использовав ЕРЭ и применив принцип подобия электронных оболочек, нам удалось систематизировать химические элементы. Такая система химических элементов называется естественной, так как основана исключительно на законах Природы. Полученная нами таблица (рис. 6.21) представляет собой один из способов графического изображения естественной системы элементов и называется длиннопериодной таблицей химических элементов.
ПРИНЦИП ПОДОБИЯ ЭЛЕКТРОННЫХ ОБОЛОЧЕК, ЕСТЕСТВЕННАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ («ПЕРИОДИЧЕСКАЯ» СИСТЕМА),ТАБЛИЦА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ.
Познакомимся подробнее со структурой длиннопериодной таблицы химических элементов.
Строки этой таблицы, как вы уже знаете, называются «периодами «элементов. Периоды нумеруются арабскими цифрами от 1 до 7. В первом периоде всего два элемента. Второй и третий периоды, содержащие по восемь элементов, называются короткими периодами. Четвертый и пятый периоды, содержащие по 18 элементов, называются длинными периодами. Шестой и седьмой периоды, содержащие по 32 элемента, называются сверхдлинными периодами.
Столбцы этой таблицы называются группами элементов. Номера групп обозначаются римскими цифрами с латинскими буквами А или В.
Элементы некоторых групп имеют свои общие (групповые) названия: элементы IА группы (Li, Na, K, Rb, Cs, Fr) – щелочные элементы (или элементы щелочных металлов); элементы IIA группы (Ca, Sr, Ba и Ra) – щелочноземельные элементы (или элементы щелочноземельных металлов)(название «щелочные металлы» и щелочноземельные металлы» относятся к простым веществам, образуемым соответствующими элементами и не должны использоваться как названия групп элементов); элементы VIA группы (O, S, Se, Te, Po) – халькогены, элементы VIIA группы (F, Cl, Br, I, At) – галогены, элементы VIIIA группы (He, Ne, Ar, Kr, Xe, Rn) – элементы благородных газов.(Традиционное название «благородные газы» также относится к простым веществам)
Выносимые обычно в нижнюю часть таблицы элементы с порядковыми номерами 58 – 71 (Ce – Lu) называются лантаноиды («следующие за лантаном»), а элементы с порядковыми номерами 90 – 103 (Th – Lr) – актиноиды («следующие за актинием «). Существует вариант длиннопериодной таблицы, в котором лантаноиды и актиноиды не вырезаются из ЕРЭ, а остаются на своих местах в сверхдлинных периодах. Такую таблицу иногда называют сверхдлиннопериодной.
Длиннопериодная таблица делится на четыре блока (или секции).
s-Блок включает элементы IA и IIA-групп с общими валентными электронными формулами ns 1 и ns 2 (s-элементы).
р-Блок включает элементы с IIIA по VIIIA группу с общими валентными электронными формулами от ns 2 np 1 до ns 2 np 6 (p-элементы).
d-Блок включает элементы с IIIB по IIB группу с общими валентными электронными формулами от ns 2 (n–1)d 1 до ns 2 (n–1)d 10 (d-элементы).
f-Блок включает лантаноиды и актиноиды (f-элементы).
Элементы s— и p-блоков образуют А-группы, а элементы d -блока – В-группы системы химических элементов. Все f-элементы формально входят в IIIB группу.
Элементы первого периода – водород и гелий – являются s-элементами и могут быть помещены в IA и IIA группы. Но гелий чаще помещают в VIIIA группу как элемент, которым заканчивается период, что полностью соответствует его свойствам (гелий, как и все остальные простые вещества, образуемые элементами этой группы, – благородный газ). Водород же часто помещают в VIIA группу, так как по своим свойствам он существенно ближе к галогенам, чем к щелочным элементам.
Каждый из периодов системы начинается с элемента, имеющего валентную конфигурацию атомов ns 1 , так как именно с этих атомов начинается формирование очередного электронного слоя, и заканчивается элементом с валентной конфигурацией атомов ns 2 np 6 (кроме первого периода). Это позволяет легко выделить на энергетической диаграмме группы подуровней, заполняющихся электронами у атомов каждого из периодов (рис. 6.22). Проделайте эту работу со всеми подуровнями, изображенными на сделанной вами копии рисунка 6.4. Выделенные на рисунке 6.22 подуровни (кроме полностью заполненных d— и f-подуровней) являются валентными для атомов всех элементов данного периода.
Появление в периодах s-, p-, d— или f-элементов полностью соответствует последовательности заполнения s-, p-, d— или f-подуровней электронами. Эта особенность системы элементов позволяет, зная период и группу, в которые входит данный элемент, сразу же записать его валентную электронную формулу.
ДЛИННОПЕРИОДНАЯ ТАБЛИЦА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ, БЛОКИ, ПЕРИОДЫ, ГРУППЫ, ЩЕЛОЧНЫЕ ЭЛЕМЕНТЫ, ЩЕЛОЧНОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ, ХАЛЬКОГЕНЫ, ГАЛОГЕНЫ, ЭЛЕМЕНТЫ БЛАГОРОДНЫХ ГАЗОВ,ЛАНТАНОИДЫ,АКТИНОИДЫ.
Запишите общие валентные электронные формулы атомов элементов а) IVA и IVB групп, б) IIIA и VIIB групп?
2. Что общего между электронными конфигурациями атомов элементов А и В групп? Чем они различаются?
3.Сколько групп элементов входит в а) s-блок, б) р-блок, в) d-блок?
4.Продолжите рисунок 30 в сторону увеличения энергии подуровней и выделите группы подуровней, заполняющихся электронами в 4-м, 5-м и 6-м периодах.
5.Перечислите валентные подуровни атомов а) кальция, б) фосфора, в) титана, г) хлора, д) натрия. 6.Сформулируйте, чем отличаются друг от друга s-, p- и d-элементы.
7.Объясните, почему принадлежность атома к какому-либо элементу определяется числом протонов в ядре, а не массой этого атома.
8.Для атомов лития, алюминия, стронция, селена, железа и свинца составьте валентные, полные и сокращенные электронные формулы и изобразите энергетические диаграммы валентных подуровней. 9.Атомам каких элементов соответствуют следующие валентные электронные формулы: 3s 1 , 4s 1 3d 1 , 2s 2 2p 6 , 5s 2 5p 2 , 5s 2 4d 2 ?
Для разных целей нам нужно знать либо полную, либо валентную конфигурацию атома. Каждая из этих электронных конфигураций может изображаться как формулой, так и энергетической диаграммой. То есть, полная электронная конфигурация атома выражается полной электронной формулой атома, или полной энергетической диаграммой атома. В свою очередь, валентная электронная конфигурация атома выражается валентной (или, как ее часто называют, «краткой «) электронной формулой атома, или диаграммой валентных подуровней атома (рис. 6.23).
Раньше мы составляли электронные формулы атомов, используя порядковые номера элементов. При этом мы определяли последовательность заполнения подуровней электронами по энергетической диаграмме: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s и так далее. И только записав полную электронную формулу, мы могли записать и валентную формулу.
Валентную электронную формулу атома, которая чаще всего и используется, удобнее записывать, исходя из положения элемента в системе химических элементов, по координатам период – группа.
Рассмотрим подробно, как это делается для элементов s-, p— и d-блоков.
Для элементов s-блока валентная электронная формула атома состоит из трех символов. В общем виде ее можно записать так:
На первом месте (на месте большой клеточки) ставится номер периода (равен главному квантовому числу этих s-электронов), а на третьем (в верхнем индексе) – номер группы (равен числу валентных электронов). Взяв в качестве примера атом магния (3-й период, IIA группа), получим:
Для элементов p-блока валентная электронная формула атома состоит из шести символов:
Здесь на месте больших клеточек также ставится номер периода (равен главному квантовому числу этих s— и p-электронов), а номер группы (равен числу валентных электронов) оказывается равным сумме верхних индексов. Для атома кислорода (2-й период, VIA группа) получим:
2s 2 2p 4 .
Валентную электронную формулу большинства элементов d-блока можно записать так:
Как и в предыдущих случаях, здесь вместо первой клеточки ставится номер периода (равен главному квантовому числу этих s-электронов). Число во второй клеточке оказывается на единицу меньше, так как на единицу меньше главное квантовое число этих d-электронов. Номер группы здесь тоже равен сумме индексов. Пример – валентная электронная формула титана (4-й период, IVB группа): 4s 2 3d 2 .
Номер группы равен сумме индексов и для элементов VIB группы, но у них, как вы помните, на валентном s-подуровне всего один электрон, и общая валентная электронная формула ns 1 (n–1)d 5 . Поэтому валентная электронная формула, например, молибдена (5-й период) – 5s 1 4d 5 .
Так же просто составить валентную электронную формулу любого элемента IB группы, например, золота (6-й период)>– >6s 1 5d 10 , но в этом случае нужно помнить, что d— электроны у атомов элементов этой группы еще остаются валентными, и часть из них может участвовать в образовании химических связей.
Общая валентная электронная формула атомов элементов IIB группы – ns 2 (n – 1)d 10 . Поэтому валентная электронная формула, например, атома цинка – 4s 2 3d 10 .
Общим правилам подчиняются и валентные электронные формулы элементов первой триады (Fe, Co и Ni). У железа, элемента VIIIB группы, валентная электронная формула 4s 2 3d 6 . У атома кобальта – на один d-электрон больше (4s 2 3d 7 ), а у атома никеля – на два (4s 2 3d 8 ).
Пользуясь только этими правилами написания валентных электронных формул, нельзя составить электронные формулы атомов некоторых d-элементов (Nb, Ru, Rh, Pd, Ir, Pt), так как у них за счет стремления к высокосимметричным электронным оболочкам заполнение электронами валентных подуровней имеет некоторые дополнительные особенности.
Зная валентную электронную формулу, можно записать и полную электронную формулу атома (см. далее).
Часто вместо громоздких полных электронных формул записывают сокращенные электронные формулы атомов. Для их составления в электронной формуле выделяют все электроны атома кроме валентных, помещают их символы в квадратные скобки и часть электронной формулы, соответствующую электронной формуле атома последнего элемента предшествующего периода (элемента, образующего благородный газ), заменяют символом этого атома.
Примеры электронных формул разных типов приведены в таблице 14.