Как можно увидеть магнитное поле
Перейти к содержимому

Как можно увидеть магнитное поле

  • автор:

Как увидеть магнитное поле?

Как увидеть магнитное поле?

Увидеть магнитное поле вполне реально, и этому учат на школьных уроках физики, предлагая такую последовательность действий:
— магнит накрывают стеклянной пластиной;
— сверху на пластину кладут лист бумаги;
— бумага посыпается ровным слоем железных опилок;
— опилки намагничиваются, и когда их встряхивают, то они на мгновение отделяются от пластинки, и легко поворачиваются, формируя — сложные изогнутые линии, расходящиеся от полюсов.
Полученная картина выглядит следующим образом: чем ближе к полюсу, тем гуще и чётче линии из опилок, а чем дальше они отходят, тем больше разрежаются и утрачивают свою отчётливость. Это наглядный пример того, как ослабляются магнитные силы из-за расстояния.

Магнитная плёнка-визуализатор: cтавим опыты с магнитами

Вы можете увидеть магнитное поле? Нет? А оно есть. И чтобы его увидеть, не обязательно покупать дорогие приборы. Достаточно взять небольшой кусочек специальной магнитной плёнки. Что я и сделал.
Для визуализации магнитного поля она вполне подходит. И, например, как небольшое наглядное пособие, или для опытов, ее может быть достаточно. Собственно, для этого и была заказана эта плёнка. Показать детям несколько опытов.

Естественно, это не замена приборам для измерения магнитного поля. Это просто занятная штука.

Что из себя представляет магнитная плёнка-визуализатор?

Магнитная плёнка-визуализатор используется, чтобы показать стационарные, или (реже) медленно меняющиеся магнитные поля; она показывает их месторасположение и направление. Представляет собой тонкие, полупрозрачные, гибкие листы, покрытые микроячейками, которые заполнены частичками никеля в масле. Когда силовые линии параллельны поверхности листа, частички никеля поворачиваются отражающей свет стороной и выглядят светлыми. Когда силовые линии перпендикулярны поверхности листа, частички позиционируются ребром и плёнка выглядит значительно темнее. Когда плёнка расположена на полюсе магнита, силовые линии, выходящие из этого полюса, проходят через плёнку практически перпендикулярно её поверхности, поэтому в этом месте она тёмная.

Если два кубических магнита размещены рядом друг с другом, полюсами вверх и вниз, и ориентированы так, чтобы притягивать друг друга, их полюса выглядят тёмными, но видно тонкую светлую линию между ними.

Чаще всего магнитная плёнка-визуализатор изготавливается зелёного или голубого цвета. (взято из Википедии)

Плёнка представляет собой небольшой квадрат, запаянный в ламинированную плёнку:

Чаще всего на Aliexpress такие плёнки продают в размере 5*5см. Именно такой размер и пришел ко мне:

Ничего хитрого в этой плёнке нет. Поэтому сразу перейду к опытам.

Сначала покажу как она реагирует на неодимовые магниты, взятые из старых жестких дисков. У меня их три разных:

А вот так выглядят все три магнита слепленные вместе:

На плёнке чётко виден ореол магнитного поля вокруг магнита (светлый) и затухающий ореол магнитного поля (тёмный) на расстоянии. По середине у всех магнитов судя по моему предположению находится линия разделения магнитного поля. (могу ошибаться, кто разбирается, прошу дополнить в комментариях)

Уже из этих фотографий понятно, что плёнка работает и показывает магнитное поле. Но с сильными магнитами это и понятно. А вот что действительно интересно, так это обнаружение скрытых магнитов там, где их не видно. И самым наглядным примером будет обычный телефон, который есть почти у каждого.

Вот, например OnePlus Nord N100. Корпус ровный. Ничего не выделяется:

Подносим плёнку, и видим, что под корпусом находится источник магнитного поля (динамик, скрытый внутри):

Еще один источник магнитного поля — это слуховой динамик в верхней стороне телефона:

А еще один источник был найден спереди, в районе блока камер (это уже не динамик, не знаю что это):

Следующий пример — это смартфон Samsung Galaxy S10+:

С помощью плёнки можно увидеть, что динамик телефона состоит из двух частей (или из двух динамиков):

А вот так отображается слуховой динамик, если приложить плёнку спереди и сзади:

Ну а вот так выглядит динамики на рациях Retevis RT3S и Xiaomi Walkie Talkie 1S:

А вот наушники AKG дают легкое изменение и маленькую полоску, хотя в них тоже есть магниты:

Ну и то же самое у беспроводных наушников Fiil T1 Pro:

Хотя магнит на зарядном кейсе сразу даёт чёткий рисунок:

Конечно же я вместе с детьми несколько вечеров ходил по всему дому, и прикладывал плёнку к разным местам, в поисках магнитного излучения. Детям это очень понравилось, а значит плёнка уже куплена не зря. Насколько мне лично хватает знаний, я попытался рассказать им о магнитах и магнитных полях. Дополнительно подкрепили знания с помощью серии Фиксики о магнитах:

Заключение:

Я считаю, что покупка магнитной плёнки визуализатора является полезной. Особенно если в доме есть дети. Показать им наглядно действия магнитов. Ну и чего скрывать, мне самому было интересно пощупать такую занятную плёнку. Тем более стоит она недорого. Жаль только, что размер 5*5см, конечно, маловат. Хотелось бы размер побольше. Но, с другой стороны, это вещь. Которая со временем будет закинут в ящик стола, и не будет использоваться. Поэтому и такой размер сгодится.

Рекомендовать или отговаривать от покупки этой плёнки я не буду. Тут решайте сами.

Ну и, если читателям будет интересно, и в комментах будет достаточно запросов, я могу сделать вторую часть обзора, где уже будут только фотографии различных вещей, и как и что на них показывает данная плёнка. Пишите пожелания.

Как можно обнаружить магнитное и электрическое поле?

На самом деле не так уж и сложно, самый простой способ обнаружить магнитное поле, это компас. Это намагниченная узкая полоска металла называемая стрелкой. Она всегда направлена в доль линий напряженности магнитного поля земли. Но если ее поднести к источнику магнитного поля скажем к работающему трансформатору или поднести к ней обыкновенный магнит то она изменит свое положение, то есть покажет, что есть более сильное внешнее поле которое и оказало на нее воздействие.

Остальные ответы
по движению металлических предметов в этом поле — если притягиваютя, значит поле ессь!
С помощью магнита

Что есть на самом деле магнитное поле, его природа описано в источнике. Могу дать. Электрических полей нет в природе, так же как и электромагнитных. Обоснование в источнике. Это сложно.

Магнитное и электрические поля обноруживаются только через взаимодеиствие, в резултате каторого наблюдается действие физ. силы.

примеры
Магнитное:
Два гипких провода с эл. током внутри притягиваются (или отталкиваются, зависит от направления тока) , а также деиствуют на намагниченные предметы.

Элекрическое:
Ну примеры из школьного курса физики.
Расческа, волосы, бумажки.. .

Могут ли люди чувствовать магнитное поле? Да! – отвечает электроэнцефалография

Мы привыкли выделять пять органов чувств: зрение, слух, обоняние, осязание и вкус. Но это вопрос классификации: ведь есть еще, к примеру, чувство равновесия, не говоря уже о чувстве боли. Что же касается способности ощущать магнитные поля – магниторецепции, то она доказана для многих животных, таких как перелетные птицы, морские черепахи, моллюски и др. У всех у них при экспериментальном изменении магнитного поля менялось поведение, но подобные эксперименты на людях не дали результатов. Недавние исследования говорят о том, что ответ на вопрос «могут ли люди чувствовать магнитное поле?» может быть положительным

Считается, что магнитное поле Земли формируется благодаря тепловой конвекции в жидком внешнем ядре планеты, состоящем из расплавленного железа, в результате чего там образуется система течений электропроводящей жидкости, что аналогично движению проводника с током. Глазами человека магнитное поле нельзя увидеть, но некоторые организмы научились его воспринимать и использовать его силовые линии для пространственной ориентации.

Существует несколько гипотез физической основы «магнитного чувства». Согласно одной из них, магниторецепция обеспечивается за счет органелл с кристаллами минерала магнетита (Fe 3 O 3 ), имеющихся в живых клетках. Вращение таких частиц под действием поля предположительно способствует открытию клеточных ионных каналов и генерации нервного импульса. Магнетит был обнаружен в клетках ряда организмов: бактерий, моллюсков, рептилий, рыб и птиц.

Еще одна гипотеза делает акцент на особых белках в сетчатке глаза – криптохромах, известных как регуляторы циркадных (внутренних биологических) ритмов. Под действием света синего спектра между структурными элементами этих белков происходит перераспределение зарядов с образованием устойчивой радикальной пары с неспаренными электронами. Такая конфигурация белка оказывается чувствительной к магнитному полю, так что клетка каким-то образом «узнает» о его значении в той или иной точке. Криптохромы были обнаружены у многих животных, включая мушек-дрозофил.

У перелетных птиц, похоже, работают оба механизма магниторецепции. Первый является своего рода «компасом», благодаря которому птицы, вероятно, способны буквально видеть магнитное поле и определять, в каком направлении расположен ближайший магнитный полюс. С помощью же клеток с магнетитом, расположенных в области клюва, они оценивают более тонкие изменения магнитного поля, на основе которых можно составить подробную «карту». В результате птицы прокладывают свои полетные маршруты на основе точных географических координат.

Морские черепахи и перелетные птицы используют для ориентации в пространстве, силовые линии магнитного поля Земли

Эксперименты на дрозофилах дали косвенные доказательства того, что и человек может в принципе «чувствовать» магнитные поля. Когда этих мушек с помощью методов генной инженерии заставили вместо собственного криптохрома производить белок, характерный для позвоночных животных, они стали воспринимать магнитное поле немногим хуже, чем раньше.

Но здесь есть одно «но»: люди магнитное поле в прямом смысле не видят. Подобная информация поступает в мозг животных через тройничный нерв, через который человек получает чувствительные сигналы, лежащие вне области сознательного восприятия (например, «служебные» сигналы от глазодвигательных мышц). Поэтому работа системы «магнитного чувства», которую мы могли унаследовать от животных, должна восприниматься нами практически неосознанно.

Учитывая эти данные и негативный опыт предыдущих исследований на людях, группа ученых из США и Японии провели эксперимент, в котором проверили реакцию человеческого мозга на изменения магнитного поля с помощью метода электроэнцефалографии. В эксперименте приняли участие 34 жителя Северного полушария. Испытуемых помещали в клетке Фарадея – устройстве для экранирования аппаратуры от внешних электромагнитных полей, внутри которой создавали искусственное магнитное поле, ориентацию которого меняли.

По словам участников эксперимента, они не чувствовали каких-либо изменений в своем состоянии. Но электроэнцефалограмма показала, что изменения магнитного поля сопровождались падением амплитуды альфа ритма мозга (с частотой колебаний 8–13 Гц). Такой ритм типичен для бодрствующего мозга в состоянии относительного покоя, а падение его амплитуды говорит о восприятии каких-то внешних сигналов. Этот эффект проявлялся у всех испытуемых по-разному, но отличался высокой воспроизводимостью при повторных измерениях, что может указывать на генетически обусловленную чувствительность индивидуумов.

При этом интенсивность реакции мозга зависела от направления вращения поля. Как предположили ученые, мозг может настраиваться на восприятие геомагнитных сигналов определенного уровня, характерных для конкретного региона. К примеру, подобная «настройка» есть у морских черепах, обитающих в Саргассовом море: если они случайно уплывают далеко от «дома», то какие-то изменения характеристик геомагнитного поля приводят к тому, что они резко меняют направление движения, стремясь возвратиться обратно. Возможно, реакции участников эксперимента были бы иными, если бы они проживали не в Северном, а в Южном полушарии.

Интересно, что в данном случае метод электроэнцефалографии был применен для изучения магниторецепции не впервые: результаты аналогичной работы были опубликованы еще в 2002 г., и они оказались отрицательными. Более удачливые экспериментаторы объясняют казус своих коллег недостаточной мощностью аналитических методов того времени. Что и доказали, безуспешно проанализировав нынешние данные с помощью «старых» методик.

Можно надеяться, что сегодняшний успех не является очередным «артефактом» вычислительных технологий, только уже со знаком «плюс». В любом случае его нужно подтвердить в дополнительных экспериментах, например, по исследованию влияния на мозг поля разной напряженности и т.п.

Остается неизвестным и сам механизм магниторецепции у человека. Предположение о «визуальном», криптохром-зависимом механизме ученые отвергают из-за обнаруженной способности мозга различать полярность магнитных полюсов. И хотя в эволюционно древних регионах мозга человека – стволе и мозжечке – были найдены частицы магнетита, у нас нет каких-либо специальных сенсорных структур, содержащих этот минерал, поэтому находка таких частиц может отражать лишь степень загрязнения окружающей среды.

Так что вопросов о магниторецепции у человека по-прежнему больше, чем ответов. И даже если наше слабое «чувство поля» есть – велик ли от него прок в современном мире, где есть карты, компасы и GPS? К тому же и пробиться сквозь изобилие окружающих нас антропогенных электромагнитных волн ему будет трудно – даже птицы сбиваются с пути во время магнитных бурь. Кстати, про магнитные бури: опять болит голова – не проверить ли геомагнитный прогноз? Чем черт не шутит…

Подготовила Мария Перепечаева

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *