Открытие дисперсии света
Первооткрывателем явления дисперсии света является Ньютон, а под самой дисперсией понимается разложение сложного света на простые составляющие, т. е. на спектр. Об экспериментах великого физика, в которых он посредством призмы доказывал «элементарность» монохромных (одноцветных) лучей и многокомпонентность белого света, уже говорилось в этой книге. Нужно заметить, что Ньютон не первым открыл разложение света, ученые давно обратили на это явление внимание, наблюдая за радугой, преломлением света в хрустале и т. д. Но только ему удалось объяснить сущность физического явления.
Современное объяснение дисперсии основывается на представлениях о двойственной, корпускулярно-волновой природе видимого излучения. Дисперсией называется зависимость скорости света в веществе от длины волны. Проходя через прозрачное или полупрозрачное вещество (газ, жидкость, стекло, пленку), одноцветный луч испытывает преломление, потому что его скорость в новой среде меняется. Причем чем больше сократится скорость, тем сильнее преломится луч. Красные лучи почти не преломляются, зато фиолетовые отклоняются очень существенно.
Белый свет является комплексным излучением, он образован смешением всех спектральных цветов. Монохромные лучи в составе белого света замедляются веществом (призмой) неодинаково, что приводит к разложению светового потока. Красный луч почти не испытывает преломления, зато остальные лучи отклоняются от него все дальше и дальше. Больше всего отклоняется от красного фиолетовый луч. Поскольку после неодинакового преломления лучи уже не могут смешаться и воссоздать белый цвет, то они приобретают вид радуги-спектра.
Мало кто знает, сколько же действительно цветов увидел Ньютон во время своего эксперимента. Согласно иллюстрациям к работам великого физика, он наблюдал ровно семь цветов спектра: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Парадоксально, однако знаменитый англичанин не видел семи цветов. Он их просто выдумал. Если рассуждать строго научно, то спектр разделим лишь на три области — красную, желто-зеленую и сине-фиолетовую. Человек в состоянии различить в радужной полоске пять чистых цветов — красный, желтый, зеленый, голубой и фиолетовый. Если говорить о промежуточных (переходных) оттенках, то их существует 4: оранжевый, желто-зеленый, зелено-голубой и синий. Таким образом, Ньютон мог выделить в линии спектра либо 3 главных области, либо 5 основных, чистых цветов, либо 9 цветовых оттенков вообще — 5 основных цветов и 4 переходных.

Ответ на этот вопрос содержится в исторической работе Ньютона под названием «Оптика», где ученый признается, что увидел 5 чистых цветов. Он рассказывает о своих наблюдениях следующее: «Спектр оказался окрашенным и притом так, что часть наименее преломленная была красною; верхняя же, наиболее преломленная часть у конца была окрашена в фиолетовый цвет. Пространство между этими крайними цветами имело желтую, зеленую и голубую окраску». Физик ввел в науку представление о несуществующих семи цветах спектра, неосознанно подчинись вере в магию числа 7.

Эта вера восходит к астрологии древних халдеев, которые свыше 4000 лет назад поклонялись 7 блуждающим светилам небосвода — Солнцу, Луне, Меркурию, Венере, Марсу, Юпитеру и Сатурну. По числу светил была поделена неделя, которую некогда так и называли на Руси — «седмица». Шесть трудовых дней и седьмой день отдыха приближенно совпадали с биоритмом работоспособности человека, а потому получили мистическое истолкование. Как говорится, даже Бог отдыхал в седьмой день.
Библейское «число зверя», в котором зашифровано имя императора Нерона, составлено из трех шестерок, являющихся неполными семерками. В средние века алхимики знали 7 металлов, музыканты придумали 7 нот. Следует предположить, что Ньютон последовал красивой и загадочной традиции.
Дисперсия света

При распространении света происходит ряд интересных явлений, одним из которых является дисперсия при преломлении. Рассмотрим это понятие более подробно.
Опыт И. Ньютона
То, что свет при прохождении прозрачных сред (воды или стекла) преломляется, и может давать радужные лучи, было известно еще в древности. Однако, систематическое научное изучение этого явления началось лишь в эпоху Возрождения. Ведущая роль в этом принадлежит И.Ньютону.
Опыт Ньютона состоял в том, чтобы направить узкий пучок белого света, попадающий в затемненную комнату сквозь маленькое отверстие в ставне на трехгранную призму, и наблюдать картину лучей, прошедших, сквозь нее.

До Ньютона многие считали, что белый свет при преломлении окрашивается самой призмой. Однако, данный опыт показал, что это не так. Если перекрывать падающий белый пучок света цветным стеклом, то радужная картина, имевшаяся после преломления, гаснет, оставляя лишь тот цвет, который пропускает цветное стекло.
Более того, если направить радужный свет на вторую такую же призму, но, расположенную иначе, можно добиться того, чтобы свет вновь собрался бы в одно маленькое пятнышко, которое будет белым.

Картину разложения белого света в цветные составляющие И.Ньютон назвал спектром. Хотя, цвета в спектре плавно переходят один в другой, согласно традиции, берущей начало еще у античных авторов, радуга имеет семь цветов, и Ньютон не стал отходить от этого правила.
Таким образом, были доказаны две важных особенности света:
- Белый свет имеет сложную структуру, и состоит из многих цветов.
- Разные цвета по-разному преломляются в призме.
Последнему свойству Ньютон дал специальное определение. В своем трактате «Оптика» он назвал его дисперсией света (от латинского dispersio – рассеяние).
Данное явление достаточно широко распространено в природе. Наиболее яркий пример дисперсии света – появление радуги. В меньшем масштабе радужную картину дисперсии можно наблюдать в мелких брызгах фонтанов.

Объяснение дисперсии света
Во времена И. Ньютона объяснить дисперсию света было нельзя. Для этого было необходимо понимание природы световых волн, которое тогда только начинало формироваться. Более того, даже электромагнитная теория Дж. Максвелла не объясняла причины дисперсии. Эти причины стали ясны в дальнейшем, с развитием представления о природе света в рамках классической электронной теории Х. Лоренца.
Кратко можно сказать, что электроны внешних оболочек атомов вещества получают энергию падающего излучения, под действием которой совершают вынужденные колебания, и, в свою очередь также излучают. Это вторичное излучение смешивается (и интерферирует) с падающим, и в веществе распространяется результирующая волна в том же направлении, как и падающая. Ее скорость, как следовало из теории Х. Лоренца, зависит от частоты. А скорость распространения света в веществе как раз и определяет коэффициент преломления вещества:
Поскольку скорость красных световых волн в веществе оказалась самой большой, то и коэффициент преломления у красного света получается минимальный. Скорость фиолетовой волны самая маленькая, и преломляется фиолетовый свет наиболее сильно.
Таким образом, коэффициент преломления зависит от частоты излучения, а значит, белый свет, состоящий из излучения различных длин волн, будет преломляться в разной степени, в зависимости от длины волны. В этом и состоит сущность дисперсии.
Что мы узнали?
Дисперсия света была открыта И. Ньютоном. Она состоит в различном преломлении в веществе световых волн разных длин волн. Дисперсия света была объяснена в рамках классической электронной теории Х. Лоренца, которая предсказывала зависимость скорости распространения электромагнитных волн в веществе (а значит, и коэффициента преломления) от длины волны.
ДИСПЕРСИЯ СВЕТА
В 1665—1667 гг. в Англии свирепствовала эпидемия чумы, и молодой Исаак Ньютон решил укрыться от нее в своем родном Вулсторпе. Перед отъездом в деревню он приобрел стеклянные призмы, чтобы «произвести опыты со знаменитыми явлениями цветов».
Уже в I в. н. э. было известно, что при прохождении через прозрачный монокристалл с формой шестиугольной призмы солнечный свет разлагается в цветную полоску — спектр. Еще раньше, в IV в. до н. э., древнегреческий ученый Аристотель выдвинул свою теорию цветов. Он полагал, что основным является солнечный (белый) свет, а все остальные цвета получаются из него добавлением к нему различного количества темного цвета. Таким образом, по этой теории выходило, что цвета радуги сложные, а солнечный свет простой. Несмотря на создание стеклянных призм и опыты по разложению солнечного света, проводимые с их помощью различными естествоиспытателями, в науке вплоть до XVII в. продолжало господствовать учение Аристотеля о цвете.
Исследуя природу цветов, Ньютон придумал и выполнил целый комплекс различных оптических экспериментов. Замечательно, что некоторые из них пережили столетия, и их методика без существенных изменений используется в физических лабораториях до сих пор. Рассмотрим некоторые из них.
Первый опыт был традиционным. Проделав небольшое отверстие в ставне окна затемненной комнаты, Ньютон поставил на пути пучка лучей, проходивших через это отверстие, стеклянную призму. На противоположной стене он получил изображение в виде полоски чередующихся цветов. Полученный таким образом спектр солнечного света Ньютон разделил на семь цветов радуги — красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Установление именно семи основных цветов спектра в известной степени произвольно: Ньютон стремился провести аналогию между спектром солнечного света и музыкальным звукорядом. Если же рассматривать спектр без подобного предубеждения, то полоса спектра, скорее, распадается на три главные части — красную, желто-зеленую и сине-фиолетовую. Остальные цвета занимают сравнительно узкие области между этими основными. Вообще же человеческий глаз может различить в спектре солнечного света до 160 различных цветовых оттенков.
В последующих опытах Ньютону удалось соединить цветные лучи в белый свет. Для этого он пропустил лучи солнечного света сквозь призму , а затем вышедшие из нее цветовые лучи собрал с помощью собирающей линзы. Оказалось, что в месте соединения цветовых лучей, действительно, луч стал белого цвета. По прохождению этой точки цветовые лучи снова расходятся и располагаются в порядке, обратном обычному спектру.
В результате своих исследований Ньютон, в противоположность Аристотелю, пришел к убеждению, что при смешении «белизны и черноты никакого цвета не возникает. » Все цвета спектра содержатся в самом солнечном свете, а стеклянная призма лишь разделяет их, так как различные цвета по-разному преломляются стеклом. Таким образом, Ньютон внёс поправку к известному ранее закону преломления света: показатели преломления на самом деле постоянны для двух заданных сред при любых углах падения, но они меняются при изменении цвета падающего луча. Наиболее сильно преломляются фиолетовые лучи, слабее всего — красные. Впоследствии ученые установили тот факт, что, рассматривая свет как волну, каждому цвету следует сопоставлять свою длину волны. Очень важно, что эти длины волн меняются непрерывным образом, соответствуя различным оттенкам каждого цвета.
Разложение белого света с помощью призмы.
Изменение показателя преломления среды в зависимости от длины распространяющейся в ней волны и называется дисперсией (от латинского глагола «рассеивать»). Для обычного стекла показатель преломления близок к 1,5 для всех длин волн видимого света. При этом его дисперсия такова, что при переходе от красного (Я, ~ 0,65 мкм) к фиолетовому (А, ~ 0,44 мкм) цвету коэффициент преломления увеличивается от 1,514 до 1,534, т. е. всего на 1,3%.
Тем не менее этот один процент позволил ученым с помощью специальных приборов — спектрографов — получать важнейшую информацию о составе и свойствах различных веществ, изучая их спектры излучения и поглощения.
Опыты Ньютона и других ученых показывали, что с увеличением длины волны света показатель преломления исследуемых веществ монотонно уменьшается. Однако в 1860 г., измеряя показатель преломления паров иода, французский физик Леру обнаружил, что красные лучи преломляются этим веществом сильнее, чем синие.
Это явление он назвал аномальной дисперсией света; в дальнейшем оно было обнаружено и во многих других веществах. В современной физике как нормальная, так и аномальная дисперсия света объясняются единым образом. Отличие этих двух явлений друг от друга заключается в том, что нормальная дисперсия происходит с лучами света, длина волны которых далека от области поглощения излучения данным веществом, а аномальная дисперсия наблюдается именно в области поглощения.
Дисперсия света в физике, спектр и призма Ньютона: что это такое
Причины окраски вещей в разные цвета тревожили умы людей издревле. До XVII века в этой области царила неразбериха, пока Декарт и Ньютон не прояснили вопрос. Рассмотрим, что такое дисперсия света, историю открытия явления, её практическое применение.
Дисперсия света: что это в физике
Проводя очередной опыт, Ньютон понял, что нужно для совершенствования линз телескопа. Он задействовал зеркало – рефлектор, которое ослабило эффект окрашивания краёв линз по периметру. Занявшись исследованием этой окраски, учёный открыл явление разложения света в спектр.
Дисперсия света – это явление, которое описывает расщепление электромагнитного излучения видимого для человеческого глаза спектра, когда коэффициент преломления диктуется частотой волны. Световые волны с разной частотой – цветом излучения – преломляются под разным углом, распространяются в физической среде (не идеальном вакууме) с различной скоростью.
Смысл открытия Ньютона объясняет следующий опыт. Световой поток от источника через узкое отверстие через линзу фокусируется на белом экране прямоугольной формы. Между линзой и экраном размещается призма Ньютона так, чтобы свет падал на её ребро. Вследствие, световое пятно трансформируется в разноцветную полосу со всеми цветами радуги: от красного до фиолетового. Этот разложенный пучок белого света на цвета назвали спектром.

Если щель накрыть цветным стеклом – вместо белого света на призму будет попадать окрашенный в определённый цвет, вместо спектра появится тонкий прямоугольник, отклонённый в сторону. Причем угол смещения зависит от частоты волны – цвета потока или стекла.
Вследствие дальнейших опытов Ньютон сделал вывод, что существуют простые цвета – не разлагаются при прохождении сквозь призму, и сложные – расщепляются на простые с разным углом преломления. Солнце излучает белый свет, который разлагается призмой на простые – спектр.

Дисперсия объясняет образование радуги, «покраснение» солнца и прочие метеорологические явления – капли воды расщепляют солнечные лучи. Круги вокруг космических тел (Солнца, Луны), появляющиеся в морозную погоду – следствие дисперсии.
Фиолетовый свет медленнее остальных распространяется в среде, обладает максимальным коэффициентом преломления, у красного наибольшая фазовая скорость и минимальная степень преломления. Бывают исключения из правил, например, пары йода и иных газов сильнее поглощают световой поток на одних частотах и слабее на других.
Формула дисперсии света
Французский учёный Огюст Коши разработал формулу дисперсии света или преломления волн в зависимости от среды:
- n – коэффициент преломления среды;
- a, b, c – постоянная, уникальная для каждого материала.
Для большинства расчётов достаточно двух первых слагаемых. Существуют более сложные формулы, повышающие точность расчётов, но они применяются в практических целях, не для решения школьных задач.