Как работает симисторный регулятор мощности
Перейти к содержимому

Как работает симисторный регулятор мощности

  • автор:

Симисторный регулятор мощности

В симисторных регуляторах мощности, работающих по принципу пропускания через нагрузку определенного числа полупериодов тока в единицу времени, должно выполняться условие четности их числа. Во многих известных радиолюбительских (и не только) конструкциях оно нарушается. Вниманию читателей предлагается регулятор, свободный от этого недостатка. Его схема изображена на рис. 1. Здесь имеются узел питания, генератор импульсов регулируемой скважности и формирователь импульсов, управляющих симистором. Узел питания выполнен по классической схеме: токоограничивающие резистор R2 и конденсатор С1, выпрямитель на диодах VD3, VD4, стабилитрон VD5, сглаживающий конденсатор СЗ. Частота импульсов генератора, собранного на элементах DD1.1, DD1.2 и DD1.4, зависит от емкости конденсатора С2 и сопротивления между крайними выводами переменного резистора R1. Этим же резистором регулируют скважность импульсов. Элемент DD1.3 служит формирователем импульсов с частотой сетевого напряжения, поступающего на его вывод 1 через делитель из резисторов R3 и R4, причем каждый импульс начинается, вблизи перехода мгновенного значения сетевого напряжения через ноль. С выхода элемента DD1.3 эти импульсы через ограничительные резисторы R5 и R6 поступают на базы транзисторов VT1, VT2. Усиленные транзисторами импульсы управления через разделительный конденсатор С4 приходят на управляющий электрод симистора VS1. Здесь их полярность соответствует знаку сетевого напряжения, приложенного в этот момент к выв. 2 симистора. Благодаря тому, что элементы DD1.1 и DD1.2, DD1.3 и DD1.4 образуют два триггера, уровень на выходе элемента DD1.4, соединенном с выводом 2 элемента DD1.3, сменяется на противоположный только в отрицательном полупериоде сетевого напряжения. Предположим, триггер на элементах DD1.3, DD1.4 находится в состоянии с низким уровнем на выходе элемента DD1.3 и высоким на выходе элемента DD1.4. Для изменения этого состояния необходимо, чтобы высокий уровень на выходе элемента DD1.2, соединенном с выводом 6 элемента DD1.4, стал низким. А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.1, независимо от момента установки высокого уровня на выводе 8 элемента DD1.2. Формирование управляющего импульса начинается с приходом положительного полупериода сетевого напряжения на вывод 1 элемента DD1.3. В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.2 сменится низким, что установит на выходе элемента высокий уровень напряжения. Теперь высокий уровень на выходе элемента DD1.4 тоже может смениться низким, но только в отрицательный полупериод напряжения, поступающего на вывод 1 элемента DD1.3. Следовательно, рабочий цикл формирователя управляющих импульсов закончится в конце отрицательного полупериода сетевого напряжения, а общее число полупериодов напряжения, приложенного к нагрузке, будет четным. Основная часть деталей устройства смонтирована на плате с односторонней печатью, чертеж которой показан на рис. 2. Диоды VD1 и VD2 припаяны непосредственно к выводам переменного резистора R1, а резистор R7 — к выводам симистора VS1. Симистор снабжен ребристым теплоотводом заводского изготовления с площадью теплоотводящей поверхности около 400 см 2 . Использованы постоянные резисторы МЛТ, переменный резистор R1 — СПЗ-4аМ. Его можно заменить другим такого же или большего сопротивления. Номиналы резисторов R3 и R4 должны быть одинаковыми. Конденсаторы С1, С2 — К73-17. Если требуется повышенная надежность, то оксидный конденсатор С4 можно заменить пленочным, например, К73-17 2,2. 4,7 мкФ на 63 В, но размеры печатной платы придется увеличить. Вместо диодов КД521А подойдут и другие маломощные кремниевые, а стабилитрон Д814В заменит любой более современный с напряжением стабилизации 9 В. Замена транзисторов КТ3102В, КТ3107Г — другие маломощные кремниевые соответствующей структуры. Если амплитуда открывающих симистор VS1 импульсов тока окажется недостаточной, сопротивление резисторов R5 и R6 уменьшать нельзя. Лучше подобрать транзисторы с возможно большим коэффициентом передачи тока при напряжении между коллектором и эмиттером 1 В. У VT1 он должен быть 150. 250, у VT2 — 250. 270. По окончании монтажа можно присоединять к регулятору нагрузку сопротивлением 50. 100 Ом и включать его в сеть. Параллельно нагрузке подключите вольтметр постоянного тока на 300. 600 В. Если симистор устойчиво открывается в обоих полупериодах сетевого напряжения, стрелка вольтметра вообще не отклоняется от нуля либо немного колеблется вокруг него. Если же стрелка вольтметра отклоняется лишь в одну сторону, значит, симистор открывается только в полупериодах одного знака. Направление отклонения стрелки соответствует той полярности приложенного к симистору напряжения, при которой он остается закрытым. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока. Радио №9, 2009г.

Список радиоэлементов

Молчанов В. Опубликована: 2010 г. 0 0

Вознаградить Я собрал 0 0

Оценить статью

  • Техническая грамотность

Оценить Сбросить

Средний балл статьи: 0 Проголосовало: 0 чел.

Комментарии (3) | Я собрал ( 0 ) | Подписаться

Для добавления Вашей сборки необходима регистрация

0

den 22.11.2011 20:52 #
Собрал эту схему. Взрывается VT1. Что делать?

0

Aleksandr200 17.01.2024 14:13 #
Схема не работает! Это получается обычная мигалка.

0

RR 08.03.2024 12:15 #

Никто ничего не отвечает, правильная ли эта схема, как только транзистор заурчит и схема окажется простой мигалкой.

Радиореле 220В

Радиореле 220В

200 Вт усилитель класса D на IRS2092 Мини гравер 125 Ватт

1999-2024 Сайт-ПАЯЛЬНИК ‘cxem.net’
При использовании материалов сайта, обязательна
ссылка на сайт ПАЯЛЬНИК и первоисточник

Симисторный регулятор мощности своими руками

Для управления некоторыми видами бытовых приборов применяют регулятор мощности на основе симистора. Симисторный регулятор мощности позволяет регулировать яркость свечения, частоту вращения двигателя, мощность нагревателя.

Принцип работы Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.

Симисторный регулятор мощности своими руками Схема

Эта схема довольно проста в сборке и не требует большого количества деталей. Такой регулятор можно применить для регулировки не только температуры паяльника, но и обычных ламп накаливания и светодиодных. К этой схеме можно подключать различные дрели, болгарки, пылесосы, шлифовальной машинки, которые изначально шли без плавной регулировки скорости.

Схема проверена и работает довольно стабильно при разных видах нагрузки.

Рекомендуемые товары

Кабель питания Cebec CEE 7/7 - C7 2-pin 220 1.2 м

Кабель питания Cebec CEE 7/7 — C7 2-pin 220 1.2 м

Кабель питания Cebec CEE 7/7 — C7 2-pin 220 1.2 м предназначен для подключения магнитофонов, телевиз..

Регулятор мощности AC 2000W

Регулятор мощности AC 2000W

Регулятор мощности AC 2000W переменного тока тиристорный универсальный, может быть применен для регу..

Симисторный регулятор мощности (напряжения)

Зачастую радиолюбители просто используют купленные паяльники (обычно 30-60 Ватт). Но такое использование имеет два минуса : Во-первых, при долгом применении паяльник перегревается, и им становится неудобно работать. Во-вторых из-за этого срок службы паяльника значительно снижается. На самом деле для пайки радиодеталей достаточно 20, ну максимум 25 Ватт. А самый простой способ уменьшить мощность — это уменьшить напряжение. А один из самых простых и дешёвых способов понизить напряжение — собрать регулятор на основе симистора (ВТ136). При использовании номиналов, указанных на схеме, диапазон регулировки — около 100-200 В Буквой D2 обозначен динистор DB3, а D3 симистор BT136. Итоговая цена при покупке в магазине составила, примерно, 60 рублей, но если заказать детали в Китае цена может снизится раза в два. У меня в удлинителе места было очень мало, поэтому я собрал всё навесным монтажом, и выглядит это не очень, не обессудьте. Принцип работы регулятора таков: при замкнутом переключателе (SA1 на схеме) ток идёт напрямую, минуя регулятор, а если разомкнуть переключатель, мы получаем возможность регулировать напряжение вращением ручки переменного резистора(R2). Нагляднее принцип работы регулятора во можете увидеть на видео ниже. Всем спасибо за прочтение, надеюсь, что моя статья поможет вам продлить жизнь вашего паяльника.

Список радиоэлементов
Прикрепленные файлы:
  • Регулятор(1).lay (5 Кб)
Теги:

Lukas_59 Опубликована: 06.10.2016 Изменена: 07.10.2016 0 0

Вознаградить Я собрал 0 1

Оценить статью

  • Техническая грамотность

Оценить Сбросить

Средний балл статьи: 2.3 Проголосовало: 1 чел.

Комментарии (30) | Я собрал ( 0 ) | Подписаться

Для добавления Вашей сборки необходима регистрация

0

Hepo 06.10.2016 20:15 #

Почитайте
вот эту тему на этом сайте
Прекрасный регулятор на симисторе.
Да и еще поставьте хотя-бы RC цепь на симистор, а то велика вероятность, что сам он не закроется. На собственном опыте наблюдал.

0

[Автор]

Lukas_59 07.10.2016 09:37 #
Спасибо за совет, обязательно учту.

0

Василий 07.10.2016 10:07 #
Покупал регуляторы для бра, 3 шт. 100 вТ. Два работают на паяльниках 40 и 90 вТ уже 6 лет.

0

seawar 07.10.2016 10:51 #
Какую функцию выполняет диод D1?

0

[Автор]

Lukas_59 07.10.2016 15:10 #
Он нужен для заряда конденсатора, т.к. тут переменное напряжение

0

seawar 07.10.2016 15:30 #

А разряд конденсатора как будет идти? ИМХО, схема у Вас работает исключительно благодаря тому, что диод этот удачно сгорел (коротнул). В оригинале там еще светодиод встречно-параллельный диоду должен быть.

+1

Shida 07.10.2016 18:21 #
Схема не работоспособна. Уберите пожалуйста диод и поставьте вместо него перемычку.

0

[Автор]

Lukas_59 07.10.2016 22:23 #

Дело в том, что изначально в схеме был ещё светодиод, но при переносе в другой корпус я его убрал, а диод оставил по незнанию. (Пошёл править статью) А схема почему-то работает, возможно из-за неисправности диода.

+1

Лекс 59 09.10.2016 17:35 #

Я применял схему со светодиодом. Он удобен. Видно включение и видно примерно угол открывания (по яркости). Только светодиод надо использовать т.н. «суперяркий». Обычные старые видно не будет.
А в качестве корпуса я использовал двойник в розетку. В одно окно вкл. паяльник, а во второе вставлен переменный резистор. Получается очень удобно. Только одну из двух шин внутри придется разрезать и скреплять винтом. Монтаж навесной. Симмистор лучше крепить прямо на шину. Она будет радиатором заодно.

0

oleg5d75 28.12.2020 01:42 #
Это не диод, а динистор, пороговый элемент, как раз эта схема на нем и основана

0

Гость 07.10.2016 22:57 #

Подскажите, чем можно заменить динистор? Например, 2 стабилитрона на 3.3В анод к аноду/катод к катоду?

0

Shida 09.10.2016 16:28 #

Динистор в этой схеме ни чем нельзя заменить. Разберите сгоревшую энергосберегайку и извлеките от туда динистор. В большинстве случаев в сгоревших электронных балластах динисторы остаются целые.
Hepo, на двух транзисторах для тиристорного регулятора, а здесь симисторный.
Здесь нужен аналог двухнаправленного динистора.

0

Лекс 59 09.10.2016 17:25 #
Эти динисторы стоят в каждой энергосберегающей лампе. Обычно синенькие либо черные.

0

Hepo 08.10.2016 10:33 #

стабилитроны не подойдут. Я находил аналог на 2 транзисторах сейчас не помню. А динистор легко находится в сгоревших энергосберегайках. Правда попадаются схемы и без него.

0

Гость 09.10.2016 19:40 #

Спасибо! Посмотрел несколько плат от энергосберегающих ламп. От светодиодных — нет, а вот от люминесцентных нашёл 1 DB3 в SMD стеклянном корпусе. Раньше думал стабилитрон, но сейчас заметил на плате надпись DB3.

0

Наил 12.08.2019 03:42 #
Это и есть стабилитрон,двухсторонний под названием диак

0

09.10.2016 18:20 #
Я всё жду батарейку 3336 тумблер и лампочку. Это будет логическое завершение подобных статей.

0

seawar 09.10.2016 20:44 #
Хорошая, проверенная схема. Статья вполне имеет право на жизнь на любительском форуме.

0

халил 10.10.2016 08:09 #

Конечно схема заслуживает внимания, но давно обросшая плесенью. Смысл тратить средства на покупку деталей. Этого добра завались на свалках мусора. Многие пылесосы снабжены регуляторами мощности. Малюсенькое плато и довольно мощное. Я обучаю мальчишек электронике. Тащат этого добра много.

0

Миха 11.10.2016 15:54 #

Подскажите, пожалуйста:
1. На какое напряжение конденсатор?
2. Можно ли вместо подстроечника на 470 кОм взять подстроечник на 1 МОм 0.125 Вт и параллельно ему поставить резистор на 1 МОм 0.25 Вт?
3. Резистор 4.7 кОм на 0.25 Вт подойдёт?

0

[Автор]

Lukas_59 12.10.2016 21:15 #

1. 220 (250) Вольт
2. Теоретически можно, но во-первых лучше брать по-мощнее, во-вторых лучше поставить не подстроечник, а переменник и в-третьих а зачем?
3. Точно не знаю (поэтому сам взял на 1Вт), но думаю мощность маловата.

+1

Artemon29 13.10.2016 08:43 #

Автору на будущее: отмечайте узлы схемы чёрными точками — схему будет читать в разы удобнее.
Эта схема не регулирует напряжение, а регулирует время его присутствия на нагрузке. Поэтому итоговый сигнал будет сильно отличаться от синусоиды, следовательно мультиметр не может показать реальных значений RMS, т.е. измерения напряжения тут произведены некорректно, да и ни к чему они тут.

Отредактирован 13.10.2016 08:43

+1

Smelter2 15.10.2016 21:23 #

Это регулятор мощности и никак не напряжения. При мощности 0.5 или выше от номинальной, напряжение будет равно амплитудному действующему.
Схема работает и без динистора.
Открываю «великую» тайну, на кой ляд все лепят динистор в эту схему, думаю, это полезно будет вам знать:
хоть симистор и является якобы симметричным тиристором, на самом то деле он не симметричный. ну, точнее условно симметричный. (открывайте любое описание на любой симистор и любуйтесь). что означает не симметричный? а то и значит, что ток открытия любого симистора зависит от полярности на электродах. и хоть чуть-чуть, но отличается. например на электроде 1 — плюс, на электроде 2 — минус, ток открытия 7 мА. меняем плюс и минус местами, ток открытия 12 мА. меняем полярность на управляющем электроде, ток открытия 15 мА. ну и т.д. Внимательный обыватель сразу же скажет: и что с того? да то, что ток открытия тянет за собой напряжение открытия. а если нагрузка у нас не слабая, получаем соответствующую пульсацию тока, неравномерное его распределение по полуволнам, а это дополнительные биения на валу электродвигателя, например, если мы движок регулируем. Вот чтобы совладать с этим придумали гениальный «ход конём» — динистор влепить, который в обе стороны открывается при практически одинаковом напряжении. Но при этом приходится жертвовать до 7% мощности на нагрузке при регулировке симистором+динистор. (ждать, пока напряжение поднимется до 32В, которое гарантированно обеспечит током открытия — превысит самый максимально возможный уровень при любых комбинациях полярности). удачи всем во всех начинаниях.

0

Регулятор мощности на симисторе и тиристоре

Принцип действия регулятора

Практически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.

Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.

Регулятор мощности на симисторе

Симистор, по большому счету, — это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков — это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.

Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.

Схема регулятора мощности на симисторе

  • Пр. 1 — предохранитель (выбирается в зависимости от требуемой мощности).
  • R3 — токоограничительный резистор — служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
  • R2 — потенциометр, подстроечный резистор, которым и осуществляется регулировка.
  • C1 — основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
  • VD3 — динистор, открытие которого управляет симистором.
  • VD4 — симистор — главный элемент, производящий коммутацию и, соответственно, регулировку.

Как работает регулятор

Основная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.

Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания. Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.

Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.

Как регулируется выходная мощность в регуляторах

Напряжение на тиристоре

Для начала разберёмся, чем отличается тиристор от симистора. Тиристор содержит в себе 3 p-n перехода, а симистор — 5 p-n переходов. Не углубляясь в детали, если говорить простым языком, симистор обладает проводимостью в обоих направлениях, а тиристор — только в одном. Графические обозначения элементов показаны на рисунке. Из графики это хорошо видно.

Схемное обозначение тиристора, симистора и динистора

Принцип работы абсолютно такой же. На чём и построена регулировка по мощности в любой схеме. Рассмотрим несколько схем регулятора на тиристорах. Первая простейшая схема, которая в основе повторяет схему на симисторе, описанную выше. Вторая и третья — с применением логики, схемы, которые более качественно гасят помехи, создаваемые в сети переключением тиристоров.

Простая схема

Простая схема фазового регулирования на тиристоре представлена ниже.

Простейшая схема регулятора мощности на тиристоре

Единственное её отличие от схемы на симисторе — это то, что регулировка происходит только положительной полуволны сетевого напряжения. Времязадающая RC-цепь путём регулирования величины сопротивления потенциометра регулирует величину отпирания, тем самым задавая выходную мощность, поступающую на нагрузку. На осциллограмме это выглядит следующим образом.

Как регулируется выходная мощность в регуляторах

Из осциллограммы видно, что регулировка мощности идёт путём ограничения напряжения поступающего на нагрузку. Образно говоря, регулировка заключается в ограничении поступления сетевого напряжения на выход. Регулируя время заряда конденсатора путём изменения переменного сопротивления (потенциометра). Чем выше сопротивление, тем дольше происходит заряд конденсатора и тем меньше мощности будет передано на нагрузку. Физика процесса подробно описана в предыдущей схеме. В этом случае она ничем особым не отличается.

С генератором на основе логики

Второй вариант более сложный. В связи с тем, что процессы коммутации на тиристорах вызывают большие помехи в сети, это плохо влияет на элементы, установленные на нагрузке. Особенно если на нагрузке находится сложный прибор с тонкими настройками и большим количеством микросхем.

Регулятор мощности на тиристоре с мягкой регулировкой

Такая реализация тиристорного регулятора мощности своими руками подойдёт для активных нагрузок, например, паяльник или любые устройства нагрева. На входе стоит выпрямительный мост, поэтому обе волны сетевого напряжения будут положительными. Обратите внимание, что при такой схеме для питания микросхем понадобиться дополнительный источник постоянного напряжения +9 В. Осциллограмма из-за наличия выпрямительного моста будет выглядеть следующим образом.

Осциллограмма при наличии выпрямительного моста

Обе полуволны теперь будут положительными из-за влияния выпрямительного моста. Если для реактивных нагрузок (двигатели и другие индуктивные нагрузки) наличие разно полярных сигналов предпочтительно, то для активных — положительное значение мощности крайне важно. Отключение тиристора происходит также при приближении полуволны к нулю ток удержания подаёт до определённого значения и тиристор запирается.

На основе транзистора КТ117

Наличие дополнительного источника постоянного напряжение может вызвать затруднения, если его нет, и вовсе придётся городить дополнительную схему. Если дополнительного источника у вас нет, то можно воспользоваться следующей схемой, в ней генератор сигналов на управляющий вывод тиристора собран на обычном транзисторе. Есть схемы на основе генераторов, построенных на комплементарных парах, но они более сложные, и здесь мы их рассматривать не будем.

Регулятор мощности с генератором на КТ117

В данной схеме генератор построен на двухбазовом транзисторе КТ117, который при таком применении будет генерировать управляющие импульсы с периодичностью, задаваемой подстроечным резистором R6. На схеме ещё реализована система индикации на базе светодиода HL1.

  • VD1-VD4 — диодный мост, выпрямляющий обе полуволны и позволяющий выполнять более плавную регулировку мощности.
  • EL1 — лампа накаливания — представлена вроде нагрузки, но может быть любой другой прибор.
  • FU1 — предохранитель, в этом случае стоит на 10 А.
  • R3, R4 — токоограничительные резисторы — нужны, чтобы не сжечь схему управления.
  • VD5, VD6 — стабилитроны — выполняют роль стабилизации напряжения определённого уровня на эмиттере транзистора.
  • VT1 — транзистор КТ117 — установлен должен быть именно с таким расположение базы №1 и базы №2, иначе схема будет не работоспособна.
  • R6 — подстроечный резистор, определяющий момент, когда поступает импульс на управляющий вывод тиристора.
  • VS1 — тиристор — элемент, обеспечивающий коммутацию.
  • С2 — времязадающий конденсатор, определяющий период появления управляющего сигнала.

Остальные элементы играют незначительную роль и в основном служат для токоограничения и сглаживания импульсов. HL1 обеспечивает индикацию и сигнализирует только о том, что прибор подключён к сети и находится под напряжением.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *