Как проверить работу генератора на микросхеме к561ла7
Перейти к содержимому

Как проверить работу генератора на микросхеме к561ла7

  • автор:

—> —>

Страница РадиоДом в ВКонтакте

  • Регистрация
  • Вход

Пробник на микросхеме К561ЛА7 с двумя индикаторами

Купить мужские и женские унты с бесплатной доставкой по России

В статье рассмотрим схему простого пробника на одной отечественной микросхеме которая поможет прозвонить различные цепи, проверять диоды, резисторы и кремниевые транзисторы. В роли индикаторов могут быть как светодиоды, так и миниатюрный динамик или наушник от телефона. Схема довольно примитивна, для начинающего радиолюбителя не составит труда собрать данную схему.

Работает устройство следующим образом. На элементах DD1.1 и DD1.2 собран генератор прямоугольных импульсов, следующих с частотой ровно 1000 Герц. Импульсы генератора поступают на согласующий каскад (элемент DD1.3), а после него – на инвертор (элемент DD1.4). Если на выводе 10 микросхемы сигнал высокого уровня, то на выводе 11 присутствует низкий уровень, и соответственно наоборот. Таким образом формируется переменное напряжение, которое через щупы Х1 и Х2 подается в прозваниваемую цепь.

Пробник на микросхеме К561ЛА7 с двумя индикаторами

Дополнительный конденсатор и выключатель (С1 и SA1) используются при проверке пробником конденсаторов. Когда контакты выключателя замкнуты, частота генерируемых импульсов уменьшается примерно до 0,5 Герц. Если теперь щупы пробника подключить к выводам исправного конденсатора, светодиоды будут загораться и сразу гаснуть (длительность свечения зависит от ёмкости проверяемого конденсатора).
Если щупы замкнуть между собой или подключить к замкнутой цепи проверяемого устройства, загорятся оба светодиода и в наушнике BF1 раздастся громкий звук. При наличии в цепи полупроводникового прибора, например диода, загорится только один светодиод, громкость звука св наушнике упадёт.
Если микросхема исправна и монтаж выполнен правильно, то пробник заработает сразу же после подачи питания.
Питается пробник от источника постоянного напряжения 9 вольт. Монтаж можно выполнить навесным методом на длинной и узкой плате в виде отвертки — индикатора одним концом и щупом на другом, соединяя их проводом около 80 см.
Все радиокомпоненты устройства отечественные, но если есть аналог в зарубежных деталях то можно заменить:
DD1 — К561ЛА7, К176ЛА7, 564ЛА7, К561ЛЕ5, К176ЛЕ5, 564ЛЕ5
C1 — 5 мкФ х 6,3 вольт
C2, C3 — 0,01 мкФ
R1 — 100 кОм — МЛТ-0,125 Ватт
R2 — 100 Ом МЛТ-0,125 Ватт
HL1, HL2 — АЛ307А, подойдут и с другими буквенными индексами.
BF1 — капсюль ДЭМШ-4, динамик или наушник

Как проверить работу генератора на микросхеме к561ла7

Текущее время: Сб мар 16, 2024 02:27:32

Часовой пояс: UTC + 3 часа

Запрошенной темы не существует.

Часовой пояс: UTC + 3 часа

Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
Русская поддержка phpBB
Extended by Karma MOD © 2007—2012 m157y
Extended by Topic Tags MOD © 2012 m157y

Работоспособность сайта проверена в браузерах:
IE8.0, Opera 9.0, Netscape Navigator 7.0, Mozilla Firefox 5.0
Адаптирован для работы при разрешениях экрана от 1280х1024 и выше.
При меньших разрешениях возможно появление горизонтальной прокрутки.
По всем вопросам обращайтесь к Коту: kot@radiokot.ru
©2005-2024

Как проверить работу генератора на микросхеме к561ла7

Схема электронных приборов на микросхеме К561ЛА7 (К176ЛА7)

Рассмотрим схемы четырех электронных приборов построенных на микросхеме К561ЛА7 (К176ЛА7). Принципиальная схема первого прибора показана на рисунке 1. Это мигающий фонарь. Микросхема вырабатывает импульсы, которые поступают на базу транзистора VT1 и в те моменты, когда на его базу поступает напряжение единичного логического уровня (через резистор R2) он открывается и включает лампу накаливания, а в те моменты, когда напряжение на выводе 11 микросхемы равно нулевому уровню лампа гаснет.

Таким образом, когда на вывод 2 D1.2 поступает нуль, этому элементу будет веера вно разряжен или заряжен конденсатор С2, не зависимо от того, что происходит на выводе 1, на выводе 3 будет единица. Если на вывод 2 подать единицу ситуация изменится на обратную и мультивибратор станет генерировать импульсы.

Управление мультивибратором происходит при помощи элемента D1.1. Для запуска реле времени нужно нажать на кнопку S1 и отпустить её (замкнуть и разомкнуть её контакты). При этом конденсатор С1, при замыкании S1 разрядится и, при размыкании контактов S1 начнет заряжаться через R1. Все это время пока он заряжается уровень на входах D1.1 будет единичным и на выходе этого элемента будет нуль, а значит мультивибратор работать не будет, а в результате — тишина. Как только С1 зарядится на R1 будет низкое напряжение, соответствующее уровню логического нуля и такой же уровень будет на входах D1.1. Следовательно на выходе D1.1 будет единица и мультивибратор запустится, раздастся звук, сообщающий о том, что установленное время истекло.

Время, в течении которого заряжается С1 зависит от сопротивления R1 и чем R1 больше тем больше время. Резистор R1 переменный, если на него накрепить круг со шкалой, проградуированной в секундах, поворачивая его вал, на который нужно надеть ручку, можно будет устанавливать время, через которое, после кратковременного нажатия и отпускания S1 должен прозвучать сигнал. Разместив это устройство в подходящем корпусе можно сделать несложное реле времени для фотопечати.

Третье устройство — охранная сигнализация, которая реагирует на обрыв тонкого контрольного провода, — шлейфа, в качестве которого может быть использован тонкий намоточный провод в лаковой изоляции. Устройство может, например, охранять багаж, в этом случае шлейфом нужно обвязать багажную сумку, так, чтобы если ее поднять шлейф обрывался. В момент обрыва включится прерывистый звуковой сигнал, который будет продолжаться пока не выключат питание или не восстановят шлейф.

Схема электронных приборов на микросхеме К561ЛА7 (К176ЛА7)

Рис.3

Принципиальная схема охранного устройства показана на рисунке 3. В данной схеме используются два мультивибратора, первый на элементах D1.1 и D1.2, вырабатывающий импульсы низкой частоты, такие как в мигающем фонаре (рисунок 1), второй на элементах D1.3 и D1.4 вырабатывает звуковые импульсы, такие как в схеме на рисунке 2.

На выходе этого мультивибратора включен усилитель мощности на транзисторе VT1, в коллекторной цепи которого включен небольшой динамик от радиоприемника (подойдет любой динамик) по этому звук сигнализации получается достаточно громким. Мультивибраторы включены последовательно. Выход первого мультивибратора подключен к одному из входов первого элемента второго мультивибратора.

Поэтому мультивибратор на элементах D1.3 и D1.4 работает только тогда, когда на выходе первого мультивибратора единица, когда нуль — молчит. Таким образом, в результате работы обеих мультивибраторов звук получается прерывистым.

При отсутствии обрыва охранного шлейфа на вывод 2 элемента D1.1 поступает через шлейф нуль и первый мультивибратор не функционирует, при этом на его выходе также будет нуль. А этот нуль, в свою очередь, поступает на один из входов элемента D1.3 и так же блокирует и второй мультивибратор. На выходе которого (вывод 11) тоже нуль. В результате транзистор VT1 закрыт и динамик не звучит.

При обрыве шлейфа на вывод 2 D1.1 поступает единица через R1 и первый мультивибратор запускается. А вслед за ним и второй. На транзистор поступают импульсы звуковой частоты и динамик звучит.

Четвертое устройство — сигнализатор влажности, он издает звук если уровень воды в какой-то емкости или уровень влажности в какой то среде (песке, земле, тряпке) превысит некоторый уровень.

Простой генератор прямоугольных импульсов на логических элементах

Схема генератора на CD4011BE

На рисунке приведена простейшая схема генератора на логических элементах. Ничего лишнего: времязадающая RC-цепочка и микросхемка.

Данное устройство собрано на микросхеме CD4011BE (отечественный аналог К561ЛА7). Она содержит в себе 4 логических элемента 2И-НЕ. Сразу вспомним, что элемент 2И-НЕ имеет два входа, и сперва применяет к двум входным сигналам операцию И, а затем результат инвертирует (операция НЕ). Вот табличка логики:

Вход 1 Вход 2 Выход
0 0 1
1 0 1
0 1 1
1 1 0

Впрочем, на схеме входы элементов соединены друг с другом. Это значит, что нам от элемента нужна только операция НЕ. Один элемент инвертирует сигнал, то есть поворачивает его на 180 градусов. Значит, два последовательных элемента повернут сигнал на 360 градусов = 0 градусов. Это как раз и требуется: для работы генератора должна обеспечиваться положительная обратная связь, то есть сигнал с выхода должен попадать на вход в «фазе», чтобы поддерживать сам себя.

Принцип работы

Допустим, после включения питания на входе DD1.1 установился низкий уровень. Значит, на выходе будет высокий уровень, который попадает на вход DD1.2, на выходе которого, в свою очередь, будет опять низкий уровень. Конденсатор C1 разряжен. И он начинает заряжаться через резистор R1, который правым выводом подключён к выходу DD1.1 — к точке, где потенциал высокий.

Принцип работы: процесс заряда конденсатора

Процесс заряда конденсатора C1

Вы вправе спросить: почему же этот ток не утекает на вход элемента DD1.1 — ведь на этом входе в данный момент низкий потенциал? Кажется, что логический элемент должен скушать весь ток, а конденсатору ничего не достанется. Ответ: дело в высоком входном сопротивлении элементов DD. На их входы ответвляется мизерная часть тока, которой можно пренебречь. Кстати, благодаря этому факту, сопротивление R1 может быть достаточно большим, несколько мОм, что позволяет получить довольно низкие частоты генерации.

Итак, постепенно напряжение на C1 растёт, и в какой-то момент на левой обкладке накопится достаточный «плюс», который переключит DD1.1 в состояние 1 на входе, 0 на выходе. Тут же и DD1.2 поменяет состояние на противоположное: 0 на входе, 1 на выходе. И процессы в RC-цепочке пойдут в обратную сторону, до тех пор, пока напряжение на конденсаторе снова не переключит DD1.1, а за ним DD1.2 и весь цикл повторится сначала. Описание несколько упрощённое (вблизи момента переключения там происходят чуть более сложные процессы), но достаточное для первоначального понимания.

Пробуем на практике

Как вы уже поняли, частота генератора определяется параметрами времязадающей RC-цепочки: от сопротивления резистора и ёмкости конденсатора будет зависеть, сколько времени будет длиться заряд/разряд конденсатора. Примерная формула такова:

формула расчёта частоты генератора: f=0.7/(R1*C1)

Верхняя частота генератора ограничена скоростью переключения КМОП-элементов (условно, порядка 2 МГц). При этом и на низких частотах генератор работает уверенно:

  • С1 . . . . . . . 1 мкФ
  • R1 . . . . . . . 680 кОм
  • f . . . . . . . . 1 Гц.

Схема собрана на макетной плате. Чтобы увидеть работу генератора, я подключил к его выходу светодиод через токоограничивающий резистор. Считается, что микросхема этого типа может выдерживать выходной ток до 6.8 мА, так что вполне способна засветить не очень мощный светодиод без дополнительного ключа на транзисторе. Вот что получилось:

Ну а вот как выглядит сигнал генератора на осциллограмме:

Осциллограмма выходного сигнала генератора

Осциллограмма выходного сигнала генератора

Улучшение схемы

Как можно было бы доработать эту схему? Вот некоторые соображения.

Частота такого генератора весьма нестабильна. Для исправления этого недостатка часто заменяют конденсатор на кварцевый резонатор нужной частоты, а также пропускают сигнал ещё через один-два элемента 2И-НЕ.

Для регулировки частоты можно постоянный резистор заменить на подстроечный, а также добавить переключатель и несколько конденсаторов, чтобы менять ёмкость. Однако, как и в любой схеме, есть ограничения на номиналы деталей. Например, сопротивление R1 не может быть менее 1 кОм.

Более интересная задача — регулировка скважности. В приведённой схеме длительность импульса равна длительности паузы, скважность 50%. А что если мы хотим короткий импульс и длинную паузу, или наоборот? Тогда нужно последовательно с R1 прицепить примерно такую конструкцию:

генератор на логических элементах с регулировкой скважности

Схема регулировки скважности

Здесь заряд и разряд конденсатора идут через разные плечи R2 благодаря диодам VD1 и VD2, так что соотношение импульса и паузы будет разное в зависимости от положения движка R2.

Поделиться в соцсетях:

Комментарии (18)

8 февраля 2024 — Александр

Спасибо за статью. Я собрал эту схему на элементах НЕ (CD4049) с конденсатором 10 нФ и резистором 1 кОм, и получил частоту 47600 Гц. Т.е. близко к коэффициенту 0.48, как приводил Павел. Скважность получилась примерно один к двум.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *