Как определить резонансную частоту катушки индуктивности
Перейти к содержимому

Как определить резонансную частоту катушки индуктивности

  • автор:

Как определить резонансную частоту катушки индуктивности

Текущее время: Сб мар 16, 2024 01:11:30

Часовой пояс: UTC + 3 часа

Запрошенной темы не существует.

Часовой пояс: UTC + 3 часа

Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
Русская поддержка phpBB
Extended by Karma MOD © 2007—2012 m157y
Extended by Topic Tags MOD © 2012 m157y

Работоспособность сайта проверена в браузерах:
IE8.0, Opera 9.0, Netscape Navigator 7.0, Mozilla Firefox 5.0
Адаптирован для работы при разрешениях экрана от 1280х1024 и выше.
При меньших разрешениях возможно появление горизонтальной прокрутки.
По всем вопросам обращайтесь к Коту: kot@radiokot.ru
©2005-2024

Записки программиста

Определяем добротность и частоту собственного резонанса катушки индуктивности

Как ни странно, в катушках индуктивности нас в первую очередь интересует индуктивность. Измерить индуктивность не сложно. Готовые RLC-метры стоят недорого. Если RLC-метра нет, но есть осциллограф, индуктивность можно определить с его помощью. Также нормальный антенный анализатор без труда измеряет как индуктивность, так и емкость. Но у катушек индуктивности есть еще по крайней мере два важных свойства — частота собственного резонанса и добротность. Давайте разберемся, почему эти свойства важны и как их измерить.

Суть проблемы

Катушки индуктивности, существующие в реальном мире, можно описать при помощи следующей модели:

Модель катушки индуктивности

Здесь L — это индуктивность катушки. Катушка мотается неким проводником, а реальный проводник имеет отличные от нуля потери. Резистор Rs (он же ESR, equivalent series resistance) как раз отображает эти потери. Конденсатор Cp — это паразитная емкость между витками катушки.

Можно заметить, что индуктивность L и конденсатор Cp образуют параллельный колебательный контур. У этого контура есть резонансная частота. Она и называется частотой собственного резонанса катушки (self-resonant frequency). Ниже этой частоты катушка ведет себя, как катушка. Однако выше она начинает вести себя больше как конденсатор. Определив частоту собственного резонанса, мы поймем, на каких частотах может быть использована катушка.

Rs имеет сложную природу, и работать с ним напрямую неудобно. Поэтому вместо того, чтобы говорить об Rs, говорят о добротности (quality factor или Q). Добротность — это безразмерная величина, характеризующая скорость затухания колебаний в колебательной системе. Чем больше Q, тем меньше затухания.

Для катушек индуктивности добротность определяется, как отношение реактивного сопротивления к Rs:

Реактивное сопротивление является функцией от частоты. Rs на самом деле тоже зависит от частоты. В мире любительского радио обычно говорят о Q на рабочих частотах катушки. Предполагается, что на этом интервале частот добротность меняется незначительно.

Стоит упомянуть, что различают холостую добротность (unloaded Q) и нагруженную добротность (loaded Q). В рамках этой статьи под добротностью понимается исключительно холостая добротность. Нагруженная добротность возникает, когда катушку помещают в конкретную электрическую цепь.

Испытуемый

Попробуем определить частоту собственного резонанса и добротность такой катушки:

Самодельная катушка индуктивности из провода МГТФ

Катушка намотана проводом МГТФ площадью сечения 0.35 кв.мм на трубе ПВХ с внешним диаметром 25 мм. Для принудительного шага я мотал два параллельных провода. Затем один провод постепенно отматывался, а второй фиксировался лаком. Длина намотки составила 30 мм, индуктивность — 2 мкГн.

Такой способ намотки был использован с целью получить не самую позорную добротность. За годы экспериментов радиолюбители выработали хорошие практики, позволяющие максимизировать добротность. Основные рекомендации:

  • Толстый проводник предпочтительнее тонкого;
  • Любой диэлектрик в качестве каркаса катушки или изолятора проводника уменьшает добротность;
  • Charles Michaels, W7XC (SK) рекомендует в катушках с воздушным диэлектриком использовать отношение длины катушки к ее диаметру (L/D) не более 2:1. Здесь речь идет о намотке виток к витку;
  • Если же катушка мотается на каркасе, рекомендуется L/D = 1:1;
  • Tom Rauch, W8JI рекомендует использовать расстояние между витками, равное толщине проводника и L/D от 1 до 4;

Кое-какие подробности можно найти в 9-ой главе книги ON4UN’s Low Band DXing, 5th Edition, в разделе 3.7.2 Making or Buying High-Q Loading Coils. Отмечу, что просто следовать этим советам недостаточно. Если ваша задача — получить как можно большую добротность, нужно брать конкретные доступные материалы, мотать катушки и измерять.

На самом деле, мной было намотано пять катушек пятью разными способами. Приведенная выше имела максимальную добротность.

Ищем собственный резонанс

Для определения частоты собственного резонанса было решено воспользоваться анализатором спектра. С тем же успехом подойдет осциллограф с генератором сигналов, или RTL-SDR с генератором шума. Но анализатор спектра удобнее.

Для подключения катушки между следящим генератором и входом анализатора было использовано такое приспособление:

Приспособление для измерения частоты собственного резонанса катушки

Экраны BNC-разъемов соединены между собой, а жилы идут к «банановым» коннекторам. К этим коннекторам и подключается катушка.

В итоге получаем такую АЧХ:

Собственный резонанс катушки на анализаторе спектра

Перед нами частоты от 1 до 201 МГц, цена деления по горизонтали — 20 МГц. Собственный резонанс, если верить графику, пришелся где-то на 150 МГц. Ниже аттенюация сигнала увеличивается с ростом частоты. Так и должна работать катушка. Выше аттенюация уменьшается с ростом частоты. Это поведение конденсатора.

Какие выводы отсюда можно сделать? Катушку можно использовать на частотах где-то до 37 МГц. На частотах, приближающихся к частоте собственного резонанса, использовать катушки нельзя. Причина заключается в том, что добротность падает по мере приближения к частоте собственного резонанса. На частоте собственного резонанса добротность равна нулю. Рекомендуется использовать катушки на частотах в 4+ раза ниже частоты собственного резонанса.

Определяем добротность

Для определения добротности воспользуемся подходом из статьи Fixture for Measuring Inductor Q with your Antenna Analyzer [PDF], которую написал Phil Salas, AD5X. По инструкции из статьи было изготовлено такое устройство:

Устройство для измерения добротности катушки

Идея довольно простая. Антенный анализатор подключается к BNC разъему, а катушка подключается к «банановым» коннекторам. В первом положении тумблера антенный анализатор измеряет эквивалент нагрузки 50 Ом. Для эквивалента нагрузки было использовано 20 соединенных параллельно резисторов 1 кОм ± 1%. Во втором положении измеряется последовательный колебательный контур, образованный этим же резистором 50 Ом, измеряемой катушкой и КПЕ.

На резонансной частоте последовательный LC-контур представляет собой КЗ, и мы увидим чисто активное сопротивление около 50 Ом:

Измерение добротности катушки антенным анализатором

В данном случае (первый график) резонанс попал на 9.3185 МГц. Антенный анализатор видит 50.4 Ом. Переключаем тумблер в другое положение. Видим сопротивление резистора без контура. Оно составило 49.8 Ом (второй график). Есть также небольшая реактивность в 0.4j. Ею мы пренебрежем, поскольку это всего лишь:

>>> from math import pi
>>> F = 9_318_500
>>> 0.4/(2*pi*F)
6.83178378888857e-09

… 6.8 нГн, почти в 300 раз меньше измеряемых 2 мкГн.

Смотрите, что получается. С контуром было 50.4 Ом, а без контура — 49.8 Ом. Разница в 0.6 Ом включает в себя Rs катушки, а также потери на конденсаторе. Но конденсаторы обладают существенно большей добротностью (> 1000), чем катушки. Поэтому разница в 0.6 Ом приходится преимущественно на Rs катушки.

Теперь у нас есть все необходимое для вычисления добротности:

>>> from math import pi
>>> F = 9_318_500
>>> L = 2.0/1000/1000
>>> Rs = 50.4 — 49.8
>>> Xl = 2*pi*F*L
>>> Q = Xl/Rs
>>> Q
195.16620761650944

Добротность порядка 200 — это неплохой результат. Обычные покупные катушки для сквозного монтажа имеют добротность в пределах 100. Не удивительно, что бывалые радиолюбители предпочитают мотать катушки самостоятельно. Случайная самодельная катушка из медной проволоки будет иметь добротность уже порядка 100-150. Согласно Low Band DXing, после некоторой практики можно легко делать катушки с добротностью ~400. В качестве потолка в различных источниках приводится Q от 800 до 1000.

Домашнее задание: Смотайте катушку с индуктивностью побольше, порядка 70 мкГн. Для такой катушки вам понадобится каркас около 70 мм и 30 витков эмалированной проволоки диаметром 0.9 мм. Каким вышел Rs? Куда попала частота собственного резонанса? Сравните с приведенными выше результатами.

Внимательный читатель может поинтересоваться, а почему номинал резистора был выбран именно 50 Ом? Это сделано лишь по той причине, что ошибка измерения антенного анализатора при таком сопротивлении минимальна. В теории, с тем же успехом можно использовать любое другое сопротивление, лишь бы оно было чисто активным.

Заключение

Допустим, мы спаяли генератор или фильтр, и он работает не так, как ожидалось. Причина может заключаться к собственном резонансе катушек. Слишком большие потери в согласующем устройстве? Причина может быть в низкой добротности компонентов. Теперь мы имеем больше шансов правильно диагностировать такие проблемы, или еще лучше — вообще избегать их.

Вы можете прислать свой комментарий мне на почту, или воспользоваться комментариями в Telegram-группе.

Измерение индуктивности катушек резонансным методом

alex123al97

Когда-то задался целью найти простой способ измерения индуктивности катушек. И тут вдруг вспомнил университетский курс ТОЭ (теоретические основы электротехники), а именно: резонанс в параллельном колебательном контуре, характерный всплеском напряжения. Взяв этот фактор за основу и вспомнив формулу Томсона — зависимость трех составляющих: индуктивности (L), емкости (C) и частоты (f), сваял простенькую схему.

59e65c37f3a74_.jpg.aaeb96090ebb9c4c46047142ca6fc642.jpg

59e65c3553365_L-_02.JPG.bb4e497472f4f7fc5f19d9dd5434362c.JPG

59e65c35dcc32_L-_03.JPG.86cf552cbcf7b0f17953ac2b5be0d89f.JPG

59e65c3658473_L-_04.JPG.b2d497be0c670aa97bc90fdd3e534dd9.JPG

Суть метода состоит в подборе резонансной частоты для собранного колебательного контура с известной (проверенной) емкостью конденсатора. Резонансная частота засекается любым мультиметром по пику напряжения на контуре. А зная частоту и емкость можно вычислить индуктивность.

В качестве генератора частоты использовал звуковую карточку (ЗК) ПК и скачанную с интернета одну из многочисленных программ – генераторов.

Для примера проведу парочку наглядных измерений.

Опыт №1. Беру известные конденсатор 1,5uF и дроссель ДМ-0,6-50 мкГн. Собираю контур, подключаю блок к ЗК и мультиметру, запускаю генератор и прогоняю частоту в обратном порядке – начиная с 20 кГц в сторону уменьшения. Напряжение сразу начало возрастать и застыло на максимуме в пределах 18,85-18,65 кГц, откуда выбрал среднее значение – 18,75 кГц.

59e65c384cf91__11.jpg.db614255a9779ed3ae654abcd1cf0a3d.jpg

59e65c37bb0f7__0650.JPG.15a7ff9938edd5acbdb69b4e4c9efe1e.JPG

Далее можно проводить расчеты вручную, можно ввести формулу в Excell, можно написать программку, а можно и воспользоваться многочисленными онлайн калькуляторами, что я и сделал, используя первый попавшийся сайт: http://coil32.ru/calc/jslcc.html

Ввожу емкость, частоту и без малого получаю указанную на дросселе индуктивность.

59e65e289228a__12.jpg.7cd8aee313576bb407584b01d5f44bf9.jpg

Опыт №2. Беру неизвестный дроссель на ферритовом сердечнике типа «гантелька» и конденсатор 1uF. Собираю схему, прогоняю частоту, вычисляю по предыдущей методе ее среднее значение — 10,45 кГц и снова загоняю данные в калькулятор, который выдал значение 232 мкГн.

Опыт_21.jpg

59e65c36dd8f7__noname_01.JPG.2fc5bc9dbf7de431a9704c5bda9bab9e.JPG

59e65e2dc3d02__22.thumb.jpg.a097244cb79fadef709bf918d2e451bd.jpg

Меряю индуктивность недавно приобретенным тестером LCR-T4 и получаю результат (с учетом разрядности) 240 мкГн.

59e65c3759336__noname_02.JPG.5b8eba67e0aa9599da321ed2612528d6.JPG

Как видите, метод немного неудобный, заставляет подстраивать контур под ограниченные пределы частоты, но имеет право на жизнь. Насколько точно он меряет – вопрос философский, поскольку все в этом мире относительно. Лично меня в схемотехнике он не подводил и долгое время устраивал простотой и минимальными требованиями к ресурсной базе и измерительной аппаратуре.

Следует также отметить, что данным методом можно измерять и емкость конденсаторов, используя катушки известной индуктивности.

Как определить резонансную частоту катушки индуктивности

Колебательный контур является типичным представителем резонансных колебательных систем, играющих важную роль в большинстве разделов физики — в механике это различного типа маятники и звуковые резонаторы (струны, мембраны, трубы, свистки, органы), в электродинамике — колебательные контуры, закрытые и открытые резонаторы с распределенными параметрами, в оптике — лазерные резонаторы, эталоны Фабри — Перо и т.д. Принципы описания всех колебательных систем настолько общи, что теория колебаний стала самостоятельным разделом физики. Поэтому изучение параметров, свойств и характеристик колебательного контура полезно рассматривать как общее введение в мир резонансных колебательных систем.

В теории колебаний выделяются два класса явлений — явления в линейных и нелинейных колебательных системах. Линейными называются такие системы, параметры которых не зависят от амплитуды колебаний. Например, для маятников это означает такие малые колебания, при которых упругость пружин и стержней не зависит от амплитуды колебания, а натяжение нити подвеса определяется только гравитационными силами. Для электрических колебательных контуров независимыми от амплитуды токов и напряжений должны оставаться такие величины, как индуктивность $L$, емкость $C$ и сопротивление $R$.

Резонансные системы имеют два важных свойства.

Свойство избирательно реагировать на внешние источники сигналов, выделяя только те из них, частоты которых совпадают с собственной частотой колебательной системы.

Свойство запасать энергию колебаний, возбужденных внешним источником, поддерживая колебания в течение определенного времени после выключения внешнего источника.

Колебательный контур характеризуется двумя основными параметрами: частотой собственных (резонансных) колебаний $\omega _ $ и добротностью $Q$, характеризующей отношение мощности энергии собственного колебания к мощности потерь за период.

На рис. 18 приведены примеры «параллелей» электрических и механических колебательных систем. В электрических резонаторах происходит периодический переход электрической энергии, запасенной в конденсаторе $(W_Э =\frac 12 CU^2),$ в магнитную энергию катушки индуктивности $(W_M =\frac 12 LI^2)$ и обратно. В маятниках происходит аналогичный циклический переход энергии из потенциальной (поднятого груза или сжатой пружины) в кинетическую и обратно.

Свободные колебания происходят в замкнутой цепи без вынуждающей силы (рис. 19,а). Согласно второму закону Кирхгофа для такой цепи можно написать: $$ R\cdot I+U_ =-L\cdot \frac. $$ Выражая $U_ $ через заряд $q$, получим уравнение

$$ R\cdot I+L\cdot \frac +\frac =0 \ \ \ \mbox < (СИ). >$$ Дифференцируя по времени и учитывая равенство $I=\frac $, получаем $$ L\frac I> > +R\frac +\frac =0 \ \ \ \mbox < (СИ). >$$ Разделив на $L$ и вводя обозначения $\delta =\frac $ и $\omega _^ =\frac $, получим общее уравнение для свободных колебаний линейной резонансной системы: $$ I»+2\delta \, I’+\omega _^ I=0, $$ где параметр $\delta $ называется затухание, а параметр $\omega _ $ — собственная частота, или частота свободных колебаний. Оно решается подстановкой $I=A\cdot e^ $, которая приводит к характеристическому уравнению $$ -\omega ^ +2i\omega \, \delta +\omega _^ =0, $$ с решением $$ \lambda \, _ =i\, \delta \pm \sqrt<\omega _^ -\delta ^ > . $$ Общее решение имеет две составляющие $$ I=A\cdot e^ +B\cdot e^ . $$ Константы $A$ и $B$ определяются начальными данными задачи, например, зарядом $q_ $ или напряжением на конденсаторе $U_ $. Характер начальных данных определяется конкретной физической системой.

Частный пример схемы для возбуждения свободных колебаний в колебательном контуре приведен на рис. 19,б. Конденсатор $C$ заряжается от батареи до напряжения $U_ $ (положение «а» переключателя), а затем переключается в точку «б». Свободные колебания будут представлять собой циклический переход энергии электрического поля (в конденсаторе) в энергию магнитного поля (в индуктивности) и обратно.

Подставив найденные значения $A$ и $B$, получим общее решение для свободных колебаний в контуре $$ I=i\frac >^ -\delta ^ > > e^ \frac^ -\delta ^ > \, t> -e^<-i\sqrt<\omega _<0>^ -\delta ^ > \, t> > . $$

Если бы колебательный контур состоял только из идеальных (без потерь) реактивных элементов (индуктивности $L$ и емкости $C$), то переход энергии из электрической в магнитную и обратно совершался бы без потерь, а в контуре существовали бы незатухающие свободные колебания с собственной частотой $\omega _ =2\pi \, f=\sqrt>.$

Наличие в схеме активного элемента $R$ приводит к тому, что часть энергии за каждый период переходит в тепло и колебания затухают с некоторой постоянной времени $\tau $. Роль частоты в уравнении теперь играет величина $\omega _

=\sqrt<\omega _<0>^ -\delta ^ > $, зависящая от отношения реактивной мощности к потерям на активном сопротивлении $R$. При этом вовсе не обязательно в схему должен быть включен отдельный резистор. В его качестве может выступать, например, омическое сопротивление провода, которым намотана катушка индуктивности, а также сопротивление утечки изоляторов конденсатора. Кроме того, часть энергии колебаний может излучаться контуром в окружающее пространство в виде электромагнитной волны. На этом основано действие так называемых связанных контуров: если вблизи данного колебательного контура расположен другой, то в нем «наводятся» (возникают) колебания за счет того, что часть энергии трансформируется из первого контура во второй. Передача энергии совершается переменным электромагнитным полем, возникающим вокруг первого контура.

Если затухание мало, т. е. $\delta <\omega _$, то мы получаем уравнение слабо затухающих колебаний в виде $$ I=-\frac > > e^ \sin \omega _

t=-I_ e^ \sin \omega _

t. $$ При этом резонансная частота приближается к частоте собственных колебаний: $$ \omega _

=\sqrt<\omega _^ -\delta ^ > \approx \omega _ \left(1-\frac \frac <\delta ^><\omega _^ > \right). $$ Таким образом, при малом затухании резонансная частота практически совпадает с собственной, однако колебания при этом не являются гармоническими. Для гармонических колебаний должно соблюдаться условие $I\left(t\right)=I\left(t+T\right)$, где $T$ — период колебания. В нашем случае $I\left(t\right)\ne I\left(t+T\right)$, и о периоде можно говорить лишь как о времени, через которое повторяются нули функции (рис. 20). Именно в этом смысле мы будем ниже использовать термин «период колебаний».

Введем понятия добротности $Q$ и логарифмического декремента затухания $\gamma $ контура. Из отношение амплитуд $n$–того и $(n + k)$–го колебаний равно $I_ I_^ = e^$, где $T=2\, \pi \omega ^ $ — период колебания («повторения нулей»). Логарифмическим декрементом затухания $\gamma $ называется величина $$ \gamma =\delta \, T=\frac \ln \frac =\ln \frac > . $$ Из уравнения для тока видно, что величина $\delta $ обратно пропорциональна времени, за которое амплитуда колебаний уменьшается в $e$ раз. Из последнего уравнения следует, что декремент затухания $\gamma $ показывает уменьшение амплитуды за период колебания: $$ \gamma =\delta \, T=\frac <\omega >. $$ С логарифмическим коэффициентом затухания однозначно связан другой, более распространенный параметр, характеризующий колебательную систему, добротность $Q$.

Добротность контура $Q$ определяется соотношением $$ Q=\frac <\omega _<0>L> =\frac <\omega _<0>CR> =\frac, $$ где $\rho =\sqrt $ (СИ). Физический смысл добротности заключается в отношении запасенной в контуре энергии к энергии потерь за период колебания $$ Q=\omega \cdot \frac, $$ откуда можно найти связь добротности с другими параметрами контура $$ Q=\frac<\pi > <\gamma >=\frac<\pi > =\frac<\omega > =\omega \frac \ \ \ \mbox < (СИ).>$$

Экспериментально добротность определяется по резонансной кривой как отношение резонансной частоты $\omega _

$ к полосе частот $2\cdot \Delta \omega $, определяемой на уровне $U_ =\pm \frac>$: $$ Q=\frac<\omega _<з>> =\frac> , $$ где $U_

$ — амплитуда колебания на резонансной частоте контура. Величина $\rho =\sqrt$ называется характеристическим (волновым) сопротивлением контура.

При большом затухании, т.е. при $\delta >\omega _ $, величина $\omega _^ -\delta ^ $ отрицательна, корень из нее мнимый. Такой случай называется апериодическим процессом. Общее решение, аналогичное, полученному ранее, будет иметь вид $$ I=-\frac > e^ \mbox\sqrt <(\delta ^-\omega _^ )> \, t. $$ График этой функции приведен на рис. 21. Критическим условием, при котором затухающие колебания переходят в апериодический процесс, является условие $\delta =\omega _ $. В этом случае решение общего уравнения имеет вид $$ I=-\frac <\omega L>(\omega t)e^ \, =-\frac t\, e^ . $$ Остается добавить, что аналогичные параметры могут быть введены для любой резонансной колебательной системы независимо от ее физической природы (механические, термодинамические, электромагнитные, оптические, аэро– и гидродинамические системы).

Вынужденные колебания

Колебательный контур, рассмотренный в предыдущем разделе, представлял собой замкнутую электрическую цепь, в которой совершаются свободные колебания.

В случае вынужденных колебаний мы должны подводить к контуру электрическую энергию от внешнего источника (генератора). Есть много способов для подключения источника внешней энергии к контуру, которые сводятся к той или иной комбинации двух основных: в разрыв цепи контура (рис. 22, а) или параллельно емкостной и индуктивной ветвям контура (рис. 22,б). В зависимости от способа включения различают соответственно последовательный (рис. 22,а) и параллельный (рис. 22,б) колебательные контуры. Они предъявляют разные требования к согласованию с генератором и нагрузкой. Поэтому нужно отличать собственные параметры контура от параметров нагруженного контура, получаемые с учетом влияния генератора и «нагрузки» (входного сопротивления той цепи, в которую включен контур). В параллельном контуре (рис. 22,б) возникает резонанс токов. Для его поддержания в качестве вынуждающей силы необходимо применение генератора стабильного тока. В последовательном контуре (рис. 22,а) имеет место резонанс напряжений, и для его поддержания должен применяться внешний генератор стабильного напряжения.

Вынужденные колебания в последовательном контуре, резонанс напряжений

Закон Кирхгофа, позволяющий исследовать процессы в контуре (рис. 22,а) в зависимости от частоты, записывается в виде $$ U=U_ +U_ +U_ =IR+iI(\omega L-\frac <\omega C>)=I\cdot Z. $$ Контур представляет для генератора некоторое комплексное сопротивление $$ Z=R_L +i\cdot (\omega L-\frac <\omega C>), $$ $$ \left|Z\right| = \sqrt)^2>, \ \ \ \ \mbox\varphi =\frac<\omega L-\frac <\omega C>> $$ где $\left|Z\right|$ — модуль комплексного сопротивления; $R_$ — омическое сопротивление катушки индуктивности; $\varphi $ — сдвиг фазы между активным и реактивным сопротивлениями, равный сдвигу фазы между током $I$ в цепи и входным напряжением $U$.

Из последнего выражения видно, что сопротивление цепи будет минимально и равно активному сопротивлению $R_ $ на некоторой частоте $\omega _ $, определяемой условием $$ \omega _0 L=\frac <\omega _0 C>, \ \ \ \mbox < где >\ \ \ \omega _ =\frac> \ \ \ \mbox < (СИ).>$$ Таким образом, на резонансной частоте сопротивление контура минимально, чисто активно, а ток в цепи совпадает по фазе с входным напряжением (напряжением генератора). Фактически это и есть определение резонанса в последовательном колебательном контуре.

Для практических целей представляет интерес исследовать поведение напряжений на реактивных элементах контура в зависимости от частоты генератора и определить его добротность $Q$.

Поскольку фазы $U_ $ и $U_ $ независимо от частоты всегда сдвинуты относительно тока $I$ на $+$ и $-90^$ соответственно, то достаточно исследовать зависимость от частоты их модулей. Это можно сделать исходя из уравнений $$ U_ =IR, \ \ U_ =I\omega L, \ \ U_ =\frac<\omega C>, \ \ I=\frac . $$

Для примера раскроем уравнения для $I$ и $U_ $. Используя введенное для свободных колебаний понятие добротности $Q=\left(\omega _ RC\right)^$, получим следующее выражение для тока в последовательном контуре: $$ I=\frac +(\omega L-\frac <\omega C>)^ > > =\frac \frac <\sqrt<1+Q^(\frac<\omega > <\omega _> -\frac <\omega _> <\omega >)^ > > . $$ Тогда напряжение на индуктивности будет равно $$ U_ =\omega LI=U\frac <\omega _> > <\sqrt<1+Q^(\frac<\omega > <\omega _> -\frac <\omega _> <\omega >)^ > > . $$

Аналогичное уравнение можно получить для напряжения на $C$. При $\omega =\omega _ $ напряжения на $L$ и $C$ будут равны $U_ =U_ =Q\cdot U$, т.е. в $Q$ раз больше напряжения вынуждающей эдс.

На самом деле максимумы напряжения на элементах $L$ и $C$ несколько выше и смещены от резонансной частоты и выражаются следующими соотношениями: $$ \omega _ =\omega _ \sqrt C> > > =\omega _ \sqrt<2-\left(\frac<1> \right)^ > > , \ \ \ \omega _ =\frac<\omega _^ > <\omega _> . $$

При добротности контура $Q \ge 10$ сдвиг частот максимумов $U_ $ и $U_ $ относительно резонансной частоты $\omega _ $ не превышает 1% и экспериментально резонансную частоту и добротность можно определять по резонансной кривой любого из напряжений $U_ $ и $U_ $. Напряжение на реактивных элементах $U_ $ и $U_ $ при $\omega =\omega _ $ в $Q$ раз больше, чем входное напряжение $U$, поэтому резонанс в последовательном контуре называется резонансом напряжений.

Важно отметить, что для нашего анализа существенно, что само входное напряжение $U$ от частоты не зависит. В противном случае все параметры зависели бы не только от самого контура, но и от параметров источника сигнала. Как было показано в предыдущем параграфе, для этого выходное сопротивление генератора должно быть много меньше $R$.

Вынужденные колебания в параллельном контуре, резонанс токов

Схема подключения параллельного контура представлена на рис. 21,б. Из–за комплексного характера нагрузки ток генератора является комплексной величиной. Поэтому модуль тока $I$ может оказаться меньше не только суммы модулей токов индуктивной и емкостной ветвей контура, но и каждого из них в отдельности. Именно это и происходит при резонансе в параллельном контуре: токи в индуктивной и емкостной ветвях контура в $Q$ раз больше, чем ток, потребляемый от генератора тока. Поэтому резонанс в параллельном контуре называется резонансом токов.

Комплексное сопротивление параллельного контура равно $$ Z=\frac Z_ > +Z_ > = \frac <(R_+i\omega L)(i\omega C)^> +i(\omega L-(\omega C)^ )> \approx \frac +i(\omega L-(\omega C)^)> . $$

Мы пренебрегли величиной $R_ $ в числителе, поскольку она в $Q$ раз меньше индуктивного сопротивления, но этого нельзя делать в знаменателе, поскольку при резонансе величина в скобках стремится к нулю.

Условие резонанса для параллельного контура то же, что и для последовательного — равенство реактивных сопротивлений ветвей с $L$ и $C$: $$ \omega _ L=\frac <\omega _C>, \ \ \mbox < где >\ \ \omega _ =\frac > \ \ \mbox < (СИ). >$$ Таким образом, при резонансе сопротивление контура становится чисто активным и равным $$ R_ =\frac < C R_> =\frac > , $$ где — $\rho =\sqrt $ волновое сопротивление контура.

Сопротивление $R_ $ отдельного физического эквивалента в контуре не имеет, а является комбинацией волнового сопротивления $\rho $ и сопротивления потерь $R_ $. Поэтому оно не составляет отдельной ветви параллельного контура и не ответвляет в себя ток. Следовательно, «переносить» его куда–либо или к чему–нибудь «подсоединять» (например, к внутреннему сопротивлению источника тока) бессмысленно. На схеме это просто условное обозначение того факта, что на резонансной частоте параллельный колебательный контур представляет для внешнего генератора некоторое чисто активное сопротивление величиной $R_ $, а в формулах символическая запись определенной комбинации $\rho $ и $R_ $, даваемой последней формулой.

Добротность параллельного контура $$ Q=\frac <\omega _L> > =\frac \omega _ C> =\frac > =R_ \sqrt > . $$

Собственные параметры параллельного контура, т.е. резонансная частота $\omega _ $ и добротность $Q$ будут такими же, как и в последовательном контуре при тех же $C$, $L$ и $R_.$

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *