Кто ввел понятие поля в физике
Поле физическое
Область пространства, где проявляют себя физические, достоверно зарегистрированные и точно измеренные силы, называется физическим полем. В рамках современной физики рассматриваются четыре их вида: гравитационное (см. здесь); сильных взаимодействий (см. здесь) — ядерное; слабых взаимодействий (см. здесь) и электромагнитное (см. здесь) — магнитное и электрическое. С точки зрения квантовой теории взаимодействие материальных объектов на расстоянии обеспечивается их взаимным обменом квантами полей, характерными для каждого из перечисленных взаимодействий. Свойства любого из физических полей определяются строгими математическими выражениями.
Последние несколько десятков лет физики не прекращают попыток создать общую, единую теорию поля. Ожидается, что она опишет все названные поля как различные проявления одного – “единого физического поля”.
Предполагать существование каких-либо других, кроме перечисленных выше, силовых полей нет никаких теоретических или экспериментальных оснований.
электромагнитное
Электромагнитное поле проявляет себя во взаимодействии электрических зарядов, покоящихся — электрическое поле — или движущихся — магнитное поле. Оно обнаруживается при любых расстояниях между заряженными телами. Квантами поля электромагнитного взаимодействия являются фотоны. Их массы покоя равны нулю.
Электрическое поле проявляет себя силовым влиянием друг на друга объектов, обладающих некоторым свойством, называемым электрическим зарядом. Природа электрических зарядов неизвестна, однако их величины являются параметрами меры взаимодействия обладающих указанным свойством, т.е. заряженных образований.
Носителями минимальных величин зарядов являются электроны — имеют отрицательный заряд, протоны — имеют положительный заряд — и некоторые другие, очень короткоживущие, элементарные частицы. Физические объекты приобретают положительный электрический заряд при превышении количества содержащихся в них протонов над электронами или — в противоположном случае — отрицательный заряд.
Сила взаимодействия заряженных физических объектов, в том числе элементарных частиц, прямо пропорциональна их электрическим зарядам и обратно пропорциональна возведенной во вторую степень величине расстояния между ними. Она количественно описывается законом Кулона. Одноименно заряженные объекты отталкиваются, разноименно заряженные — притягиваются.
Магнитное поле проявляет себя силовым влиянием друг на друга тел или образований, например, плазменных, обладающих магнитными свойствами. Эти свойства порождаются текущими в них электрическими токами — упорядоченным движением носителей электрических зарядов. Параметрами меры взаимодействия являются интенсивности текущих электрических токов, которые определяются количеством электрических зарядов, перемещенных за единицу времени через поперечные сечения проводников. Постоянные магниты тоже обязаны своим эффектом возникающим в них внутренним кольцевым молекулярным токам. Таким образом, магнитные силы имеют электрическую природу. Интенсивность магнитного взаимодействия объектов — магнитная индукция — прямо пропорциональна интенсивностям текущих в них электрических токов и обратно пропорциональна возведенной во вторую степень величине расстояния между ними. Она описывается законом Био — Савара — Лапласа.
Электромагнитное поле играет важнейшую роль в любых процессах, протекающих во Вселенной с участием плазмы.
Теория поля — язык физики
Понятие полей впервые ввел выдающийся британский ученый XIX в. Майкл Фарадей. Сын небогатого кузнеца, Фарадей был гением-самоучкой, ставившим сложные опыты с электричеством и магнетизмом. Он представлял силовые линии, которые, подобно длинным побегам ползучего растения, исходят во все стороны от частиц с электрическим и магнитным зарядом и заполняют все пространство. Благодаря своим приборам Фарадей мог измерить силу линий, исходящих от источников магнитного или электрического заряда в любой точке своей лаборатории. Таким образом, он присваивал этой или любой Другой точке в пространстве ряд параметров, таких как величина и направление силы. Всю совокупность этих параметров в любой точке пространства он рассматривал как единое Целое и ввел для нее термин «поле». (Известна одна история из жизни Майкла Фарадея. Когда он уже достиг известности, слава его простиралась так широко, что его лабораторию часто посещали любопытствующие зрители. Однажды один из них спросил, в чем польза от работы Фарадея, и тот ответил: «А в чем польза от ребенка? Он вырастает и становится взрослым человеком». Однажды лабораторию Фарадея посетил Уильям Гладстон, в то время министр финансов Великобритании. Не имея никакого представления о науке, Гладстон саркастически осведомился у Фарадея, могут ли огромные электрические устройства в его лаборатории принести хоть какую-нибудь пользу Англии. Фарадей ответил: «Сэр, я не знаю, для чего будут применяться эти машины, зато уверен, что когда-нибудь их станут облагать налогом». В настоящее время значительная доля совокупного богатства Англии инвестируется в плоды трудов Фарадея.)
Попросту говоря, поле — это совокупность параметров, определенных в каждой точке пространства, полностью описывающих силу в этой точке. К примеру, три параметра в каждой точке пространства могут описывать напряженность и направление магнитных силовых линий. Другие три параметра где-либо в пространстве могут описывать электрическое поле. Эта идея родилась у Фарадея, когда он думал о поле, которое пашет земледелец. Поле земледельца занимает двумерный участок пространства. В каждой точке поля можно определить ряд параметров (которые описывают, к примеру, количество зерен, находящихся в этой точке). Однако поле Фарадея занимает трехмерный участок пространства. В каждой его точке можно определить шесть параметров, описывающих магнитные и электрические силовые линии.
Эффективность фарадеевой идеи поля состоит в том, что в виде поля можно представить все взаимодействия природы. Но нам понадобится еще один компонент, прежде чем мы сможем понять природу любой силы: мы должны иметь возможность записывать формулы, которым подчиняются поля. Прогресс последних ста лет в развитии теоретической физики можно обобщенно сформулировать как поиск уравнений поля для природных сил взаимодействия.
К примеру, в 60-х гг. XIX в. шотландский физик Джеймс Клерк Максвелл записал уравнения для электрического и магнитного полей. В 1915 г. Эйнштейн открыл уравнения гравитационного поля. После многочисленных неудач в 70-е гг. XX в. наконец были записаны уравнения для поля сил субатомных частиц по результатам более ранних работ Чжэньнин Янга и его ученика Р. Л. Миллса. Такие поля, обуславливающие взаимодействие всех субатомных частиц, в настоящее время называются полями Янга-Миллса. Но в том же веке физикам пришлось поломать голову над вопросом, почему уравнения субатомного поля так разительно отличаются от уравнений поля, выведенных Эйнштейном, — иными словами, почему силы ядерного взаимодействия настолько отличаются от сил гравитации. Некоторые выдающиеся умы пытались подступиться к этой задаче, но потерпели фиаско.
Возможно, причина их неудачи в том, что они попались в ловушку здравого смысла. Ограниченные тремя-четырьмя измерениями, уравнения поля для мира субатомных частиц и гравитации трудно отождествить. Преимущество теории гиперпространства заключается в том, что поля Янга-Миллса, поля Максвелла и поля Эйнштейна можно с удобством разместить внутри гиперпространственного поля. Мы видим, что эти поля укладываются в гиперпространственное поле, совпадая друг с другом точно, как детали головоломки. Еще одно преимущество теории поля в том, что она позволяет нам вычислить точные параметры энергии, при которых можно ожидать формирования в пространстве и времени «червоточин». Следовательно, в отличие от древних, у нас есть математические инструменты для строительства машин, которые когда-нибудь подчинят нам пространство и время.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
Реальность поля
Реальность поля Количественная, математическая формулировка законов поля дана в так называемых уравнениях Максвелла. Указанные выше факты привели к формулировке этих уравнений, но содержание их значительно богаче, чем мы могли показать. Их простая форма скрывает
Теория гравитационного поля
Теория гравитационного поля Эйнштейну, который сформулировал свой физический принцип, не зная о трудах Римана, недоставало математического языка и способностей, необходимых для выражения этого принципа. Три долгих, обескураживающих года (1912–1915) он провел в
Струнная теория поля
Струнная теория поля Со времен новаторского труда Фарадея все физические теории записывались в виде полей. На теории поля основана максвелловская теория света, как и теория Эйнштейна. По сути дела, вся физика частиц опирается на теорию поля. Не основана на ней только
Цветной язык света
Цветной язык света Цветные сигналы металлов Сто лет тому назад, в конце 50-х годов прошлого века, химики заинтересовались вопросом: как светятся различные химические вещества при очень высоких температурах? В то время высокую температуру научились получать в особо
Теория электромагнитного поля Максвелла
Теория электромагнитного поля Максвелла Заслуга Максвелла состоит в том, что он нашел математическую форму уравнений, в которых связаны воедино значения электрической и магнитной напряженностей, которые создают электромагнитные волны, со скоростью распространения их
Необходим новый язык?
Необходим новый язык? Умозрительность положений стандартной модели и возможных ее преемниц не должна вводить в заблуждение. Язык, на котором описывается стандартная модель, является математическим, а такой язык сам может оказаться неполным. Не исключено, что
Ученый язык
Ученый язык Бернард ДИКСОН «У вас, ученых, свой язык» – такие замечания обычно выводят из равновесия научного работника. Раздраженный, он тут же все начинает объяснять отсталому собеседнику, стараясь, чтобы все было как можно нагляднее. Он говорит, что атомы просто
ПЕРЕВОД ИДЕЙ ФАРАДЕЯ НА МАТЕМАТИЧЕСКИЙ ЯЗЫК
ПЕРЕВОД ИДЕЙ ФАРАДЕЯ НА МАТЕМАТИЧЕСКИЙ ЯЗЫК Электричество не могло быть жидкостью, проходящей по проводу, оно должно было генерироваться невидимой силой, как и линии магнитного поля, однако в данном случае линии шли от одного заряда к другому. Это невидимое поле, по
ПОЛЯ́ ФИЗИ́ЧЕСКИЕ
ПОЛЯ́ ФИЗИ́ЧЕСКИЕ, физич. системы, обладающие бесконечно большим числом степеней свободы. Относящиеся к такой системе физич. величины не локализованы на к.-л. отд. материальных частицах с конечным числом степеней свободы, а непрерывно распределены по некоторой области пространства. Примерами таких систем могут служить гравитац. и электромагнитные поля и волновые поля частиц в квантовой физике (электронно-позитронное, мезонное и т. п.).
Физические поля

Физи́ческие поля́, физические системы, обладающие бесконечно большим числом степеней свободы . Относящиеся к такой системе физические величины не локализованы на каких-либо отдельных материальных частицах с конечным числом степеней свободы, а непрерывно распределены по некоторой области пространства. Примерами таких систем могут служить гравитационные и электромагнитные поля и волновые поля частиц в квантовой физике (электронно-позитронное, мезонное и т. п.).
При рассмотрении нерелятивистских процессов понятие поля обычно не вводят. Например, при рассмотрении гравитационного или кулоновского взаимодействия двух частиц можно считать, что сила взаимодействия возникает лишь при наличии обеих частиц, полагая, что пространство вокруг частиц не играет особой роли в передаче взаимодействия . Такое представление соответствует концепции дальнодействия, или действия на расстоянии. Понятие о дальнодействии, однако, является приближением только в нерелятивистском случае, физически эквивалентным представлению о том, что действие заряда проявляется лишь при помещении второй, пробной частицы в область пространства, свойства которого уже изменены из-за наличия первой частицы.
Понятие поля введено М. Фарадеем и Дж. К. Максвеллом в 1830–1860-х гг. для описания механизма действия электрических и магнитных сил. Концепция силового поля как посредника при передаче взаимодействия возникла в качестве альтернативы идее дальнодействия. Она подразумевает, что само наличие заряженной частицы меняет свойства пространства: частица создаёт вокруг себя силовое электрическое поле. Каждая точка изменённого пространства обладает потенциальной способностью проявить действие силы. Для этого достаточно поместить в эту точку второй, пробный заряд. Пробный заряд взаимодействует не непосредственно с зарядом – создателем поля, а с полем в точке, где этот пробный заряд находится. Поле выполняет роль посредника: оно от точки к точке передаёт действие одного заряда на другой. Такой механизм называется близкодействием. Взаимодействие при этом передаётся постепенно, от точки к точке в таком изменённом пространстве. Это и означает, что первая частица создаёт вокруг себя силовое гравитационное или электрическое поле.
Концепция близкодействия находит подтверждение при рассмотрении релятивистских процессов. При движении источников со скоростью, сравнимой со скоростью передачи взаимодействия, говорить о дальнодействии уже нельзя. Изменение состояния одной частицы сопровождается, вообще говоря, изменением её энергии и импульса, а изменение силы, действующей на другую частицу, наступает лишь через конечный промежуток времени. Доли энергии и импульса, отданные одной частицей и ещё не принятые второй, принадлежат в течение этого времени переносящему их полю. Поле, переносящее взаимодействие, является, т. о., само по себе физической реальностью.
Понятие физического поля применимо при описании свойств любой сплошной среды. Если сопоставить с каждой точкой среды определяющие её состояние физической величины (температуру, давление, натяжение и др.), то получится поле этих величин. В этом случае роль упругой среды для передачи взаимодействия очевидна. Первоначальная трудность представить немеханическую среду, способную переносить энергию и импульс, породила различные механические модели эфира как среды, переносящей электромагнитные взаимодействия. Однако все механические модели эфира противоречат принципу относительности Эйнштейна, и от них пришлось отказаться.
Простейший тип движения поля – волновое, для которого полевая функция периодически меняется во времени и от точки к точке. Любое состояние поля удобно представить в виде суперпозиции волн. Для волнового движения характерны явления дифракции и интерференции , невозможные в классической механике. С другой стороны, динамические характеристики волн (энергия, импульс и т. д.) «размазаны» в пространстве, а не локализованы, как у классических частиц.
Такое противопоставление волновых и корпускулярных свойств, присущее классической механике, отражается в ней как качественное различие между физическими полями и частицами. Однако опыт показывает, что на малых расстояниях, в атомных масштабах, это различие исчезает: у поля выявляются корпускулярные свойства (например, эффект Комптона ), у частиц – волновые (например, дифракция частиц ).
Квантовая механика ставит в соответствие каждой частице поле её волновой функции , дающее распределение различных относящихся к частице физических величин. Движение частицы представляется при этом как распространяющиеся колебания её волновой функции. Однако волновую функцию нельзя трактовать как реальное физическое поле, и в своей обычной форме квантовая механика не полностью сняла противопоставление полей и частиц. Она оказалась способной лишь отразить волновые свойства частиц как намёк на полное единство поля и частицы – корпускулярно-волновой дуализм .
Единую корпускулярно-волновую точку зрения осуществляет квантовая теория поля в терминах нового физического объекта – квантованного поля, описывающего на равной основе и поля, и частицы. Именно на квантованное поле переносятся требования симметрии и инвариантности, которые являются обобщением экспериментальных данных, описывающих разнообразие элементарных частиц и их взаимодействий.
Опубликовано 6 декабря 2022 г. в 14:09 (GMT+3). Последнее обновление 6 декабря 2022 г. в 14:09 (GMT+3). Связаться с редакцией