Диод
Диод имеет два контакта, которые называют анодом и катодом. При включении диода в электрическую цепь ток протекает от анода к катоду. Умение проводить ток только в одну сторону — основное свойство диода.
Диоды относятся к классу полупроводников и считаются активными электронным компонентам (резисторы и конденсаторы — пассивными).
Треугольник можно рассматривать как острие стрелки, показывающей направление тока
При подключении диода в цепь должна быть соблюдена правильная полярность. Чтобы было легко определить расположение катода и анода, на корпус или на один из выводов диода наносят специальные метки. Встречаются различные способы маркировки диодов, но чаще всего на сторону корпуса, соответствующую катоду, наносят кольцевую полоску.
Способ, помогающий запомнить названия электродов, — название электрода определяется по букве, на которую он похож
—> Если маркировка диода отсутствует, то выводы полупроводниковых диодов можно определить с помощью измерительного прибора — как уже говорилось выше, диод пропускает ток только в одну сторону. Если измерительного прибора под рукой нет, можно использовать батарейку и маломощную лампочку так, как описано в приводящемся ниже эксперименте.
Полупроводниковые диоды
Работу диода можно наглядно представить при помощи простого эксперимента. Если к диоду через маломощную лампу накаливания подключить батарею так, чтобы положительный вывод батареи был соединен с анодом, а отрицательный — с катодом диода, то в получившейся электрической цепи потечет ток и лампочка загорится. Максимальная величина этого тока зависит от сопротивления полупроводникового перехода диода и поданного на него постоянного напряжения. Данное состояние диода назвается открытым, ток, текущий через него, — прямым током Iпр , а поданное на него напряжение, из-за которого диод оказался открытым, — прямым напряжением Uпр .
Если выводы диода поменять местами, то лампа не будет светиться, так как диод будет находиться в закрытом состоянии и оказывать току в цепи сильное сопротивление. Стоит отметить, что небольшой ток через полупроводниковый переход диода в обратном направлении все же потечет, но в сравнении с прямым током будет настолько маленьким, что лампочка даже не среагирует. Такой ток называют обратым током Iобр , а напряжение, создающее его,— обратным напряжением Uобр .
В нейронных цепях BEAM-роботов диоды часто применяются при создании нейронов, моделирующих логическое сложение (элементы ИЛИ). Кроме того, в схемах BEAM-роботов иногда используются емкостные свойства диодов.
Обозначения диодов и принцип работы, ВАХ

Обозначение выпрямительного диода на схеме согласно «ГОСТ 2.730-73 ЕСКД.

Обозначения условные графические в схемах. Приборы полупроводниковые». В приложении данного ГОСТа указаны размеры в модульной сетке. Выглядит это следующим образом:
Существуют различные варианты обозначения диодов.
Согласно ОСТ 11366.919-81 следующее буквенно-цифровое обозначение:
1) Первая буква или цифра указывает на материал:
· 1 (Г) – германий Ge
· 2 (К) – кремний Si
· 3 (А) – галлий Ga
· 4 (И) – индий In
2) Вторая буква – это подкласс полупроводникового прибора. Для нашего случая — это буква Д.
3) Третья цифра – функционал элемента в зависимости от класса (диоды, варикапы, стабилитроны и др.).
Например, для выпрямительных диодов (Д):
101. 199 – диоды малой мощности с постоянным или средним значением прямого тока менее 0,3А.
201. 299 – диоды средней мощности с постоянным или средним значением прямого тока от 0,3 до 10А.
Также существуют диоды большой мощности с током более 10А. Отвод тепла у диодов малой мощности осуществляется через корпус, у диодов средней и большой мощности через теплоотводящие радиаторы.

До 1982 года была другая классификация:
- от 1 до 100 – для точечных германиевых диодов;
- от 101 до 200 – для точечных кремниевых диодов;
- от 201 до 300 – для плоскостных кремниевых диодов;
- от 301 до 400 – для плоскостных германиевых диодов;
- от 401 до 500 – для смесительных СВЧ детекторов;
- от 501 до 600 – для умножительных диодов;
- от 601 до 700 – для видеодетекторов;
- от 701 до 749 – для параметрических германиевых диодов;
- от 750 до 800 – для параметрических кремниевых диодов;
- от 801 до 900 – для стабилитронов;
- от 901 до 950 – для варикапов;
- от 951 до 1000 – для туннельных диодов;
- от 1001 до 1100 – для выпрямительных столбов;
Система JEDEC (США)
- первая цифра – число p-n переходов (1 – диод; 2 – транзистор; 3 – тиристор);
- далее N (типа номер) и серийный номер;
- после может идти пару цифр про номиналы и отдельные характеристики диода.
По данной системе приборы делятся на промышленные и бытовые. Бытовые кодируются двумя буквами и тремя цифрами от 100 до 999. У промышленных приборов будет идти три буквы и две цифры от 10 до 99. Для диодов:
1) Первая буква:
· A — германий Ge
· B — кремний Si
· C — галлий Ga
· R — другие полупроводники
2) Вторая буква – это буква A, указывающая на маломощные импульсные и универсальные диоды.
3) Третья буква отвечает за принадлежность элемента к сфере специального применения (промышленность, военная). “Z”, “Y”, “X” или “W”.
4) Четвертая – это 2-х, 3-х или 4х-значный серийный номер прибора.
5) Дополнительный код – в нем для выпрямительных диодов указывается максимальная амплитуда обратного напряжения.
Система JIS (Япония)
- Первая цифра – число переходов (0 – фототранзистор, фотодиод; 1 – диод; 2 – транзистор; 3 – тиристор);
- Затем буква S (semiconductors) – полупроводниковые;
- Затем буква, отвечающая за тип прибора:
- A – ВЧ транзисторы p-n-p;
- B – НЧ транзисторы p-n-p;
- С – ВЧ транзисторы n-p-n;
- D – НЧ транзисторы n-p-n;
- E – диоды;
- F – тиристоры;
- G – диоды Ганна;
- H – однопереходные транзисторы;
- J – полевые транзисторы с p-каналом;
- K – полевые транзисторы с n-каналом;
- M – симметричные тиристоры;
- Q – светоизлучающие диоды;
- R – выпрямительные диоды;
- S – малосигнальные диоды;
- T – лавинные диоды;
- V – варикапы, p-i-n диоды, диоды с накоплением заряда;
- Z – стабилитроны, стабисторы, ограничители.
- Рег. номер прибора;
- Модификация прибора;
- Далее может идти индекс, описывающий специальные свойства.
Принцип действия выпрямительного диода
Полупроводники по своим электрическим свойствам являются чем-то средним между проводниками и диэлектриками.

Как ведет себя диод при прямом и обратном включении.
Прямое направление – направление постоянного тока, в котором диод имеет наименьшее сопротивление.
Обратное направление – направление постоянного тока, в котором диод имеет наибольшее сопротивление.
Рассмотрим поведение тока в цепи при прямом и обратном включении на переменное и постоянное напряжение. Изначально мы будем иметь синусоиду, которая получается от источника переменного тока.

При таких способах подключения отсекается половина синусоиды положительная или отрицательная. На выходе — пульсирующий переменный ток одного знака (считай, постоянный, только загвоздка в том, что им никто не пользуется).
- анод (для прямого включения подключаем к плюсу), основание треугольника;
- катод (подключаем к минусу для прямого включения) палочка.
Рассмотрим поведение диода в схеме постоянного тока. На левом изображении ток, напряжение проходит — лампочка горит (черная) — это прямое включение. На правом изображении диод не пропускает достаточно тока и напряжения для загорания лампочки — обратное включение.

ВАХ выпрямительных диодов (Ge, Si)
Вольт-амперные характеристики (ВАХ) диодов представляют собой графики зависимостей прямых и обратных токов (Y) и напряжений (X) при различных температурах.

При подаче обратного напряжения, превышающего пороговое значение, величина обратного тока возрастает и происходит пробой p-n слоя. Стоит обратить внимание и на порядки чисел по осям. Величины обратного тока на порядок меньше прямого. Значения прямого напряжения на порядок меньше обратного. По достижении порогового значения прямого напряжения прямой ток начинает увеличиваться лавинообразно.
Разница между диодами в том, что обратный ток кремниевых диодов меньше, чем у германиевых. Поэтому, за счет большего тока, у Ge диодов пробой носит тепловой характер, у Si – преобладает электрический пробой. Мощность, рассеиваемая при одинаковых токах у германиевых диодов меньше.
Типы полупроводниковых диодов
Полупроводниковый прибор с одним электрическим переходом, работа которого заключается в преобразования одних электрических значений в другие, называют диодом. В конструкции данного изделия предусматривается два вывода для монтажа.
![]()
На принципиальных электрических схемах полупроводниковые диоды изображаются в виде треугольника и отрезка, расположенного на одной из его вершин и находящегося параллельно противолежащей стороне.
- выпрямительные, импульсные и универсальные
- стабилитроны и стабисторы
- туннельные
- обращенные
- варикапы
В зависимости от разработки диода его обозначение может включать дополнительные символы. В любом случае вершина треугольника, примыкающая к осевой линии диода, указывает на направление протекания тока.

В той части обозначения, где располагается треугольник, находится p -область, которую ещё называют анодом или эмиттером, а со стороны, где к треугольнику примыкает отрезок, находится n -область, которую соответственно называют катодом, или базой.
Полупроводниковые диоды, назначение которых заключается в преобразовании переменного тока в постоянный ток, называются выпрямительными. Выпрямление переменного тока с использованием полупроводникового диода построено на основе его односторонней электропроводности, которая заключается в том, что диод создаёт очень малое сопротивление току, текущему в прямом направлении, и достаточно большое сопротивление обратному току.
Для того чтобы выпрямить ток большой силы не опасаясь теплового пробоя, конструкция диодов должна предусматривать значительную площадь p — n -перехода. В связи, с чем в выпрямительных полупроводниковых диодах задействуют специальные p — n -переходы соответствующие последнему слову науки и техники.
Технология создания p — n -перехода получается, за счёт ввода в полупроводник p -или n -типа примеси, которая создаёт в нем область с противоположным значением электропроводности. Примеси можно добавлять методом сплавления или диффузии.
Диоды, получаемые методом сплавления, называют «сплавными», а изготавливаемые методом диффузии «диффузионными».

В ходе положительного полупериода входного напряжения U1 диод V работает в прямом направлении, его сопротивление маленькое и на нагрузке RH напряжение U2 практически равно входящему напряжению.

График напряжения на входе и выходе простейшего однополупериодного выпрямителя
При отрицательном полупериоде данного входного напряжения диод включен в направлении обратно, где его сопротивление формируется значительно больше, чем сопротивление на нагрузке, и почти все входящее напряжение падает на диоде, а напряжение на нагрузке приближается к нулю. В такой схеме для получения выпрямленного напряжения используется всего лишь один полупериод входящего напряжения, поэтому такой тип выпрямителей называется однополупериодным.
Полупроводниковые диоды, которые используются для стабилизации постоянного напряжения на нагрузке, называют стабилитронами. В стабилитронах задействован участок обратной участка вольтамперной характеристики в поле электрического пробоя.

Схема простейшего стабилизатора напряжения
В данном случае при изменении тока, проходящего через стабилитрон, от Iст. мин. до Iст. макс. напряжение на нем практически не изменяется. Если нагрузка RH включена параллельно стабилитрону, уровень напряжения на ней также будет оставаться неизменным в указанных пределах изменения тока, проходящего через стабилитрон.

Такими диодами стабилизируют уровень напряжения примерно от 3,5 В и выше. Для стабилизации постоянного напряжения до 1 вольта применяют стабисторы. У стабисторов работает не обратная, а прямая часть вольтамперной характеристики. Поэтому их подсоединяют не в обратном, как делают со стабилитронами, а в прямом направлении. Электронные компоненты, такие как стабисторы и стабилитроны, как правило, изготовляются, из кремния.

Вольтамперная характеристика стабистора
Плоскостные диоды обладают с высокими ёмкостными характеристиками. С увеличением частоты емкостное сопротивление понижается, что приводит к нарастанию его обратного тока. На больших частотах вследствие того в диоде есть ёмкость, величина его обратного тока может достичь значения прямого тока, и этот диод, таким образом, утратит свое основное свойство односторонней электропроводности. Для сохранения своих функциональных качеств необходимо снизить емкость диода. Это достигается с помощью всевозможных технологических и конструктивных методов, направленных на сокращения площади p — n -перехода.
В диодах, используемых в схемах, работающих с высокочастотным током, применяют изделия с точечными и микросплавными p — n -переходами. Нужный точечный p — n -переход, получается в месте контакта заостренного окончания специальной металлической иглы с полупроводником. При этом применяют способ электроформования, заключающемся в том, что через соединение проволоки и кристалла полупроводники протекают импульсы электрического тока, формирующие в месте их контакта p — n -переход. Микросплавными называются такие диоды, у которых p — n -переход создаётся при электроформовании контакта между пластинкой полупроводника и металлическим предметом с плоским торцом.
Полупроводниковый диод


В самом начале радиотехники первым активным элементом была электронная лампа. Но уже в двадцатые годы прошлого века появились первые приборы доступные для повторения радиолюбителями и ставшие очень популярными. Это детекторные приёмники. Более того они выпускались в промышленном масштабе, стоили недорого и обеспечивали приём двух-трёх отечественных радиостанций работавших в диапазонах средних и длинных волн.
Именно в детекторных приёмниках впервые стал использоваться простейший полупроводниковый прибор, называемый вначале детектором и лишь позже получивший современное название – диод.
Диод это прибор, состоящий всего из двух слоёв полупроводника. Это слой “p”- позитив и слой “n”- негатив. На границе двух слоёв полупроводника образуется “p-n” переход. Анодом является область “p”, а катодом зона “n”. Любой диод способен проводить ток только от анода к катоду. На принципиальных схемах он обозначается так.
Как работает полупроводниковый диод.
В полупроводнике “n” типа имеются свободные электроны, частицы со знаком минус, а в полупроводнике типа “p” наличествуют ионы с положительным зарядом, их принято называть «дырки». Подключим диод к источнику питания в обратном включении, то есть на анод подадим минус, а на катод плюс. Между зарядами разной полярности возникает притяжение и положительно заряженные ионы тянутся к минусу, а отрицательные электроны дрейфуют к плюсу источника питания. В “p-n” переходе нет носителей зарядов, и отсутствует движение электронов. Нет движения электронов – нет электрического тока. Диод закрыт.

При прямом включении диода происходит обратный процесс. В результате отталкивания однополярных зарядов все носители группируются в зоне перехода между двумя полупроводниковыми структурами. Между частицами возникает электрическое поле перехода и рекомбинация электронов и дырок. Через “p-n” переход начинает протекать электрический ток. Сам процесс носит название «электронно-дырочная проводимость». При этом диод открыт.

Возникает вполне естественный вопрос, как из одного полупроводникового материала удаётся получить структуры, обладающие различными свойствами, то есть полупроводник «n» типа и полупроводник «p» типа.
Этого удаётся добиться с помощью электрохимического процесса называемого легированием, то есть внесением в полупроводник примесей других металлов, которые и обеспечивают нужный тип проводимости. В электронике используются в основном три полупроводника. Это германий (Ge), кремний (Si) и арсенид галлия (GaAs). Наибольшее распространение получил, конечно, кремний, так как запасы его в земной коре поистине огромны, поэтому стоимость полупроводниковых приборов на основе кремния весьма невысока.
При добавлении в расплав кремния ничтожно малого количества мышьяка (As) мы получаем полупроводник «n» типа, а легируя кремний редкоземельным элементом индием (In), мы получаем полупроводник «p» типа. Присадок для легирования полупроводниковых материалов достаточно много. Например, внедрение атомов золота в структуру полупроводника увеличивает быстродействие диодов, транзисторов и интегральных схем, а добавление небольшого числа различных примесей в кристалл арсенида галлия определяет цвет свечения светодиода.
Типы диодов и область их применения.
Семейство полупроводниковых диодов очень большое. Внешне они очень похожи за исключением некоторых групп, которые отличаются конструктивно и по ряду параметров. Наиболее распространены следующие модификации полупроводниковых диодов:

- Выпрямительные диоды. Предназначены для выпрямления переменного тока.
- Стабилитроны. Обеспечивают стабилизацию выходного напряжения.


Также стоит отметить, что у каждого типа диодов есть и подгруппы. Так, например, среди выпрямительных есть и ультрабыстрые диоды. Могут называться как Ultra-Fast Rectifier, HyperFast Rectifier и т.п. Пример – ультрабыстрый диод с малым падением напряжения STTH6003TV/CW (аналог VS-60CPH03). Это узкоспециализированный диод, который применяется, например, в сварочных аппаратах инверторного типа. Диоды Шоттки являются быстродействующими, но не способны выдерживать больших обратных напряжений, поэтому вместо них применяются ультрабыстрые выпрямительные диоды, которые способны выдерживать большие обратные напряжения и огромные прямые токи. При этом их быстродействие сравнимо с быстродействием диодов Шоттки.

Параметры полупроводниковых диодов.
Параметров у полупроводниковых диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен.
В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются.
Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:
- U пр. – допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
- U обр. – допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит). Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине. Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.
Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком «max». Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.
