При какой частоте происходит резонанс по графику
Перейти к содержимому

При какой частоте происходит резонанс по графику

  • автор:

Резонанс

При заданных возмущающей силе Fmax.возм и коэффициенте трения β амплитуда Ym является функцией только угловой частоты возмущающей силы.

Резонанс

На рисунке показана зависимость Ym от ω (резонансная кривая). Параметром служит коэффициент затухания δ.

При ωω0 она достигает особенно большого значения (резонанс).

При самых малых значениях δ величина Ym резко возрастает.

Если δ > 0 , то в случае резонанса ω < ω0; величина Ymax.ст представляет собой статическое отклонение системы под действием постоянной силы Ymax.возм (ω = 0 ).

Для определения резонансной частоты необходимо найти максимум функции Ym = Ym(ω) и приравнять первую производную нулю; тогда, если

ωрез резонансная частота, при которой амплитуда максимальна, радиан/сек
ω0 частота собственных незатухающих колебаний системы, радиан/сек
m масса колебательной системы, кг
β коэффициентом вязкого трения, кг/сек
δ коэффициентом затухания, радиан/сек

Частота резонанса

\[ ω_ <рез>= \sqrt^2 — \frac> = \sqrt^2 — 2δ^2> \]

Резонансная частота ωрез несколько меньше частоты ω собственных колебаний системы с затуханием.

Условие отсутствия резонанса

\[ δ \geqslant \frac<ω_>> \]При условии (2) явление резонанса совершенно исчезает. В этом случае при любой частоте возмущающей силы амплитуда колебаний меньше статического отклонения.

Амплитуда резонанса

Чтобы найти величину амплитуды в резонансном случае, нужно подставить формулу (1) в формулу отклонения при вынужденных колебаниях.

Ymax.рез резонансная амплитуда колебаний системы, метр
Fmax.возм максимальное значение возмущающей силы, Ньютон
m масса колебательной системы, кг
ωрез резонансная частота, при которой амплитуда максимальна, радиан/сек
ω0 частота собственных незатухающих колебаний системы, радиан/сек
ω частота колебаний системы с затуханием, радиан/сек
β коэффициентом вязкого трения, кг/сек
δ коэффициентом затухания, радиан/сек

\[ Y_m = \frac < F_> < β \sqrt< ω_^2 - \frac > > \]

Согласно формуле, разность фаз α также зависит от частоты возмущающей силы. Параметром служит коэффициент δ.

Резонанс

На рисунке представлена зависимость α от частоты.

Независимо от величины затухания при ω = ω0 разность фаз составляет

Резонанс играет большую роль в технике и в повседневной жизни. В большинстве механических устройств под действием внешних периодических сил могут возникать колебания. При резонансе происходит нарастание амплитуды колебаний, и это может привести к разрушениям («резонансная катастрофа»). В случае вращательного движения резонансную частоту называют критическим числом оборотов.

Чтобы предотвратить возникновение колебаний со слишком большой амплитудой следует:
— по возможности устранять периодически действующие силы,
— добиваться большой разности собственной частоты и частоты возбуждающей силы,
— добиваться того, чтобы частота принимала резонансное значение лишь на время, меньшее одного периода колебаний,
— применять демпфирующие элементы.

2.3.3 Колебания при наличии внешней вынуждающей периодической силы

Нетрудно проверить, что решение уравнения (1) в случае имеет вид [1-3]:

Первое слагаемое в (3) описывает свободные колебания, а второе – так называемые вынужденные колебания с амплитудой . Таким образом, амплитуда и начальная фаза колебаний при действии вынуждающей силы зависят не только от начальных условий, но и от параметров силы.

В предельном случае точного совпадения частот и система уже не может совершать периодические колебания. Зависимость координаты от времени будет выражаться формулой

Такое движение можно рассматривать как колебания с линейно нарастающей со временем амплитудой. Явление раскачки колебаний под действием периодической внешней силы называется резонансом.

Следует подчеркнуть, что неограниченный резонансный рост амплитуды вынужденных колебаний есть идеализация системы. Во-первых, когда амплитуда колебаний становится достаточно большой, осциллятор, как правило, перестаёт быть линейным. Во-вторых, при записи уравнения (12) не учитывались силы трения, приводящие к затуханию колебаний. Рассмотрим роль последнего фактора более подробно.

Вынужденные колебания при наличии трения.

Если на осциллятор с трением действует внешняя сила (1), то уравнение таких колебаний имеет вид

где – коэффициент затухания, определённый в пункте 2.3.2.

Общее решение (5) имеет вид [1–3]

где – решение уравнения (5) в отсутствие внешней силы (собственные колебания осциллятора (3) – (5) пункта 2.3.2.

Благодаря трению , собственные колебания затухают: при . Поэтому через время колебательная система будет совершать только вынужденные колебания, описываемые вторым слагаемым в (6). Важно отметить, что параметры вынужденных колебаний не зависят от начальных условий. Эти колебания происходят с частотой внешней силы , характеризуются амплитудой и фазовым сдвигом

Как следствие из формулы (8), коэффициент связан с производной функции следующим образом:

Важным отличием от случая вынужденных колебаний осциллятора без трения является наличие сдвига фазы между колебаниями вынуждающей силы и колебаниями осциллятора. При точном совпадении частот, , вне зависимости от величины затухания, сдвиг фазы составляет .

Другим существенным следствием наличия затухания является качественное изменение вида резонансной кривой. На рис. 1 приведена зависимость и для некоторых характерных значений .

Рис. 1а. Резонансные кривые (АЧХ) линейного осциллятора для различных значений коэффициента трения: , , , .

Рис. 1б. Зависимость сдвига фаз (ФЧХ) между колебаниями вынуждающей силы и осциллятора.

Максимальное значение амплитуды вынужденных колебаний (7), определяется формулой

Этому максимуму соответствует резонансная частота

при условии, что . Если затухание мало () то максимум резонансной кривой приблизительно совпадает с собственной частотой осциллятора . По мере роста этот максимум смещается в сторону меньших частот (рис. 1а). При максимум амплитуды вынужденных колебаний приходится на частоту . TПо существу это означает исчезновение резонанса. Ранее указывалось, что режим апериодического затухания свободных колебаний возникает лишь при . Следовательно, в интервале вынужденные колебания уже не имеют резонансного характера, а собственные движения осциллятора ещё сохраняют колебательный характер.

Как видно из формулы (7), при слабом затухании амплитуда вынужденных колебаний быстро убывает по мере удаления от резонансной частоты. В частности, она уменьшается в раза при значениях , равных

Величину принято называть шириной резонанса. При малых эта величина составляет . Тогда добротность, определяемая формулой (8) пункта 2.3.2, связана с шириной резонансной кривой соотношением

Таким образом, ширина резонансной кривой определяется добротностью и собственной частотой. Чем больше добротность колебательной системы, тем меньше ширина резонансного пика. Как видно из формулы (13), добротность колебательной системы можно оценить из экспериментальных АЧХ осциллятора и соответственно определить коэффициент затухания.

Выводы.

  • В случае действия на колебательную систему внешней вынуждающей силы, колебания системы описываются периодическим законом, причём амплитуда и начальная фаза колебаний зависят не только от начальных условий, но и от параметров силы (3).
  • Если частоты и совпадают, то система совершает колебания с линейно нарастающей со временем амплитудой (4) – явление резонанса.
  • В случае наличии трения и действия на колебательную систему внешней вынуждающей силы через время колебательная система будет совершать только вынужденные колебания, описываемые вторым слагаемым в (6).
  • Параметры установившихся вынужденных колебаний не зависят от начальных условий. Эти колебания происходят с частотой внешней силы , характеризуются амплитудой (7) и фазовым сдвигом (8). При совпадении частот, , вне зависимости от величины затухания, сдвиг фазы составляет .
  • Ширина резонансной кривой определяется добротностью и собственной частотой колебаний (13).

Литература.

  1. С.Э. Хайкин. Механика. – М.: ОГИЗ, 1947. – 574 с.
  2. Д. В. Сивухин. Механика. – М.: Наука, 1989. – 576. с.
  3. Карлов Н.В., Кириченко Н.А. Колебания, волны, структуры. – М.: ФИЗМАТЛИТ, 2003. – 496 с.

При какой частоте происходит резонанс по графику

Колебательный контур является типичным представителем резонансных колебательных систем, играющих важную роль в большинстве разделов физики — в механике это различного типа маятники и звуковые резонаторы (струны, мембраны, трубы, свистки, органы), в электродинамике — колебательные контуры, закрытые и открытые резонаторы с распределенными параметрами, в оптике — лазерные резонаторы, эталоны Фабри — Перо и т.д. Принципы описания всех колебательных систем настолько общи, что теория колебаний стала самостоятельным разделом физики. Поэтому изучение параметров, свойств и характеристик колебательного контура полезно рассматривать как общее введение в мир резонансных колебательных систем.

В теории колебаний выделяются два класса явлений — явления в линейных и нелинейных колебательных системах. Линейными называются такие системы, параметры которых не зависят от амплитуды колебаний. Например, для маятников это означает такие малые колебания, при которых упругость пружин и стержней не зависит от амплитуды колебания, а натяжение нити подвеса определяется только гравитационными силами. Для электрических колебательных контуров независимыми от амплитуды токов и напряжений должны оставаться такие величины, как индуктивность $L$, емкость $C$ и сопротивление $R$.

Резонансные системы имеют два важных свойства.

Свойство избирательно реагировать на внешние источники сигналов, выделяя только те из них, частоты которых совпадают с собственной частотой колебательной системы.

Свойство запасать энергию колебаний, возбужденных внешним источником, поддерживая колебания в течение определенного времени после выключения внешнего источника.

Колебательный контур характеризуется двумя основными параметрами: частотой собственных (резонансных) колебаний $\omega _ $ и добротностью $Q$, характеризующей отношение мощности энергии собственного колебания к мощности потерь за период.

На рис. 18 приведены примеры «параллелей» электрических и механических колебательных систем. В электрических резонаторах происходит периодический переход электрической энергии, запасенной в конденсаторе $(W_Э =\frac 12 CU^2),$ в магнитную энергию катушки индуктивности $(W_M =\frac 12 LI^2)$ и обратно. В маятниках происходит аналогичный циклический переход энергии из потенциальной (поднятого груза или сжатой пружины) в кинетическую и обратно.

Свободные колебания происходят в замкнутой цепи без вынуждающей силы (рис. 19,а). Согласно второму закону Кирхгофа для такой цепи можно написать: $$ R\cdot I+U_ =-L\cdot \frac. $$ Выражая $U_ $ через заряд $q$, получим уравнение

$$ R\cdot I+L\cdot \frac +\frac =0 \ \ \ \mbox < (СИ). >$$ Дифференцируя по времени и учитывая равенство $I=\frac $, получаем $$ L\frac I> > +R\frac +\frac =0 \ \ \ \mbox < (СИ). >$$ Разделив на $L$ и вводя обозначения $\delta =\frac $ и $\omega _^ =\frac $, получим общее уравнение для свободных колебаний линейной резонансной системы: $$ I»+2\delta \, I’+\omega _^ I=0, $$ где параметр $\delta $ называется затухание, а параметр $\omega _ $ — собственная частота, или частота свободных колебаний. Оно решается подстановкой $I=A\cdot e^ $, которая приводит к характеристическому уравнению $$ -\omega ^ +2i\omega \, \delta +\omega _^ =0, $$ с решением $$ \lambda \, _ =i\, \delta \pm \sqrt<\omega _^ -\delta ^ > . $$ Общее решение имеет две составляющие $$ I=A\cdot e^ +B\cdot e^ . $$ Константы $A$ и $B$ определяются начальными данными задачи, например, зарядом $q_ $ или напряжением на конденсаторе $U_ $. Характер начальных данных определяется конкретной физической системой.

Частный пример схемы для возбуждения свободных колебаний в колебательном контуре приведен на рис. 19,б. Конденсатор $C$ заряжается от батареи до напряжения $U_ $ (положение «а» переключателя), а затем переключается в точку «б». Свободные колебания будут представлять собой циклический переход энергии электрического поля (в конденсаторе) в энергию магнитного поля (в индуктивности) и обратно.

Подставив найденные значения $A$ и $B$, получим общее решение для свободных колебаний в контуре $$ I=i\frac >^ -\delta ^ > > e^ \frac^ -\delta ^ > \, t> -e^<-i\sqrt<\omega _<0>^ -\delta ^ > \, t> > . $$

Если бы колебательный контур состоял только из идеальных (без потерь) реактивных элементов (индуктивности $L$ и емкости $C$), то переход энергии из электрической в магнитную и обратно совершался бы без потерь, а в контуре существовали бы незатухающие свободные колебания с собственной частотой $\omega _ =2\pi \, f=\sqrt>.$

Наличие в схеме активного элемента $R$ приводит к тому, что часть энергии за каждый период переходит в тепло и колебания затухают с некоторой постоянной времени $\tau $. Роль частоты в уравнении теперь играет величина $\omega _

=\sqrt<\omega _<0>^ -\delta ^ > $, зависящая от отношения реактивной мощности к потерям на активном сопротивлении $R$. При этом вовсе не обязательно в схему должен быть включен отдельный резистор. В его качестве может выступать, например, омическое сопротивление провода, которым намотана катушка индуктивности, а также сопротивление утечки изоляторов конденсатора. Кроме того, часть энергии колебаний может излучаться контуром в окружающее пространство в виде электромагнитной волны. На этом основано действие так называемых связанных контуров: если вблизи данного колебательного контура расположен другой, то в нем «наводятся» (возникают) колебания за счет того, что часть энергии трансформируется из первого контура во второй. Передача энергии совершается переменным электромагнитным полем, возникающим вокруг первого контура.

Если затухание мало, т. е. $\delta <\omega _$, то мы получаем уравнение слабо затухающих колебаний в виде $$ I=-\frac > > e^ \sin \omega _

t=-I_ e^ \sin \omega _

t. $$ При этом резонансная частота приближается к частоте собственных колебаний: $$ \omega _

=\sqrt<\omega _^ -\delta ^ > \approx \omega _ \left(1-\frac \frac <\delta ^><\omega _^ > \right). $$ Таким образом, при малом затухании резонансная частота практически совпадает с собственной, однако колебания при этом не являются гармоническими. Для гармонических колебаний должно соблюдаться условие $I\left(t\right)=I\left(t+T\right)$, где $T$ — период колебания. В нашем случае $I\left(t\right)\ne I\left(t+T\right)$, и о периоде можно говорить лишь как о времени, через которое повторяются нули функции (рис. 20). Именно в этом смысле мы будем ниже использовать термин «период колебаний».

Введем понятия добротности $Q$ и логарифмического декремента затухания $\gamma $ контура. Из отношение амплитуд $n$–того и $(n + k)$–го колебаний равно $I_ I_^ = e^$, где $T=2\, \pi \omega ^ $ — период колебания («повторения нулей»). Логарифмическим декрементом затухания $\gamma $ называется величина $$ \gamma =\delta \, T=\frac \ln \frac =\ln \frac > . $$ Из уравнения для тока видно, что величина $\delta $ обратно пропорциональна времени, за которое амплитуда колебаний уменьшается в $e$ раз. Из последнего уравнения следует, что декремент затухания $\gamma $ показывает уменьшение амплитуды за период колебания: $$ \gamma =\delta \, T=\frac <\omega >. $$ С логарифмическим коэффициентом затухания однозначно связан другой, более распространенный параметр, характеризующий колебательную систему, добротность $Q$.

Добротность контура $Q$ определяется соотношением $$ Q=\frac <\omega _<0>L> =\frac <\omega _<0>CR> =\frac, $$ где $\rho =\sqrt $ (СИ). Физический смысл добротности заключается в отношении запасенной в контуре энергии к энергии потерь за период колебания $$ Q=\omega \cdot \frac, $$ откуда можно найти связь добротности с другими параметрами контура $$ Q=\frac<\pi > <\gamma >=\frac<\pi > =\frac<\omega > =\omega \frac \ \ \ \mbox < (СИ).>$$

Экспериментально добротность определяется по резонансной кривой как отношение резонансной частоты $\omega _

$ к полосе частот $2\cdot \Delta \omega $, определяемой на уровне $U_ =\pm \frac>$: $$ Q=\frac<\omega _<з>> =\frac> , $$ где $U_

$ — амплитуда колебания на резонансной частоте контура. Величина $\rho =\sqrt$ называется характеристическим (волновым) сопротивлением контура.

При большом затухании, т.е. при $\delta >\omega _ $, величина $\omega _^ -\delta ^ $ отрицательна, корень из нее мнимый. Такой случай называется апериодическим процессом. Общее решение, аналогичное, полученному ранее, будет иметь вид $$ I=-\frac > e^ \mbox\sqrt <(\delta ^-\omega _^ )> \, t. $$ График этой функции приведен на рис. 21. Критическим условием, при котором затухающие колебания переходят в апериодический процесс, является условие $\delta =\omega _ $. В этом случае решение общего уравнения имеет вид $$ I=-\frac <\omega L>(\omega t)e^ \, =-\frac t\, e^ . $$ Остается добавить, что аналогичные параметры могут быть введены для любой резонансной колебательной системы независимо от ее физической природы (механические, термодинамические, электромагнитные, оптические, аэро– и гидродинамические системы).

Вынужденные колебания

Колебательный контур, рассмотренный в предыдущем разделе, представлял собой замкнутую электрическую цепь, в которой совершаются свободные колебания.

В случае вынужденных колебаний мы должны подводить к контуру электрическую энергию от внешнего источника (генератора). Есть много способов для подключения источника внешней энергии к контуру, которые сводятся к той или иной комбинации двух основных: в разрыв цепи контура (рис. 22, а) или параллельно емкостной и индуктивной ветвям контура (рис. 22,б). В зависимости от способа включения различают соответственно последовательный (рис. 22,а) и параллельный (рис. 22,б) колебательные контуры. Они предъявляют разные требования к согласованию с генератором и нагрузкой. Поэтому нужно отличать собственные параметры контура от параметров нагруженного контура, получаемые с учетом влияния генератора и «нагрузки» (входного сопротивления той цепи, в которую включен контур). В параллельном контуре (рис. 22,б) возникает резонанс токов. Для его поддержания в качестве вынуждающей силы необходимо применение генератора стабильного тока. В последовательном контуре (рис. 22,а) имеет место резонанс напряжений, и для его поддержания должен применяться внешний генератор стабильного напряжения.

Вынужденные колебания в последовательном контуре, резонанс напряжений

Закон Кирхгофа, позволяющий исследовать процессы в контуре (рис. 22,а) в зависимости от частоты, записывается в виде $$ U=U_ +U_ +U_ =IR+iI(\omega L-\frac <\omega C>)=I\cdot Z. $$ Контур представляет для генератора некоторое комплексное сопротивление $$ Z=R_L +i\cdot (\omega L-\frac <\omega C>), $$ $$ \left|Z\right| = \sqrt)^2>, \ \ \ \ \mbox\varphi =\frac<\omega L-\frac <\omega C>> $$ где $\left|Z\right|$ — модуль комплексного сопротивления; $R_$ — омическое сопротивление катушки индуктивности; $\varphi $ — сдвиг фазы между активным и реактивным сопротивлениями, равный сдвигу фазы между током $I$ в цепи и входным напряжением $U$.

Из последнего выражения видно, что сопротивление цепи будет минимально и равно активному сопротивлению $R_ $ на некоторой частоте $\omega _ $, определяемой условием $$ \omega _0 L=\frac <\omega _0 C>, \ \ \ \mbox < где >\ \ \ \omega _ =\frac> \ \ \ \mbox < (СИ).>$$ Таким образом, на резонансной частоте сопротивление контура минимально, чисто активно, а ток в цепи совпадает по фазе с входным напряжением (напряжением генератора). Фактически это и есть определение резонанса в последовательном колебательном контуре.

Для практических целей представляет интерес исследовать поведение напряжений на реактивных элементах контура в зависимости от частоты генератора и определить его добротность $Q$.

Поскольку фазы $U_ $ и $U_ $ независимо от частоты всегда сдвинуты относительно тока $I$ на $+$ и $-90^$ соответственно, то достаточно исследовать зависимость от частоты их модулей. Это можно сделать исходя из уравнений $$ U_ =IR, \ \ U_ =I\omega L, \ \ U_ =\frac<\omega C>, \ \ I=\frac . $$

Для примера раскроем уравнения для $I$ и $U_ $. Используя введенное для свободных колебаний понятие добротности $Q=\left(\omega _ RC\right)^$, получим следующее выражение для тока в последовательном контуре: $$ I=\frac +(\omega L-\frac <\omega C>)^ > > =\frac \frac <\sqrt<1+Q^(\frac<\omega > <\omega _> -\frac <\omega _> <\omega >)^ > > . $$ Тогда напряжение на индуктивности будет равно $$ U_ =\omega LI=U\frac <\omega _> > <\sqrt<1+Q^(\frac<\omega > <\omega _> -\frac <\omega _> <\omega >)^ > > . $$

Аналогичное уравнение можно получить для напряжения на $C$. При $\omega =\omega _ $ напряжения на $L$ и $C$ будут равны $U_ =U_ =Q\cdot U$, т.е. в $Q$ раз больше напряжения вынуждающей эдс.

На самом деле максимумы напряжения на элементах $L$ и $C$ несколько выше и смещены от резонансной частоты и выражаются следующими соотношениями: $$ \omega _ =\omega _ \sqrt C> > > =\omega _ \sqrt<2-\left(\frac<1> \right)^ > > , \ \ \ \omega _ =\frac<\omega _^ > <\omega _> . $$

При добротности контура $Q \ge 10$ сдвиг частот максимумов $U_ $ и $U_ $ относительно резонансной частоты $\omega _ $ не превышает 1% и экспериментально резонансную частоту и добротность можно определять по резонансной кривой любого из напряжений $U_ $ и $U_ $. Напряжение на реактивных элементах $U_ $ и $U_ $ при $\omega =\omega _ $ в $Q$ раз больше, чем входное напряжение $U$, поэтому резонанс в последовательном контуре называется резонансом напряжений.

Важно отметить, что для нашего анализа существенно, что само входное напряжение $U$ от частоты не зависит. В противном случае все параметры зависели бы не только от самого контура, но и от параметров источника сигнала. Как было показано в предыдущем параграфе, для этого выходное сопротивление генератора должно быть много меньше $R$.

Вынужденные колебания в параллельном контуре, резонанс токов

Схема подключения параллельного контура представлена на рис. 21,б. Из–за комплексного характера нагрузки ток генератора является комплексной величиной. Поэтому модуль тока $I$ может оказаться меньше не только суммы модулей токов индуктивной и емкостной ветвей контура, но и каждого из них в отдельности. Именно это и происходит при резонансе в параллельном контуре: токи в индуктивной и емкостной ветвях контура в $Q$ раз больше, чем ток, потребляемый от генератора тока. Поэтому резонанс в параллельном контуре называется резонансом токов.

Комплексное сопротивление параллельного контура равно $$ Z=\frac Z_ > +Z_ > = \frac <(R_+i\omega L)(i\omega C)^> +i(\omega L-(\omega C)^ )> \approx \frac +i(\omega L-(\omega C)^)> . $$

Мы пренебрегли величиной $R_ $ в числителе, поскольку она в $Q$ раз меньше индуктивного сопротивления, но этого нельзя делать в знаменателе, поскольку при резонансе величина в скобках стремится к нулю.

Условие резонанса для параллельного контура то же, что и для последовательного — равенство реактивных сопротивлений ветвей с $L$ и $C$: $$ \omega _ L=\frac <\omega _C>, \ \ \mbox < где >\ \ \omega _ =\frac > \ \ \mbox < (СИ). >$$ Таким образом, при резонансе сопротивление контура становится чисто активным и равным $$ R_ =\frac < C R_> =\frac > , $$ где — $\rho =\sqrt $ волновое сопротивление контура.

Сопротивление $R_ $ отдельного физического эквивалента в контуре не имеет, а является комбинацией волнового сопротивления $\rho $ и сопротивления потерь $R_ $. Поэтому оно не составляет отдельной ветви параллельного контура и не ответвляет в себя ток. Следовательно, «переносить» его куда–либо или к чему–нибудь «подсоединять» (например, к внутреннему сопротивлению источника тока) бессмысленно. На схеме это просто условное обозначение того факта, что на резонансной частоте параллельный колебательный контур представляет для внешнего генератора некоторое чисто активное сопротивление величиной $R_ $, а в формулах символическая запись определенной комбинации $\rho $ и $R_ $, даваемой последней формулой.

Добротность параллельного контура $$ Q=\frac <\omega _L> > =\frac \omega _ C> =\frac > =R_ \sqrt > . $$

Собственные параметры параллельного контура, т.е. резонансная частота $\omega _ $ и добротность $Q$ будут такими же, как и в последовательном контуре при тех же $C$, $L$ и $R_.$

Резонанс — друг и враг

Image. Легендарна полуторка із саньми-волокушами на льоду Ладозького озера

Резонанс — это явление резкого возрастания амплитуды вынужденных колебаний системы, которое наступает при приближении частоты внешнего воздействия к определенным значениям (резонансных частот), обусловленным свойствами системы. Таким образом, причиной резонанса является совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы.

Резонанс встречается в механике, электронике, оптике, акустике, астрофизике.

Явление резонанса лежит в основе проектирования музыкальных инструментов: рояля, скрипки, флейты .

Используется явление резонанса и в электронике. Колебательный контур, состоящий из емкости и индуктивности, используется в элементах настройки и электрических фильтрах. Однако резонанс может быть и вредным, если он вызывает искажение сигнала или паразитные шумы.

Наблюдается резонанс и в космосе, когда два небесных тела, которые имеют периоды обращения, относящихся друг с другом как небольшие целые числа, делают регулярное гравитационное воздействие друг на друга, которое может стабилизировать их орбиты (орбитальный резонанс в небесной механике).

Однако наиболее часто резонанс бывает в классической и строительной механике, а также гидро- и аэромеханике. И, к ​​сожалению, во многих случаях именно тогда, когда он совершенно нежелателен.

. Известно, что военным подразделениям при прохождении мостов приписывается «сбивать ногу» и идти не строевым, а свободным шагом. Горький опыт некоторых катастроф научил военнослужащих в подобных ситуациях отходить от многовековых традиций.

Так, 12 апреля 1831 разрушился Бротонский подвесной мост через реку Ирвелл в Англии, когда по нему шел военный отряд. Частота шагов воинов, шагавших в ногу, совпала с частотой собственных колебаний моста, через которые амплитуда резко возросла, цепи оборвались, и мост рухнул в реку. Именно этот случай, в результате которого два десятка человек были травмированы, способствовал принятию в британской армии правила «идти не в ногу» при прохождении войсками мостов. По той же причине в 1850 году неподалеку от французского города Анже был разрушен подвесной цепной мост над рекой Мин длиной более ста метров, что привело к многочисленным жертвам. Также существует версия, что 1905 году в результате прохождения кавалерийского эскадрона через резонанс разрушился и Египетский мост через реку Фонтанку в Петербурге. Однако эта версия, скорее всего, безосновательна, поскольку не существует методов дрессировки значительного количества лошадей для их движения «в ногу».

Причиной разрушения мостов из-за резонанса могут стать не только пешеходы, но и железнодорожные поезда. Для исключения резонанса моста поезд может двигаться или медленно, или на максимальной скорости (вспомните, как замедляют ход поезда метрополитена во время их движения через мост Метро в Киеве). Это обычно делается для исключения совпадения частоты ударов колес по стыкам рельсов с собственной частотой колебаний моста (по этой же причине участок рельсов на мосту часто выполняют сплошной, т.е. без стыков).

Катастрофические последствия для мостов могут послужить также и от воздействия ветра. Так, 7 ноября 1940 через игнорирование действия ветровой нагрузки на мост при его проектировании и вследствие возникновения резонанса разрушился Такомский подвесной мост общей длиной 1800 м и длиной центрального пролета 850 м (США).

С резонансом можно столкнуться не только на суше, но и на море и в воздухе. Так, при некоторых частотах вращения гребного вала в резонанс входили даже корабли. А на заре развития авиации некоторые авиационные двигатели вызывали столь сильные резонансные колебания элементов самолета, что он полностью разрушался в воздухе.

Причиной резонанса элементов летательных аппаратов и их разрушение может стать и флаттер — сочетание самовозбуждающиеся незатухающих изгибающих и крутильных автоколебаний элементов конструкции (главным образом крыла самолета или несущего винта вертолета). Одним из путей борьбы с этим явлением является использование так называемых протифлатерных грузов.

Интересно, что крепления двигателей на пилонах крыльев самолетов — это не прихоть конструкторов и дизайнеров, а насущная необходимость, поскольку двигатели демпфирующие колебания крыла в полете воздушного судна, будучи при этом своеобразным протифлатерним грузом.

Также известны случаи, когда во время выступлений знаменитого русского певца Федора Ивановича Шаляпина часто лопались плафоны в люстрах. И происходило это опять же через резонанс, когда частота собственных колебаний стекла совпадала с частотой акустических волн, воспроизводимых певцом.

Еще более интересным фактом является то, что во время Великой Отечественной войны все тот же резонанс едва не поставил под угрозу существование единой ниточки, проходившей по льду Ладожского озера и связывала блокадный Ленинград с «большой землей».

. Во время наведения участка Дороги жизни по Ладожскому озеру защитники Ленинграда неожиданно столкнулись с необычным явлением, когда после нормального прохождения по льду тяжелого грузовика, легкая машина, которая шла по тому же пути, нередко проваливалась под лед.

Перед учеными была поставлена ​​задача срочно разобраться с ситуацией, сложившейся и предоставить рекомендации по преодоления автомобилями ледяного покрова. В южной части Ладожского озера, под артиллерийским и минометным огнем врага гидрограф и гидротехники проводили эксперименты по определению предельных нагрузок на лед. Все выводы ученых поступали в Ледовую службу Морской обсерватории. Было изучено деформационную устойчивость льда под статической нагрузкой и данные про упругие деформации льда при распространении по льду взрывной волны. При проведении автоколонн по Ладоге наблюдались и неизвестные ранее колебания ледяного покрова: водяной волна, образовавшаяся под льдом проседала, двигалась с постоянной для определенной толщины льда и глубины водоема скоростью. Она могла опережать приложенную нагрузку или отставать от нее, но опасным было совпадения этих скоростей — тогда вода прекращала поддержку ледяного покрова, и поддержка обеспечивалась только упругими свойствами льда. При этом наступал резонанс, что приводило к разрушению льда. Это проявление резонанса было названо изгибно-гравитационной волной.

По результатам исследований для автомобилей, которые двигались по льду, были установлены определенные скорости и дистанции. Ежедневно по ледяному покрову в обе стороны перевозилось около 6 тыс. Тонн грузов, а общее количество доставленных в Ленинград по Дороге жизни грузов за весь период ее существования составила более 1 млн 615 тыс. Тонн. Также за это же время с осажденного города было эвакуировано около 1 млн 376 тыс. Его жителей.

С учетом приобретенного опыта позже был разработан резонансный метод разрушения льда, энергоемкость которого в несколько раз меньше энергоемкости традиционного разрушения ледяного покрова с помощью ледоколов и ледокольного навесного оборудования.

Как видим, резонанс может быть достаточно коварным, но укротить его и вернуть на пользу человеку вполне по силам!

  • Полезная и интересная информация
  • Суспільство і наука

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *