Почему свет проходит через стекло
Перейти к содержимому

Почему свет проходит через стекло

  • автор:

Почему стекло прозрачное?

Думаем, не нужно лишний раз рассказывать о том, зачем нужны окна. Они делают наши квартиры уютнее и светлее, потому что пропускают свет. Но вы когда-нибудь задумывались, почему мы видим через стекло в окне, но не видим через деревянную или пластиковую раму? В конце концов, оба материала прочны и защищают наш дом от дождя, снега и ветра. Тем не менее древесина и пластик полностью блокируют свет, а стекло позволяет ему беспрепятственно проникать внутрь. Так что же делает стекло прозрачным?

Возможно, вы уже слышали, как некоторые ученые и обычные люди пытаются ответить на этот вопрос, заявляя, что дерево – настоящее твердое вещество, а стекло – очень вязкая жидкость. По их словам, атомы в стекле располагаются дальше друг от друга и образованные промежутки позволяют проникать свету. Приверженцы этой теории даже ссылаются на окна многовековых домов, которые часто имеют неравномерную или волнистую поверхность, как на доказательство того, что на протяжении многих лет стеклянное вещество «течет», как патока в холодный день.

На самом же деле стекло вовсе не жидкость. Это особый вид твердого тела – аморфное твердое вещество. В аморфном веществе нет кристаллических решеток, атомы и молекулы располагаются в хаотичном порядке. Поэтому стекло жесткое, как твердые вещества, но имеет разупорядоченное расположение молекул, как в жидкостях. Аморфные тела образуются, когда твердое вещество плавится при высоких температурах, а затем быстро охлаждается, – такой процесс называют закалкой.

Стекло во многом похоже на керамику и обладает такими же свойствами: долговечностью, прочностью, хрупкостью, высокой электро- и термостойкостью и отсутствием реакционной способности. Но у оксидного (обычного) стекла, из которого делают листовое стекло, контейнеры и лампочки, есть еще одно важное качество: оно пропускает диапазон видимого света. И для того чтобы понять, как это происходит, нужно внимательно взглянуть на атомную структуру стекла и выяснить, каким образом с ней взаимодействуют фотоны, мельчайшие частицы света.

Об электронах и фотонах

Электроны окружают ядро атома, занимая разные энергетические уровни и подуровни. Чтобы перейти с более низкого на более высокий уровень, электрон должен обладать высокой энергией. И напротив, чтобы переместиться с более высокого на более низкий – электрон должен ее испустить. В любом случае отрицательно заряженная частица меняет уровень, испуская или поглощая фотоны определенной частоты.

Теперь нужно рассмотреть, как двигается фотон, взаимодействующий с твердым веществом. Возможно три сценария:

1. Вещество поглощает фотон. Это происходит, когда фотон отдает свою энергию электрону, расположенному в веществе. Вооруженный этой дополнительной энергией, электрон перемещается на более высокий энергетический уровень, а фотон исчезает.

2. Вещество отражает фотон. В этом случае фотон отдает свою энергию веществу, а сам исчезает.

3. Вещество пропускает фотон без изменений. Этот процесс называется передачей. Это происходит потому, что фотон не взаимодействует с электроном и продолжает свой путь, пока не начнет взаимодействовать с другим объектом.

Несомненно, стекло попадает под последнюю категорию. Фотоны проходят через материал, потому что у них недостаточно энергии, чтобы электрон в стекле переместился на более высокий энергетический уровень. Физики иногда говорят об этом с точки зрения зонной теории.

Согласно ней, энергетические уровни существуют в энергетических зонах, которые разделены зонами запрещенных энергий, где уровни энергии для электронов отсутствуют. Некоторые материалы имеют запрещенные зоны большей величины, чем другие, – от этого и зависят их оптические свойства. Стекло – как раз один из таких материалов, что означает, что его электронам требуется гораздо больше энергии, прежде чем перейти от одной энергетической зоны к другой и обратно.

На видимый свет (с длиной волны от 400 до 700 нанометров), которому соответствуют цвет индиго, фиолетовый, синий, зеленый, желтый, оранжевый и красный, приходится небольшой диапазон энергий фотонов. Этот диапазон не воспринимает диоксид кремния – основной компонент стекла. Следовательно, фотоны видимого света проходят сквозь стекло, не поглощаются и не отражаются, делая материал прозрачным.

На длинах волн меньше видимого света фотоны начинают обладать энергией, которой хватает для перемещения электронов в стекле из одной энергетической зоны в другую. Так, ультрафиолетовое излучение с длиной волны от 10 до 400 нанометров не может проходить через большинство оксидных стекол – они используются при изготовлении окон. Именно поэтому стекло непрозрачно для ультрафиолета, точно так же, как дерево – для видимого света.

Почему стекло и лед прозрачны?

Прозрачность — это свойство вещества, которое определяется способностью пропускать свет и зависит от того, как вещество отражает, поглощает и рассеивает его. Через большинство твердых тел свет не проходит, он от них отражается. Например, стол мы видим, но он вовсе не кажется нам прозрачным, если опять-таки изготовлен не из стекла. На то, является предмет прозрачным или нет, влияет длина волны излучения. Когда излучение происходит в определенном спектральном диапазоне, мы говорим о прозрачности именно в этом диапазоне.

Механизм прост: свет воздействует на заряды в атомах и молекулах вещества так, что те начинают колебаться и переизлучают его, отражая или преломляя. Атомы поглощают и излучают свет только на определенных длинах волн. Поэтому в видимом для нас диапазоне (390–750 нм / 400–790 ТГц) — а это, кстати, самый узкий участок спектра — лед, вода и стекло прозрачны. Правда, тоже не всегда. Все потому, что в них часто присутствуют примеси или посторонние вещества, такие как пыль, красители и другие твердые частицы, которые делают среду мутной. Так что, когда мы говорим, что вода прозрачная, имеем в виду «чистая».

А голубоватой она кажется за счет того, что слабо поглощает ультрафиолетовый диапазон спектра. В то время как инфракрасное излучение (его еще называют тепловым) и стекло, и вода поглощают хорошо. Это можно проиллюстрировать следующим примером: летом вода в реке быстро нагревается.

На сайте могут быть использованы материалы интернет-ресурсов Facebook и Instagram, владельцем которых является компания Meta Platforms Inc., запрещённая на территории Российской Федерации.

Почему стекло прозрачное?

Вещество выглядит прозрачным, когда кванты света (фотоны) проходят сквозь него, не поглощаясь. Но фотоны имеют разную энергию, а каждое химическое соединение поглощает лишь те фотоны, которые обладают подходящей ему энергией.

На видимый свет — от красного до фиолетового — приходится очень небольшой диапазон энергий фотонов. И как раз этим диапазоном «не интересуется» диоксид кремния, основной компонент стекла. Поэтому фотоны видимого света почти беспрепятственно проходят сквозь стекло.

Почему предметы бывают прозрачными?

Отвечает Георгий Юрьевич Шахгильдян, кандидат химических наук, лектор культурно-просветительского проекта «Архэ». Мы привыкли, что через окно можно посмотреть на улицу или во двор, а вот через стены и двери мы видеть не можем. Если они, конечно, не прозрачные. А что вообще значит «прозрачные»? Вопрос кажется наивным: материал прозрачный, если он способен пропускать через себя свет. Все мы с легкостью назовем прозрачные материалы: стекла, кристаллы, пластики. И еще проще назвать непрозрачные — все остальные. Вроде бы все просто: если мы видим через материал, то он прозрачный, если не видим, то непрозрачный. Но давайте будем более точными в определениях. Что такое свет? Свет солнца, лампы или экрана телефона — все это часть электромагнитного излучения (ЭМИ). ЭМИ представляет собой распространяющееся изменение состояние электромагнитного поля, которое характеризуют различными показателями: длиной волны, частотой, энергией фотонов (квантов ЭМИ). В соответствии с этими показателями все ЭМИ условно делят на диапазоны: от «жесткого» гамма- и рентгеновского излучения к ультрафиолету (УФ), видимому, инфракрасному (ИК) и до радиоволн. Практически со всеми видами ЭМИ мы сталкиваемся каждый день: в кабинете рентгенолога — с рентгеновским, греясь на солнце — с ультрафиолетовым, рядом с обогревателем — с инфракрасным, говоря по телефону или слушая радио — с радиоволнами. И, конечно же, мы непрерывно ощущаем видимое излучение — область ЭМИ, на прием которого «настроены» наши глаза. Вне зависимости от названия диапазонов разные виды излучения являются волнами и одновременно потоками квазичастиц — фотонов, которые непрерывно бомбардируют все и вся вокруг нас.

Свет может быть разный. Отсюда логично сделать вывод, что и прозрачность тоже может быть разной, в зависимости от того, о каком свете идет речь

Теперь давайте по-новому посмотрим на привычные нам прозрачные материалы, например на стекло. Для видимого диапазона ЭМИ стекло прозрачно, свет проходит через стекло, и мы отлично все видим сквозь этот материал. Однако для других диапазонов ЭМИ стекло перестает быть прозрачным материалом. Задумайтесь, можете ли вы загореть, сидя в солнечный день возле закрытого окна, сделанного из обычного стекла? Нет, и причина в том, что обычное (натрий-кальций-силикатное) стекло не пропускает излучение УФ-диапазона. А если кто-то будет следить за вами в тепловизор (как в фильме «Хищник»), то вы сможете легко скрыться от наблюдателя, просто находясь за стеклом. Опять же потому, что стекло не прозрачно для большей части излучения ИК-диапазона, в котором человеческое тело излучает тепло и на которое настроены детекторы тепловизоров. Так одно и то же стекло может быть и прозрачным, и непрозрачным в зависимости от того, какое излучение через него проходит. Этот вывод распространяется и на другие известные нам прозрачные материалы: ведь то, что мы видим глазами, — лишь малая часть ЭМИ. Теперь мы можем ответить на вопрос, который вынесли в начало текста: почему предметы бывают прозрачными? Если отвечать кратко и поверхностно, то потому, что эти предметы не поглощают ЭМИ. Причину прозрачности мы рассмотрим на заведомо упрощенных частных примерах.

Все твердые тела можно условно классифицировать в зависимости от их электронного строения на три типа: проводники, полупроводники и диэлектрики

Эта классификация находится в рамках зонной теории, которая вводит понятия энергетических зон: валентной, запрещенной и зоны проводимости. Стекла являются типичными диэлектриками. «Ширина» их запрещенной зоны (выраженная в энергии в электронвольтах) велика, и электроны из валентной зоны при обычных условиях никак не могут попасть в зону проводимости (кстати, именно поэтому стекло не проводит электрический ток). Однако, когда мы облучаем наше стекло светом (то есть ЭМИ), падающие фотоны начинают взаимодействовать с электронами валентной зоны стекла. В упрощенном случае такое взаимодействие может быть выражено в том, что электрон поглотит энергию фотона, возбудится и перейдет в зону проводимости, после чего релаксирует («спустится») обратно в валентную зону. Однако для такого поглощения фотона электроном необходимо, чтобы фотон обладал энергией большей, чем ширина запрещенной зоны. В противном случае подобного поглощения не произойдет. Это наглядно демонстрируется при сравнении прозрачности стекла для видимого и УФ-излучения. Энергия фотонов видимого излучения меньше, чем ширина запрещенной зоны стекол (или других прозрачных материалов). Поэтому они не поглощаются электронами материала и видимый свет проходит через стекло, делая его прозрачным. В то же время энергия фотонов УФ-излучения больше, чем ширина запрещенной зоны. Происходит поглощение энергии фотонов и возбуждение электронов, и стекло становится непрозрачным для УФ-излучения. Необходимо отметить, что есть стекла, прозрачные в ультрафиолете (до определенного предела), например кварцевые, состоящие из чистого SiO2. Их структура такова, что ширина запрещенной зоны превышает энергию фотонов УФ-излучения. В то же время есть много прозрачных, но окрашенных стекол — это результат химической технологии стекла. В состав стекол вводят ионы или наночастицы, которые взаимодействуют с фотонами видимого света с определенной энергией. В результате происходит поглощение света на определенной длине волны, что выражается в видимой нами окраске стекла. Также есть стекла, прозрачные только в УФ-диапазоне и непрозрачные в видимом диапазоне ЭМИ. В их состав введены красители, которые поглощают все фотоны видимого света. При этом ширина запрещенной зоны такого стекла достаточна для прохождения фотонов УФ-диапазона (стекла марки УФС). Более того, прозрачными могут быть не только привычные нам диэлектрики, но и материалы, которые на первый взгляд совсем непрозрачны в видимом диапазоне. Пример тому — оптическая керамика, которая, как и обычная керамика, представляет собой спеченные частицы кристаллической фазы. Любая керамика является типичным диэлектриком и удовлетворяет требованиям ширины запрещенной зоны: она достаточно велика, чтобы фотоны видимого света не поглощались электронами. Однако непрозрачность обычной керамики связана с тем, что размер спеченных частиц очень велик и свет рассеивается на границах этих частиц. В оптической керамике для спекания используются нанопорошки. В результате материал состоит из спеченных нанокристаллов с размерами, во много раз меньшими длины волны видимого света, что позволяет ему проходить через материал, делая его прозрачным.

Георгий Юрьевич Шахгильдян, кандидат химических наук, ассистент кафедры химической технологии стекла и ситаллов РХТУ имени Д. И. Менделеева, участник конкурса «Первая кафедра», лектор культурно-просветительского проекта «Архэ»

На сайте могут быть использованы материалы интернет-ресурсов Facebook и Instagram, владельцем которых является компания Meta Platforms Inc., запрещённая на территории Российской Федерации

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *