Электродвигатели
- Электродвигатель
Зарипова И.Д., учитель физики
Электродвигатель — электрическая машина, преобразующая электрическую энергию в механическую энергию .
Бори́с Семёнович Якоби — немецкий и русский физик-изобретатель. В 1834 построил первый электродвигатель пригодный для практического применения
Устройство двигателя
Принцип работы
- Принцип действия электродвигателя основывается на законе Ампера . При размещении проволочной рамки в магнитном поле, она будет вращаться (ротор). Проходящий по ней ток создает вокруг себя магнитное поле, взаимодействующее с внешним магнитным полем, что приводит к вращению рамки.
- В современной конструкции мотора роль рамки играет якорь с обмотками. На них подается ток, в результате вокруг якоря создается магнитное поле , которое приводит его во вращательное движение.
Преимущества
- Экологичность. При работе не выделяются вредные вещества и отходы.
- Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
- Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
- Простота управления.
- Им не нужен запас топлива и воды
- Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
- Легкость запуска.
- Небольшие размеры.
- Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре
- КПД мощных электродвигателей достигает 98%, такого высокого КПД не имеет никакой другой двигатель.
- В бытовых условиях электродвигатели постоянного тока используются в детских игрушках, электродрелях. Электродвигатели переменного тока верно служат в наших пылесосах, в стиральных машинах, в кофемолках, в кухонных комбайнах, в микроволновках, и во многих других бытовых приборах, используя которые мы даже не задумываемся о том, как они устроены, и насколько важна в них роль электродвигателя.
- Широкое применение электродвигатели нашли на транспорте (электровозы, трамваи, троллейбусы, метро).
- На производстве электродвигатели приводят в действие различные агрегаты и оборудование .
Физика. 10 класс
После того как в 1821 г. М. Фарадеем был впервые продемонстрирован принцип преобразования электромагнитным полем электрической энергии в механическую, учёные и инженеры стали пытаться создать электрический двигатель, который можно было бы использовать на производстве. В 1834 г. русский учёный Б.С. Якоби создал практически пригодный электрический двигатель и опубликовал теоретическую работу «О применении электромагнетизма для приведения в движение машины». 13 сентября 1838 г. лодка, снабжённая колёсами с лопастями, приводимыми во вращение электрическим двигателем, с двенадцатью пассажирами на борту проплыла по реке Неве против течения со скоростью около 3. Это было одно из первых применений электрического двигателя. Трудно представить, но ещё 100 лет назад в очень немногих домах можно было увидеть какое-либо устройство с электрическим двигателем: пыль и сор с пола убирали с помощью веника, кофе мололи и бельё стирали вручную. Даже автомобильные двигатели запускали с помощью специальной рукоятки.
Существует много различных типов электрических двигателей. Мы рассмотрим простейший электрический двигатель постоянного тока, для работы которого использованы основные законы электромагнетизма.
Электрический двигатель постоянного тока — электрическая машина, преобразующая электрическую энергию постоянного тока в механическую энергию ( рис. 188.4 ).
Основными частями, необходимыми для работы любой электрической машины постоянного тока, являются ( рис. 188.5 ):
– индуктор — постоянный магнит или электромагнит, создающий магнитное поле (в технических электрических машинах в качестве индуктора, создающего магнитное поле, почти всегда применяют электромагниты);
– якорь — обмотка, в которой при изменении магнитного потока возникает ЭДС индукции. Для того чтобы получать большие магнитные поля там, где находятся обмотки якоря, его снабжают железным сердечником. Концы этого сердечника имеют такую форму, чтобы между полюсами магнита и сердечником оставался лишь небольшой зазор, необходимый для вращения;
– коллектор и скользящие по нему контактные пластинки — электрические щётки, при помощи которых осуществляется соединение обмотки якоря с источником тока.
Вращающуюся часть электрической машины (якорь) называют ротором, а её неподвижную часть (индуктор) — статором.
Если подключить к зажимам электрической машины источник тока и пропустить ток от этого источника через статор и ротор, то взаимодействие их магнитных полей создаст вращающий момент, приводящий в движение ротор. Таким образом, электрическая энергия, подаваемая на зажимы электрической машины, превращается в механическую энергию вращения. Электрическая машина в этом случае работает как электрический двигатель. Соединив вал ротора с нагрузкой, например, с грузоподъёмником, мы можем привести этот грузоподъёмник в движение.
Выясним происхождение сил, которые создают действующий на якорь электродвигателя вращающий момент. При подключении щёток к источнику постоянного напряжения по обмотке якоря проходит электрический ток. На проводники обмотки со стороны магнитного поля индуктора действуют силы Ампера, перпендикулярные к направлениям тока и индукции магнитного поля.
На рисунке 188.6 показаны силы Ампера, действующие на отдельные проводники обмотки, плоскость которой расположена под некоторым углом к направлению индукции магнитного поля. Применяя правило левой руки, можно убедиться, что силы Ампера и , действующие на проводники АK, ED и ВС, параллельны оси вращения . Следовательно, они не создают вращающего момента якоря. Силы Ампера и , действующие на проводники АВ и СD, перпендикулярны оси и создают вращающий момент. Якорь начинает вращаться и тем самым приводит во вращение соответствующие детали технических устройств (троллейбусов, трамваев, электрических бытовых приборов и др.).
Основной рабочей характеристикой электродвигателя постоянного тока является вращающий момент Мвр = 2FrN , создаваемый силами Ампера. Здесь r — радиус ротора, N — число витков в обмотке. Поскольку максимальное значение силы Ампера Fmaх = BIl , то вращающий момент, действующий на рамку с током,
где I — сила тока в обмотке, B — индукция магнитного поля, l — длина проводника. Так как площадь рамки S = 2lr , а ВS = Фmaх — максимальный магнитный поток через рамку, то вращающий момент на валу двигателя можно определить по формуле
Таким образом, вращающий момент электродвигателя постоянного тока прямо пропорционален максимальному магнитному потоку через виток обмотки, силе тока в обмотке якоря и числу витков в обмотке.
Якорь любого электродвигателя состоит из нескольких обмоток ( рис. 188.7 ). Вращающий момент принимает максимальное значение, когда соответствующая обмотка находится в плоскости, параллельной направлению индукции магнитного поля, и равен нулю, когда обмотка находится в плоскости, перпендикулярной направлению индукции. Для того чтобы обеспечить длительное вращение якоря при неизменном направлении вращающего момента, электрический ток в обмотке должен изменять направление через каждые пол-оборота. Это может быть осуществлено следующим образом. При вращении якоря коллектор отключает электрические щётки от одной обмотки и подключает к другой, так что в каждый момент времени ток проходит через обмотку якоря, находящуюся в плоскости, параллельной направлению индукции магнитного поля. Таким образом, вращающий момент сохраняет своё направление, и якорь вращается в одном направлении.
Изменяя силу тока в обмотках якоря, можно регулировать модуль скорости его вращения. Направление вращения можно изменять, изменяя направление тока в обмотке якоря или индуктора.
Простота устройства электродвигателей и управления ими, возможность легко регулировать частоту вращения и хорошие пусковые свойства определили широкое применение их в качестве приводных двигателей для прокатных станов, гребных винтов кораблей, шахтных подъёмных машин, в электрифицированном магистральном, городском и заводском транспорте, дорожно-строительных, ремонтно-отделочных машинах. Электродвигатели часто являются исполнительными звеньями систем автоматического управления и регулирования и т. д.
1. Как устроен электродвигатель постоянного тока?
2. Каково назначение индуктора? якоря? коллектора и щёток?
3. На каком явлении основано действие электродвигателя постоянного тока?
4. От чего зависит вращающий момент электродвигателя постоянного тока?
5. Как можно изменять модуль скорости и направление вращения якоря электродвигателя?
6. Где применяют электродвигатели постоянного тока?
Принцип работы электродвигателя
Unfortunately, you are using an outdated browser. Please update your browser to improve performance, quality of the displayed material, and improve security.
Электрический двигатель (коротко – электродвигатель) преобразует энергию тока в механическое движение. Принцип работы устройства основан на магнетизме, что определяет присутствие в конструкции магнитов (постоянных, электромагнитов, материалов с магнитными свойствами).
Виды электродвигателей
- Синхронные электродвигатели сложнее в плане конструкции. У них есть обмотка ротора, а питание подается через щеточный механизм. Свое название получили благодаря синхронности вращения с магнитным полем, которое его запускает.
- Асинхронные просты в сборке, а потому пользуются самой большой популярностью (нет обмотки, щеток и т. д.). Их роторы двигаются медленнее магнитного поля, что определяет асинхронность вращения электродвигателя и его название.
В быту и промышленности встречаются электрические двигатели различных видов, типов, классов, мощностей. Самыми востребованными остаются простые в конструкции устройства, которые решают задачу преобразования электроэнергии в механическое вращение вала. Но даже в этой группе есть масса нюансов, которые нужно знать, чтобы правильно эксплуатировать оборудование. Начинается такая практика (грамотного использования электродвигателей для любых целей) с понимания того, как оно функционирует (принципов работы).
Принцип работы синхронного электродвигателя на видео
Принцип работы асинхронного электродвигателя на видео
Конструкция электродвигателя
Центральный процесс функционирования электрического двигателя постоянного тока (коротко ДПТ) – нагнетание крутящего момента за счет напряжения, подаваемого на роторные катушки. Процесс становится возможным благодаря 4 конструктивным элементам:
- коллектору;
- щеточному механизму (2 щетки + 2 пластины/ламели);
- ротору электрического двигателя (якорь, в синхронном двигателе имеет 1 обмотку);
- статору, на котором устанавливаются магниты (в электродвигателях постоянного тока – постоянные).
Ротор
Ротор – подвижный элемент электрического двигателя, запускаемый магнитным полем, совершает вращательные движения вместе с валом. Имеет минимум 3 зуба, один из которых стабильно попадает в область подключения.
Коллектор электродвигателя
Ротор переключается автоматически. За эту функцию отвечает коллектор – конструкция из двух ламелей, закрепленных на роторном валу и двух щеток, выполняющих функцию токосъемных контактов (обеспечивают подачу постоянного тока на ламели). Принцип работы такой:
- ротор вращается, меняя направление тока;
- когда якорь совершает поворот на 180 градусов, ламели меняются местами;
- при смене позиций пластин меняется и направление тока, и (соответственно) полюсы магнита;
- одноименные полюсы, подчиняясь законам физики, взаимно отталкиваются – катушка вращается, ее полюсы притягиваются к противоположным полюсам на другой стороне магнита.
Статор электрического двигателя
Статор – стационарный или неподвижный блок электродвигателя. Другое название – индуктор. Он включает несколько обмоток со сменяемой полярностью (при прохождении переменного тока), что и обеспечивает образование магнитного поля. В большинстве случаев статор имеет 2 пары основных полюсов, но может включать и вспомогательные для лучшего переключения ротора на коллекторе.
Принцип работы электрического двигателя
Принцип работы электродвигателя построен на процессах взаимного притяжения и отталкивания одно- и разноименных полюсов магнитов на роторе (находится в движении) и статоре (его магнит неподвижен). В самой простой сборке электродвигателя постоянного тока в роли ротора выступает катушечный узел, а индуктором – сам магнит.
Магнитное поле обеспечивает высокую эффективность работы с одним уточнением, которое формирует сложности устройства механизма. Для обеспечения постоянного движения якоря нужно добиться автоматической смены его полюсов (чтобы притянувшись к противоположному полюсу неподвижного магнита, он сразу менял собственный полюс). Это единственный способ исключить «замирание» якоря и обеспечить его безостановочное движение под действием магнитного поля и инерции.
Магнитное поле электродвигателя
Принцип работы статорного электродвигателя (также называется индукционным) тоже основан на формировании магнитного поля статора. Оно образуется во время прохождения токов через его обмотки. Это поле (вращающееся магнитное) формирует магнитное поле ротора через индукцию токов в обмотках его проводников.
Оно же (статорное поле) создает собственный магнитный поток, при этом наблюдается пропорциональная связь:
- магнитное поле статора пропорционально электронапряжению в сети;
- магнитный поток, создаваемый вращающимся полем, пропорционален току.
Характеристики поля статора зависят от токов, проходящих через обмотки, и числа обмоток фаз. Магнитное поле ротора, в свою очередь, тоже формирует поток, движущийся медленнее потока статора. Оба потока (статора и якоря) взаимно притягиваются, принуждая ротор совершать вращательные движения.
Так возникает крутящий момент – тот самый ключевой процесс, ради которого собирается вся конструкция электродвигателя. Учитывая роль статора и ротора в работе электродвигателя переменного тока, несложно заключить, что именно эти 2 элемента имеют самое большое значение в его сборке.
Электрический двигатель постоянного тока (принцип работы синхронного электродвигателя)
Под синхронными электрическими двигателями понимают устройства постоянного тока. Принцип работы такого устройства можно кратко описать 4 пунктами:
- к обмотке статора (ее еще называют индукторной или обмоткой возбуждения) подается постоянный ток;
- проходя через обмотку, ток образует постоянное магнитное поле возбуждения (используется постоянный магнит);
- к роторной обмотке тоже подается постоянный ток, на который воздействует поле статора, обеспечивая возникновение крутящего момента;
- под действием вращательной силы, ротор поворачивается на 90 градусов.
Это один цикл. После поворота обмотка якоря снова подпадает под влияние статорного магнитного поля, и ротор снова совершает поворот.
Для непрерывной работы электродвигателя полюса постоянного роторного магнита должны сменять друг друга без остановки. Смена происходит, когда полюс пересекает «нейтраль» (ее еще называют магнитной нейтралью). Чтобы ее (смену полюсов) обеспечить, кольцо коллектора разделяют на сектора диэлектрическими ламелями, к которым поочередено присоединяются края роторных обмоток.
Токосъемные щетки, которые представляют собой графитовые стержни с высокой проводимостью и низким коэффициентом трения при скольжении, необходимы для присоединения коллектора к сети. В качестве магнитов могут применяться физически существующие материалы с высокими магнитными свойствами. Но часто из-за их массы в электродвигателях постоянного тока увеличенной мощности магниты заменяют несколькими металлическими штифтами/стержнями. При этом:
- у каждого стержня формируется собственная обмотка из проводника, который подключается к шине питания («+» и «-»);
- включение одноименных полюсов осуществляется последовательно;
- количество пар полюсов – 1 или 4;
- число щеток коллектора должно соответствовать этому количеству пар.
У синхронных электрических двигателей высокой мощности, обслуживаемых постоянным током, есть ряд конструктивных нюансов, ряд из которых проявляется в динамике (во время функционирования устройства). Среди них – смещение щеток роторного коллектора по отношению к валу на определенный угол против его вращения при изменении нагрузки на двигатель. Это необходимо, чтобы компенсировать эффект, называемый реакцией ротора/якоря и предупреждению торможения вала электродвигателя, которое снижает эффективность работы подключенного к нему оборудования.
Способы подключения синхронного электродвигателя
Преимущество синхронных электродвигателей, обеспечиваемое принципом их работы, – поступательное (плавное) регулирование скорости вращения, это обеспечило их высокую эффективность при работе с тягой – на грузоподъемниках и электромашинах. В современной практике применяют 3 схемы подключения электрических двигателей постоянного тока: с параллельным, последовательным и комбинированным возбуждением.
В первом случае вместе (параллельно) с обмоткой ротора запускается дополнительная регулируемая (обычно) обмотка-реостат. Такой вариант эффективен, когда для нормальной работы машины требуется плавная регулировка скоростей вращательного движения и максимальной стабильности количества оборотов в минуту. Примеры – электродвигатели кранов, промышленных станков и линий.
При последовательном подключении вспомогательная роторная обмотка в цепь процессов возбуждения ротора включается последовательно. Это обеспечивает возможность резкого увеличения усилия электрического двигателя в определенные моменты (на старте движения состава, например).
Устройство синхронного электродвигателя на видео
Принцип работы УКД (коллекторных электродвигателей универсального применения)
УКД (двигатели универсального использования) применяются в маломощных устройствах и электроинструментах (бытовых, профессиональных) – везде, где требуется высокий момент вращения на хорошей скорости, плавная регулировка числа оборотов и небольшие пусковые токи. По конструкции УКД повторяют синхронные с последовательнойсхемой электродвигателя.
Принцип работы УКД:
- при подаче напряжения на статоре возникает магнитное поле;
- исполнение магнитного провода в УКД несколько отличается – здесь они сделаны не цельнолитыми, а сборными во избежание перемагничивания и нагрева токами Фуко;
- вспомогательная обмотка ротора (индуктивность) подключается к питанию последовательно, что позволяет настраивать одинаковую направленность магнитных полей статора и ротора в одной фазе;
- магнитные поля индуктора и якоря практически полностью синхронны – электродвигатель набирает скорость вращения при высоких нагрузках, что важно для работы многих инструментов (перфораторов, шуруповертов, пылесосов, точильных аппаратов и т. д.).
При включении в цепь электродвигателя регулируемого трансформатора добавляется еще и возможность плавной регулировки его скорости вращения. А вот изменять вектор магнитного поля, если это коллекторный двигатель переменного тока, невозможно ни при каких обстоятельствах.
Коллекторный электродвигатель общего назначение имеет много плюсов. Он выдает высокий крутящий/вращающий момент, способен развивать высокую вращательную скорость, при этом весит и места занимает немного. Есть и минусы: графитовые щетки имеют низкую износостойкость (быстро стираются на больших скоростях вращения), снижая ресурс всей сборки.
Асинхронные электрические двигатели
Электродвигатель переменного тока (он же асинхронный) тоже использует магнитное поле для создания крутящего момента. Его изобретатель – российский физик-электротехник, Михаил Осипович Доливо-Добровольский. Первый образец асинхронного электрического двигателя появился в 1890-м (с него начались теория и практика применения 3-фазного переменного тока).
Конструкция и устройство электродвигателей переменного тока:
- на каждый статор наматывается 3 обмотки;
- к каждой обмотке подключается 1 из 3 фаз;
- для охлаждения обмоток, которые сильно нагреваются, пропуская через себя переменные токи, на торцовый вал электрического двигателя устанавливается кулер (вентилятор).
Течение токов и напряжения по 3-фазной сети имеет графический вид синусоиды (плавное изменение параметров работы). Мощность в обмотке плавно увеличивается по мере перехода от конца синусоиды к ее пику и снова снижается, «спускаясь» из вершины к другому концу, достигая на обоих концах своего минимума, а на вершине – максимума.
- напряжение, подаваемое с 3 фаз на обмотки статора, образует магнитное поле (частота его вращения равна частоте вращения в сети – 50 Гц);
- ротор располагается внутри индуктора, и в нем тоже возникает свое поле;
- поле ротора отталкивается от поля статора, образуя вращательный момент.
За счет того, что в электрических двигателях переменного тока используется короткозамкнутая система, при взаимодействии магнитного поля статора и обмотки ротора, в последнем образуется очень большой ток. Он и формирует собственное поле якоря. Контактируя по законам взаимного притяжения/отталкивания полюсов с магнитным потоком индуктора, поле ротора приводит в движение вал электродвигателя в направлении, аналогичном направлению этого поля.
Устройство электродвигателя переменного тока на видео
Почему асинхронный?
Скорость магнитных полей ротора и статора аналогична, но первый на 8–100 отстает от второго по фазе, что и обеспечивает асинхронную работу основных элементов (отсюда и название). Особенность таких электрических двигателей – создание очень больших пусковых токов. Это характерно для классических короткозамкнутых устройств (тех самых, при запуске которых мигает свет). Для снижения риска перегрузок при их эксплуатации применяется ряд мер:
- в машинах с высокими показателями мощности используют фазный якорь с тремя соединенными «звездой» обмотками;
- подключение роторных обмоток осуществляется не напрямую к электросети, а через коллектор (щетки, пластины), соединенный с пусковым реостатом.
В результате при старте работы такого электродвигателя происходит соединение с питанием и поступательное снижение активного сопротивления в цепи ротора до нуля. Нет миганий, перегрузок электросети – двигатель переменного тока запускается плавно.
Преимущества электродвигателей переменного тока
Электродвигатели асинхронного типа сделали возможной эксплуатацию 3-фазной сети, которая, по сути, сформирована тремя отдельными цепями с синусоидальными движущими силами (ЭДС) в каждой из них. ЭДС в фазах имеют одинаковую частоту, создаются одним источником (обычно это 3-фазный генератор), но сдвинуты по отношению друг к другу на 120 градусов.
3-фазная сеть – это уравновешенная система с константной мгновенной суммарной мощностью, а электродвигатель переменного тока, который от нее питается, имеет неоспоримые преимущества. Среди них:
- простая эксплуатация;
- низкая цена;
- надежность;
- эффективность в части контроля момента вращения и ее скоростью. Она обеспечивается за счет управляемости электрического двигателя (его динамикой) с помощью сигнала (цифрового или аналогового). Плюс, 3-фазный электродвигатель можно «заставить» вращаться в любом направлении, если изменить направление переменного тока на роторной обмотке.
Однофазные электродвигатели
Наряду с 3-фазным, в практике широко применяются и 1-фазные асинхронные электродвигатели. Они представляют собой электрооборудование, питаемое от бытовой сети с напряжением 220 В (частота – 50 Гц). Как и 3-фазный аналог, он работает на преобразование получаемой электроэнергии в механическое действие – вращение.
Устройство и принцип работы 1-фазного двигателя проще:
- на статоре формируются минимум 2 обмотки – пусковая и рабочая;
- оси обмоток должны быть сдвинуты по отношению друг к другу на 90%;
- в конструкции добавляется еще один элемент – фазосдвигающий (это может быть катушка, конденсатор или резистор);
- питание осуществляется через подачу переменного тока на обмотку.
1-фазные электродвигатели переменного тока устанавливаются на приборах бытового применения (от центрифуг стиральных машин до холодильников) и маломощных станках для обрабатывающих предприятий.
Сравнение одно- и трехфазных электрических двигателей
По сравнению с 3-фазными 1-фазные асинхронные двигатели несколько проигрывают по ряду характеристик:
- мощность первых как минимум на 30% ниже при аналогичных размерах;
- однофазные устройства не способны работать на холостом ходу дольше 5–10 минут;
- перегрузочная способность у трехфазных значительно выше.
УКД
Главный плюс коллекторного электродвигателя общего назначения (который может питаться от постоянного тока и переменного) – экономичность. Максимальный крутящий момент и потребление тока такими устройствами ограничены благодаря индуктивному сопротивлению на малых оборотах.
Двигатели с увеличенным скольжением
В отдельную группу электродвигателей стоит выделить трехфазные устройства с повышенным сопротивлением роторной обмотки, которая обеспечивает критическое скольжение. Оно составляет в механизмах с увеличенным скольжением 40%. Сами они применяются в машинах с высокой инерционностью, работающих в режиме частых кратковременных запусков.
Каталог электродвигателей по цене производителя
В каталоге ООО ПТЦ «Привод» широко представлены электродвигатели для работы в одно- и трехфазной сети. Каждая модель устройства имеет подробное описание (технические характеристики, расшифровка наименования, габариты, данные о производителе и т. д.). В нашем ассортименте легко выбрать и можно выгодно купить электрические двигатели для решения самого широкого спектра задач.
Двигатели постоянного тока
На этом уроке мы с вами поговорим о двигателе постоянного тока. Выясним, каково устройство и принцип действия коллекторного электродвигателя. Рассмотрим два случая подключения обмотки возбуждения к источнику тока в роторе, который состоит из электромагнита. И познакомимся с устройством настоящего рабочего электродвигателя.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет.
Получите невероятные возможности
1. Откройте доступ ко всем видеоурокам комплекта.
2. Раздавайте видеоуроки в личные кабинеты ученикам.
3. Смотрите статистику просмотра видеоуроков учениками.
Получить доступ
Конспект урока «Двигатели постоянного тока»
Прежде всего давайте определимся какую функцию выполняют двигатели. Они превращают электрическую энергию в механическую.
Первый электрический двигатель был создан в 1834 году русским учёным Борисом Семёновичем Якоби.
В деятельности человека находят свое применение электродвигатели самых разных конструкций. В производстве их используют для того, чтобы привести в движение станки и механизмы, трамваи, троллейбусы, электровозы и многое другое. Электродвигатели используются даже в игрушках.
Почему же все-таки именно электродвигатели, а не паровые двигатели или, например двигатели внутреннего сгорания? Основным преимуществом двигателя, работающего на электричестве, можно назвать то, что при его работе не выделяются вредные газы, дым или пар. Для их работы не нужны запасы топлива или воды. Электродвигатели легко установить в любом удобном месте: и на стене, и под полом трамвая или троллейбуса и даже в колесах лунохода.
На производстве и в быту чаще всего используют коллекторный электродвигатель. Перед вами модель простейшего коллекторного электродвигателя. Он состоит из неподвижной части – статора и вращающейся части – ротора. В качестве статора выступает постоянный магнит. Ротор состоит из якоря и коллектора. Простейшим якорем может быть электромагнит, который представляет собой сердечник и обмотку. На валу якоря укреплён коллектор, который представляет собой два полукольца. Они изолированы не только друг от друга, но и от вала двигателя. Каждый вывод обмотки якоря припаивают к отдельному полукольцу. Электрический ток от батареек поступает в обмотку якоря через щётки – специальные скользящие контакты. Щётки чаще всего представляют собой две упругие металлические пластины, которые соединены проводами с источником тока и прижаты к полукольцам коллектора.
Поскольку якорь – это электромагнит, то у него должны быть южный и северный полюса.
Давайте узнаем, как они образуются.
Щётки соединяются с источником тока так, как показано на рисунке. Благодаря такому соединению электрический ток, который проходит по обмотке якоря делает одну сторону якоря северным полюсом, а вторую – южным.
По схеме видно, что северный полюс якоря располагается рядом с северным полюсом статора, а южный полюс якоря – рядом с южным полюсом статора.
Одноименные магнитные полюса отталкиваются, и якорь начинает вращаться. Вместе с якорем поворачивается и коллектор.
Северный полюс якоря при вращении притягивается к южному полюсу статора. Но еще до того как они сблизятся полукольца коллектора притягиваются друг к другу и полярность якоря опять изменяется. То есть меняется направление тока в обмотке якоря. Другими словами, коллектор в электродвигателе – это специальный переключатель, который меняет направление в обмотке якоря автоматически.
Как только полярность якоря меняется, полюса вновь отталкиваются друг от друга и вращение продолжается.
В основном в качестве постоянного магнита для создания магнитного тока используют электромагниты.
Существует два способа подключения обмотки возбуждения к источнику тока: параллельно по отношению к обмотке якоря и последовательно ей.
От того каким именно способом присоединена обмотка возбуждения зависят свойства электродвигателя.
Если подключение параллельное, то с увеличением механической нагрузки на вал число оборотов двигателя практически не меняется. Двигатели с таким видом соединения обмотки возбуждения к якорю чаще всего используются для привода станков.
При последовательном соединении с увеличением механической нагрузки на вал, число оборотов резко уменьшается. Двигатели такого рода находят свое применение на электрическом транспорте.
По сравнению с полем постоянных магнитов, электромагнитное возбуждение двигателя позволяет не только усилить магнитное поле, но и управлять его интенсивностью.
Для того, чтобы управлять интенсивностью магнитного поля нужно реостатом менять величину тока в цепи обмотки возбуждения. Этим изменяется число оборотов двигателя.
Еще один способ менять число оборотов двигателя – смена напряжения на его зажимах. Но этот способ – более дорогой. Поскольку, если через реостат проходит весь ток двигателя, то появляются дополнительные потери электроэнергии.
Понятно, что мы рассмотрели очень упрощенную модель электродвигателя. Настоящий имеет более сложное строение.
В основном вместо постоянного магнита для создания магнитного поля статора используется мощный электромагнит. Обмотка возбуждения такого двигателя одновременно выполняет роль обмотки одного из полюсов. Соединять обмотки полюсов надо так, чтобы полюсные наконечники сердечников имели разную полярность, которая будет обращена к якорю.
Посмотрите, как выглядит вращающийся ротор двигателя. Он состоит из якоря и коллектора.
Чтобы коэффициент полезного действия двигателя возрастал, нужно на сердечнике якоря разместить несколько обмоток. Это приводит к тому, что в коллектор входит не два полукольца, а много медных пластин. Они изолированы не только друг от друга, но и от вала двигателя.
Графитовые щётки накладывают на коллектор. К гладкой поверхности коллектора щётки прижимают с помощью пружин. Движение якоря по валу напрямую передается рабочим органам потребителя. Вращается вал в подшипниках, которые запрессованы в переднюю и заднюю крышки статора. Охлаждается двигатель вентилятором, крыльчатка которого располагается на валу.
Подведем итоги урока.
Сегодня мы с вами говорили о двигателе постоянного тока. Выяснили устройство и принцип действия коллекторного электродвигателя. Узнали, что у него две основные части: неподвижная часть — статор, который представляет собой магнит, создающий постоянное магнитное поле. И вращающаяся часть – ротор. Составные части ротора – якорь и коллектор. Электрический ток от источника подается на обмотку якоря через щётки.
Рассмотрели два случая подключения обмотки возбуждения к источнику тока в роторе, состоящем из электромагнита.
И познакомились с устройством настоящего рабочего электродвигателя.