Что такое шкала электромагнитных волн
Перейти к содержимому

Что такое шкала электромагнитных волн

  • автор:

Что такое шкала электромагнитных волн

3.5.6. Шкала электромагнитных волн

Рейтинг: 0

Шкала электромагнитных волн

Зависимости от частоты (или длины волны в вакууме c/v). а также способа излучения и регистрации различают несколько видов электромагнитных волн; радиоволны, оптическое излучение, рентгеновское излучение и гамма — излучение.

Радиоволнами называются электромагнитные волны, длина которых в вакууме больше 5.10 -5 (< 6.10 12 Гц).

В связи с особенностями распространения радиоволн весь диапазон делят на 9 поддиапазонов:

название поддиапазона длина волны м частота Гц

сверхдлинные более 10 4 менее 3

длинные 10 4 — 10 3 3 .10 4 — 3 .10 5

средние 10 3 — 10 2 3 .10 5 — 3 . 10 6

короткие 10 2 — 10 3.10 6 — 3 .10 7

метровые 10 — 1 3 . 10 7 — 3 . 10 8

дециметровые 1 — 0,1 3 .10 8 — 3 .10 9

сантиметровые 0,1 — 0, 01 3 . 10 9 — 3 . 10 10

миллиметровые 10 -2 -10 -3 3 . 10 10 — 3 . 10 11

субмиллиметровые 10 -3 — 5 10 -5 3. 10 11 — 6.10 13 ,

Оптическим излучением или светом называют электромагнитные волны (электромагнитное излучение), длина которых в вакууме лежит в диапазоне то 10 нм до 1 мм. К оптическому излучению относится инфракрасное, видимое и ультрафиолетовое излучения.

Инфракрасным изучением называется электромагнитное излучение, испускаемое нагретыми телами, длина которых лежит в пределах от 1 мм до 770 нм (1 нм = 10 -9 м).

Видимое излучение, или видимым светом, называют электромагнитное излучение с длиной волны от 770нм до 380 нм, которое вызывает зрительное ощущение в человеческом глазе.

Ультрафиолетовое излучение — излучение с длиной волны от 380 нм до 10 нм.

Рентгеновским излучением, рентгеновскими лучами, называется излучение , которое возникает при взаимодействии заряженных частиц и фотонов с атомами вещества и характеризуется длинами волн в вакууме то 10 — 100 нм до 0, 01 — 1 пм.

Гамма — излучением, или гамма — лучами, называется электромагнитное излучение с длинами волн в вакууме менее 0,1 нм, которое испускается возбужденными атомными ядрами при радиоактивных превращениях и ядерных реакциях, а также при распаде частиц, аннигиляции пар частица — античастица и других процессах.

Шкала электромагнитных волн

У того факта, что на свете не существует волн всех без исключения частот (от ν = 0 Г ц до ν = ∞ Г ц ), есть объективные причины. Они заключаются в том, что световые волны обладают не только волновыми, но и корпускулярными свойствами, что накладывает на их длину определенные ограничения.

Ограничения длины волны

Согласно квантовой теории, испускание электромагнитного излучения происходит в виде порций энергии – квантов. Энергия квантов связана с их частотой.

Формула содержит постоянную Планка – h = 6 , 62 · 10 — 34 Д ж · c , а h = h 2 π = 1 , 05 · 10 — 34 Д ж · с – это постоянная Планка с чертой.

Из формулы можно сделать вывод о невозможности существования бесконечной частоты, поскольку квантов с бесконечной величиной энергии не бывает. Также данное выражение ограничивает и низкие частоты, поскольку энергия кванта имеет минимально возможное значение W 0 , следовательно, существует и минимальная частота, ниже которой волна иметь не может.

Важно отметить, что пока не существует явных доказательств наличия нижней границы энергии у фотонов. В стабильных электромагнитных волнах между земной поверхностью и ионосферой отмечена минимальная частота, равная примерно 8 Г ц .

Шкала электромагнитных волн

На сегодняшний день известно несколько типов электромагнитных волн. Их основные характеристики приведены в таблице:

Название Граница диапазона по длине волны λ Граница диапазона по энергии квантов W
гамма — излучение λ < 1 , 2 · 10 - 3 н м W > 1 М э В
рентгеновское излучение 1 , 2 · 10 — 3 н м < λ < 12 н м 100 э В > W > 1 М э В
ультрафиолетовое излучение 12 н м < λ < 380 н м 3 , 2 э В > W > 100 э В
видимый спектр излучения 380 н м < λ < 760 н м 1 , 6 э В > W > 3 , 2 э В
инфракрасное излучение 760 н м < λ < 10 6 н м 1 , 2 · 10 — 3 э В > W > 1 , 6 э В
радиоволны λ > 10 6 н м W < 1 , 2 · 10 - 3 э В

Шкала волн указывает на то, что каждый диапазон имеет свои индивидуальные особенности. Чем больше частота, тем сильнее проявляются корпускулярные свойства излучения.

В разных частях спектра электромагнитных излучений волны генерируются по-разному. Для изучения каждого типа волны существуют особые разделы физики. Различия между участками спектра заключаются не столько в физической природе волн, сколько в способах их приема и получения. Резкого перехода между ними, как правило, нет, возможно и перекрытие участков, поскольку границы условны.

Оптика изучает так называемый оптический диапазон электромагнитных волн – часть спектра с включением фрагментов зон инфракрасного и ультрафиолетового излучения, которая доступна человеческому глазу.

Определение 2

Кванты, которые присутствуют в видимой части излучения, называются фотонами.

Волны всего спектра электромагнитного излучения обладают как волновыми, так и квантовыми свойствами, однако те или иные свойства в зависимости от длины волн могут преобладать. Следовательно, для их изучения нужно пользоваться разными методами. Практическое применение у разных групп волн также различается в зависимости от длины.

Специфика различных видов электромагнитных волн

Оптический диапазон характеризуется слабым взаимодействием света и вещества, а также тем, что в нем выполняются законы геометрической оптики.

На частоты ниже оптического диапазона законы геометрической оптики уже не распространяются, а высокочастотное электромагнитное поле либо пронизывает вещество насквозь, либо разрушает его.

Видимый свет очень важен для всего живого на Земле, особенно для процессов фотосинтеза. Радиоволны активно применяются в телевидении, радиолокационных процессах, радиосвязи, т.к. это самые длинные волны спектра, которые могут быть легко сгенерированы с помощью колебательного контура (сочетания индуктивности и емкости). Радиоволны могут испускаться атомами и молекулами – это свойство находит применение в радиоастрономии.

Можно сформулировать общее утверждение, согласно которому источником электромагнитных волн являются частицы в атомах и ядрах. Они заряжены и движутся ускоренно.

В 1800 г. В. Гершель изучил на практике инфракрасную область спектра. Он расположил термометр ближе к красному краю спектра и увидел, что температура начала расти, значит, термометр нагрелся излучением, невидимым глазу. Инфракрасное излучение можно перевести в видимую часть диапазона с помощью специальных приборов (например, на этом свойстве основаны приборы ночного видения). Любое нагретое тело является источником инфракрасного излучения.

Ультрафиолетовое излучение было открыто И. Риттером. Он нашел невидимые глазу лучи за фиолетовой частью спектра и обнаружил, что они могут воздействовать на определенные химические соединения и убивать некоторые виды бактерий. Это свойство нашло широкое применение в медицине. Являясь частью солнечных лучей, ультрафиолет оказывает воздействие на человеческую кожу, способствуя ее потемнению (появлению загара).

В. Рентген в 1895 г. обнаружил еще один вид излучения, который был позже назван в его честь. Рентгеновские лучи не видны глазу и могут проходить через толстые слои непрозрачного вещества без значительного поглощения. Они также могут воздействовать на фотопленку и вызывать свечение некоторых видов кристаллов. Рентгеновские лучи широко применяются в области медицинской диагностики, а их способность воздействовать на живые организмы весьма значительна.

Гамма-излучением называется излучение, возникающее при возбуждении атомных ядер и взаимодействии элементарных частиц.

Гамма-излучение имеет наименьшую длину волны, следовательно, корпускулярные свойства у него наиболее выражены. Его принято рассматривать в качестве потока гамма-квантов. Существует перекрытие рентгеновских и гамма-волн в области длин 10 — 10 — 10 — 14 м .

Условие: объясните, что выступает в качестве излучателя для разных видов электромагнитных волн.

Решение

Электромагнитные волны всегда излучаются движущимися заряженными частицами. Они движутся ускоренно в атомах и ядрах, значит, именно там будет находиться источник волн. Радиоволны испускаются молекулами и атомами (единственный вид излучения, который можно воссоздать искусственным путем). Инфракрасное – за счет колебаний атомов в молекулах (здесь имеют место тепловые колебания, усиливающиеся с ростом температуры). Видимый свет создается отдельными возбужденными атомами. Ультрафиолетовый свет также является атомарным. Рентгеновские лучи создаются за счет взаимодействия электронов с высокой кинетической энергией с ядрами атомов, а также за счет собственного возбуждения ядер. Гамма-лучи образуются за счет возбужденных ядер и взаимном превращении элементарных частиц.

Условие: вычислите частоты волн в видимом диапазоне.

Решение

К видимому диапазону относятся волны, воспринимаемые человеческим глазом. Границы зрения индивидуальны и находятся в пределе λ = 0 , 38 — 0 , 76 м к м .

В оптике используются два основных вида частот. Первая из них – круговая – может быть определена как ω = 2 π T ( Т — период колебания волны). Вторая определяется как ν = 1 T .

Значит, мы можем связать одну частоту с другой при помощи следующего соотношения:

Зная, что скорость распространения электромагнитных волн в вакууме равна c = 3 · 10 8 м с , запишем:

В этом случае для границ видимого диапазона получим:

ν = c λ , ω = 2 π c λ .

Поскольку мы не знаем длины волн видимого света, то:

ν 1 = 3 · 10 8 0 , 38 · 10 — 6 = 7 , 9 · 10 14 ( Г ц ) ; v 2 = 3 · 10 8 0 , 76 · 10 16 = 3 , 9 · 10 14 ( Г ц ) ; ω 1 = 2 · 3 , 14 · 7 , 9 · 10 14 = 5 · 10 15 ( с — 1 ) ; ω 2 = 2 · 3 , 14 · 3 , 9 · 10 14 = 2 , 4 · 10 15 ( с — 1 ) .

Ответ: 3 , 9 · 10 14 Г ц .

Шкала электромагнитных волн

Длины электромагнитных волн, которые могут быть зарегистрированы приборами, лежат в очень широком диапазоне. Все эти волны обладают общими свойствами: поглощение, отражение, интерференция, дифракция, дисперсия. Свойства эти могут, однако, проявляться по-разному. Различными являются источники и приемники волн.

ν=10 5 — 10 11 Гц, λ=10 -3 -10 3 м.

Получают с помощью коле­бательных контуров и макро­скопических вибраторов. Свойства. Радиоволны различных ча­стот и с различными длинами волн по-разному поглощаются и отражаются средами. Применение Радиосвязь, телевидение, радиолокация. В природе радиоволны излучаются различными внеземными источниками (ядра галактик, квазары).

Инфракрасное излучение (тепловое)

ν=3-10 11 — 4 . 10 14 Гц, λ=8 . 10 -7 — 2 . 10 -3 м.

Излучается атомами и мо­лекулами вещества.

Инфракрасное излучение дают все тела при любой тем­пературе.

Человек излучает электро­магнитные волны λ≈9 . 10 -6 м.

  1. Проходит через некото­рые непрозрачные тела, а так­же сквозь дождь, дымку, снег.
  2. Производит химическое действие на фотопластинки.
  3. Поглощаясь веществом, нагревает его.
  4. Вызывает внутренний фотоэффект у германия.
  5. Невидимо.

Регистрируют тепловыми методами, фотоэлектрическими и фотографическими.

Применение. Получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане. Используют в криминалистике, в физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

Видимое излучение

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового):

Видимое излучение

Свойства. Воздействует на глаз.

Ультрафиолетовое излучение

Ультрафиолетовое излучение

(меньше, чем у фиолетового света)

Источники: газоразрядные лампы с трубками из кварца (кварцевые лампы).

Излучается всеми твердыми телами, у которых T>1000°С, а также светящимися парами ртути.

Свойства. Высокая химическая активность (разложение хлорида сереб­ра, свечение кристаллов сульфида цинка), невидимо, большая проникающая способность, убивает микроорганизмы, в неболь­ших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздей­ствие: изменения в развитии клеток и обмене веществ, действие на глаза.

Рентгеновские лучи

Излучаются при большом ускорении электронов, например их торможение в металлах. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (р= 10 -3 -10 -5 Па) ускоряются электриче­ским полем при высоком напряжении, достигая анода, при со­ударении резко тормозятся. При торможении электроны движут­ся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 им). Свойства Интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облуче­ние в больших дозах вызывает лучевую болезнь. Применение. В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).

γ-излучение

Источники: атомное ядро (ядерные реакции). Свойства. Имеет огромную проникающую способность, оказывает силь­ное биологическое воздействие. Применение. В медицине, производстве (γ-дефектоскопия). Применение. В медицине, в промышленности.

Общим свойством электромагнитных волн является также то, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свой­ства ярче проявляются при малых частотах и менее ярко — при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко — при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

Обучающий плакат «Шкала электромагнитных волн»

Обучающие плакаты — это прекрасные дидактические пособия, которые помогают детям узнавать о предметах и явлениях окружающего мира, закономерностях или школьных материалах.

Выберите один или два плаката, которые больше всего необходимы вашим детям в тот или иной период их жизни. По мере того как ребёнок будет расти и развиваться, меняйте темы обучающих материалов.

Советы для эффективного запоминания

  • Выберите правила или таблицы, которые необходимо выучить. Разбейте таблицу на смысловые части: так ребёнку будет проще запоминать.
  • Определите условные знаки и объясните их название и значение чаду, чтобы он понял каждый символ и мог его применить на практике.
  • Для заучивания правила малыш может проговорить его вслух несколько раз в спокойном темпе. Это поможет подключить слуховую память.
  • Разъясните смысл правила или таблицы ребёнку. Потом попросите его привести примеры на основе этой закономерности. Так вы узнаете, насколько малышу всё понятно.
  • Для закрепления выученного материала, предложите чаду выполнить несложное задание.
  • Обязательно похвалите ребёнка за проделанную работу.
Общие
  • Торговая марка Школа талантов
  • Артикул 2496870
  • Сертификат Не подлежит сертификации
  • Страна производитель Россия
  • Серия Обучающие плакаты — физика
Упаковка и фасовка
  • В боксе 20 штук
  • Фасовка по 1 шт.
  • Индивидуальная упаковка Без упаковки
  • Размер упаковки (Длина × Ширина × Высота) 26 см х 21 см х 0,2 см
Габариты и вес
  • Вес брутто 60 г
Особенности
  • Для кого Унисекс
  • Плотность, г/м² 280
  • Школьный предмет Физика
  • Возраст От 10 лет
  • Тематика праздника 1 Сентября
  • Адресат Без адресата
  • Материал Картон
  • Развитие навыков Буквы, цифры , Методики , Память , Социальные навыки
  • Тема обучения Физика

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *