Что такое темновой ток фотодиода
Перейти к содержимому

Что такое темновой ток фотодиода

  • автор:

Что такое фотодиод?

Фотодиод — это полупроводниковый диод, у которого ток зависит от освещенности. Обычно под этим током подразумевают обратный ток фотодиода, потому что его зависимость от освещенности выражена на порядки сильнее, чем прямого тока. В дальнейшем мы будем говорить именно про обратный ток.

В общем случае фотодиод представляет собой p-n переход, открытый для светового излучения. Под воздействием света в области p-n перехода генерируются носители заряда (электроны и дырки), которые проходят через него и вызывают напряжение на выводах фотодиода или протекание тока в замкнутой цепи.

Фотодиод, в зависимости от его материала, предназначен для регистрации светового потока в инфракрасном, оптическом и ультрафиолетовом диапазоне длин волн. Фотодиоды изготавливают из кремния, германия, арсенида галлия, арсенида галлия индия и других материалов.

Фотодиоды широко используются в системах управления, метрологии, робототехнике и других областях. Также они используются в составе других компонентов, например, оптопар, оптореле. Применительно к микроконтроллерам, фотодиоды находят применение в качестве различных датчиков — концевых датчиков, датчиков освещенности, расстояния, пульса и т.д.

Обозначение на схемах

На электрических схемах фотодиод обозначается как диод, с двумя направленными к нему стрелочками. Стрелки символизируют падающее на фотодиод излучение. Не путайте с обозначением светодиода, у которого стрелки направлены от него.

Буквенное обозначение фотодиода может быть VD или BL (фотоэлемент).

Режимы работы фотодиода

Фотодиод работает в двух режимах: фотодиодном и фотогальваническом (фотовольтаическом, генераторном).

В фотодиодном режиме используется источник питания, который смещает фотодиод в обратном направлении. В этом случае через фотодиод течет обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.

В фотогальваническом режиме фотодиод работает без внешнего источника питания. В этом режиме он может работать в качестве датчики или в качестве элемента питания (солнечной батареи), так как под воздействием света на выводах фотодиода появляется напряжение, зависящее от потока излучения и нагрузки.

Вольтамперная характеристика

Чтобы получше разобраться с режимами работы фотодиода, нужно рассмотреть его вольтамперную характеристику.

График состоит из 4 областей, так называемых квадрантов. Фотодиодному режиму соответствует работа в 3-м квадранте.

При отсутствии излучения график представляет собой обратную ветвь вольтамперной характеристики обычного полупроводникового диода. Присутствует небольшой обратный ток, который называется тепловым (темновым) током обратно смещенного p-n перехода.

При наличии светового потока, сопротивление фотодиода уменьшается и обратный ток фотодиода возрастает. Чем больше света падает, тем больший обратный ток течет через фотодиод. Зависимость обратного тока фотодиода от светового потока в этом режиме линейная.

Из графика видно, что обратный ток фотодиода слабо зависит от обратного напряжения. Посмотрите на наклон графика от нулевого напряжения до напряжения пробоя, он маленький.

Фотогальваническому режиму соответствует работа фотодиода в 4-м квадранте. И здесь можно выделить два предельных случая:

— холостой ход (хх),
— короткое замыкание (кз).

Режим близкий к холостому ходу используется для получения энергии от фотодиода. То есть для применения фотодиода в качестве солнечной батареи. Конечно, от одного фотодиода будет мало проку, да и КПД у него невысокий. Но если соединить много элементов, то такой батареей можно запитать какое-нибудь мало-потребляющее устройство.

В режиме короткого замыкания, напряжение на фотодиоде близкое к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим используется для построения фотодатчиков.

В чем преимущество и недостатки фотодиодного и фотогальванического режимов работы? Фотодиодный режим обеспечивает большее быстродействие фотодиода, но в этом режиме всегда есть темновой ток. В фотогальваническом режиме темнового тока нет, но быстродействие датчиков будет ниже.

ТОК ТЕМНОВОЙ

ТОК ТЕМНОВОЙ — электрический ток, текущий в цепи фотоэлемента, фоторезистора, фотодиода, фотоэлектронного умножителя, электронно-оптического преобразователя при отсутствии света и облучения фотокатода.

Большая политехническая энциклопедия. — М.: Мир и образование . Рязанцев В. Д. . 2011 .

  • ТОК СМЕЩЕНИЯ
  • ТОК ТЕРМОЭЛЕКТРИЧЕСКИЙ

Смотреть что такое «ТОК ТЕМНОВОЙ» в других словарях:

  • темновой ток полупроводникового детектора ионизирующего излучения — темновой ток ППД Электрический ток, протекающий через сигнальные выводы полупроводникового детектора ионизирующего излучения при отсутствии падающего на детектор ионизирующего излучения и при отсутствии проникновения света в чувствительную… … Справочник технического переводчика
  • темновой ток эмиттер-база фототранзистора — Темновой ток в цепи эмиттера, протекающий при отсутствии тока в коллекторе при определенных условиях работы и в отсутствие потока излучения в диапазоне спектральной чувствительности. Обозначение IбТ Э IEBO Примечание На ФЭПП может действовать… … Справочник технического переводчика
  • темновой ток эмиттер-коллектор фототранзистора — Темновой ток в цепи эмиттера, протекающий при отсутствии тока в базе при определенных условиях работы и в отсутствие потока излучения в диапазоне спектральной чувствительности. Обозначение IкТ Э IECO Примечание На ФЭПП может действовать… … Справочник технического переводчика
  • темновой ток коллектор-база фототранзистора — Ток в цепи коллектора, протекающий при отсутствии тока в эмиттере при определенных условиях работы и в отсутствие потока излучения в диапазоне спектральной чувствительности. Обозначение IбТ К IСBO Примечание На ФЭПП может действовать равновесное… … Справочник технического переводчика
  • темновой ток коллектор-эмиттер фототранзистора — Ток в цепи коллектора при отсутствии тока в базе, протекающий при определенных условиях работы и в отсутствие потока излучения в диапазоне спектральной чувствительности. Обозначение IэТ К IСEO Примечание На ФЭПП может действовать равновесное… … Справочник технического переводчика
  • темновой ток фотоумножителя (фотоэлемента) — Ток в цепи анода фотоумножителя (фотоэлемента) при отсутствии облучения фотокатода. [ГОСТ 20526 82] Тематики электровакуумные приборы EN dark current of photomultiplier (photocell) DE Dunkelstrom des Photovervielfachers (der Photozelle) FR… … Справочник технического переводчика
  • темновой ток — Сигнал, возникающий на выходе ПЗС матрицы при отсутствии падающего света. [http://www.vidimost.com/glossary.html] Тематики телевидение, радиовещание, видео EN dark current … Справочник технического переводчика
  • темновой ток базы фототранзистора — Обозначение Iбтб Iэтб Iктб IBBO IBEO IBCO [ГОСТ 21934 83] Тематики приемники излуч. полупроводн. и фотоприемн. устр. EN base dark current DE Basisdunkelstrom FR courant d’obscurité de base … Справочник технического переводчика
  • темновой ток коллектора фототранзистора — Обозначение Iбтк Iэтк Iктк ICEO ICBO ICCO [ГОСТ 21934 83] Тематики приемники излуч. полупроводн. и фотоприемн. устр. EN collector dark current DE Kollektordunkelstrom FR courant d’obscurité du collecteur … Справочник технического переводчика
  • темновой ток электрода — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electrode dark current … Справочник технического переводчика

Темновой ток

В физике и электронике темновым током называют малый электрический ток, который протекает по фоточувствительному элементу, такому как фотодиод, в отсутствие падающих фотонов. Физической причиной существования темнового тока являются случайные генерации электронов и дырок в p-n слое устройства, которые затем начинают упорядоченно двигаться за счет сильного электрического поля.

Темновой ток — один из главных источников шума в таких светочувствительных приборах как ПЗС-матрица.

  • Дополнить статью (статья слишком короткая либо содержит лишь словарное определение).
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Оптоэлектроника

Wikimedia Foundation . 2010 .

Смотреть что такое «Темновой ток» в других словарях:

  • темновой ток — Сигнал, возникающий на выходе ПЗС матрицы при отсутствии падающего света. [http://www.vidimost.com/glossary.html] Тематики телевидение, радиовещание, видео EN dark current … Справочник технического переводчика
  • темновой ток — 3.7 темновой ток: Сигнал, зарегистрированный датчиком спектрометра при закрытом объективе спектрометра. Источник: РД 52.24.729 2010: Дистанционная спектрометрическая съемка водных объектов в видимом диапазоне волн с мостовых переходов … Словарь-справочник терминов нормативно-технической документации
  • темновой ток — tamsinė srovė statusas T sritis automatika atitikmenys: angl. dark current vok. Dunkelstrom, m rus. темновой ток, m pranc. courant d obscurité, m … Automatikos terminų žodynas
  • темновой ток — tamsinė srovė statusas T sritis fizika atitikmenys: angl. dark current vok. Dunkelstrom, m rus. темновой ток, m pranc. courant d’obscurité, m; courant noir, m … Fizikos terminų žodynas
  • темновой ток полупроводникового детектора ионизирующего излучения — темновой ток ППД Электрический ток, протекающий через сигнальные выводы полупроводникового детектора ионизирующего излучения при отсутствии падающего на детектор ионизирующего излучения и при отсутствии проникновения света в чувствительную… … Справочник технического переводчика
  • темновой ток эмиттер-база фототранзистора — Темновой ток в цепи эмиттера, протекающий при отсутствии тока в коллекторе при определенных условиях работы и в отсутствие потока излучения в диапазоне спектральной чувствительности. Обозначение IбТ Э IEBO Примечание На ФЭПП может действовать… … Справочник технического переводчика
  • темновой ток эмиттер-коллектор фототранзистора — Темновой ток в цепи эмиттера, протекающий при отсутствии тока в базе при определенных условиях работы и в отсутствие потока излучения в диапазоне спектральной чувствительности. Обозначение IкТ Э IECO Примечание На ФЭПП может действовать… … Справочник технического переводчика
  • темновой ток коллектор-база фототранзистора — Ток в цепи коллектора, протекающий при отсутствии тока в эмиттере при определенных условиях работы и в отсутствие потока излучения в диапазоне спектральной чувствительности. Обозначение IбТ К IСBO Примечание На ФЭПП может действовать равновесное… … Справочник технического переводчика
  • темновой ток коллектор-эмиттер фототранзистора — Ток в цепи коллектора при отсутствии тока в базе, протекающий при определенных условиях работы и в отсутствие потока излучения в диапазоне спектральной чувствительности. Обозначение IэТ К IСEO Примечание На ФЭПП может действовать равновесное… … Справочник технического переводчика
  • темновой ток фотоумножителя (фотоэлемента) — Ток в цепи анода фотоумножителя (фотоэлемента) при отсутствии облучения фотокатода. [ГОСТ 20526 82] Тематики электровакуумные приборы EN dark current of photomultiplier (photocell) DE Dunkelstrom des Photovervielfachers (der Photozelle) FR… … Справочник технического переводчика
  • Обратная связь: Техподдержка, Реклама на сайте
  • �� Путешествия

Экспорт словарей на сайты, сделанные на PHP,
WordPress, MODx.

  • Пометить текст и поделитьсяИскать в этом же словареИскать синонимы
  • Искать во всех словарях
  • Искать в переводах
  • Искать в ИнтернетеИскать в этой же категории

Фотодиоды и фотопроводники

Фотодиоды и фотопроводники

Фотодиоды. Принцип действия Фотодиод работает подобно обыкновенному сигнальному диоду. Отличие заключается в том, что фотодиод генерирует фототок, когда свет поглощается в области переходного слоя полупроводника. Это устройство обладает высокой квантовой эффективностью, а потому находит применение в решении многих задач. При работе с фотодиодами необходимо точно определить значения выходного тока и учесть чувствительность к падающему свету. На рисунке 1 показана схема фотодиода, состоящая из основных компонентов. формула 1 ф иф рис1 ф фифРисунок 1. Простейшая модель фотодиода. Photodetector — фотодетектор. Junction capacitance — емкость перехода. Series resistance – последовательное сопротивление. Shunt resistance – шунтирующее сопротивление. Load resistance – сопротивление нагрузки Терминология Чувствительность Чувствительность фотодиода может быть определена как отношение генерируемого фототока (IPD) к мощности падающего света (P) на заданной длине волны : форм2 фи ф Режим работы Фотодиоды могут работать в одном из двух режимов – без внешнего источника электрической энергии (режим фотогенератора) либо с внешним источником электрической энергии (режим фотопреобразователя). Выбор режима зависит от требований к скорости работы и количества допустимого темнового тока (тока утечки). Режим фотопреобразователя В режиме фотопреобразователя применяется внешнее обратное смещение, которое заложено в основе детекторов серии DET. Ток в контуре определяет освещенность устройства; выходной ток линейно пропорционален входной оптической мощности. Применение обратного смещения увеличивает ширину обедненного перехода, создавая повышенную чувствительность и уменьшая емкость перехода. Таким образом возникают линейные зависимости некоторых величин. Работа в этих условиях, как правило, приводит к увеличению темнового тока; но на это влияет и сам материал фотодиода. (Примечание: детекторы DET работают в режиме обратного направления) Режим фотогенератора В фотогальваническом режиме смещение равняется нулю. Ток от устройства ограничен, напряжение в цепи возрастает. В основе этого режима заложен фотогальванический эффект — на нем же работают солнечные батареи. Количество темнового тока при работе в фотогальваническом режиме минимально. Темновой ток Темновым током называют ток утечки, который возникает при приложении напряжения смещения к фотодиоду. При работе в режиме фотопреобразователя наблюдается увеличение темнового тока, и его зависимость от температуры. Теоретически темновой ток удваивается при каждом повышении температуры на 10°C, а сопротивление шунта удваивается при повышении на 6°C. Конечно, большее смещение может уменьшить емкость перехода, но количество присутствующего тока утечки при этом увеличится. На темновой ток также влияет материал фотодиода и размер активной области. Обычно кремниевые фотодиоды создают низкий темновой ток по сравнению с устройствами из германия. В приведенной ниже таблице перечислены некоторые материалы, используемые в производстве фотодиодов и их относительные темновые токи, скорость, чувствительность и стоимость.

Материал Темновой ток Скорость Спектральный диапазон Стоимость
Силикон (Si) Низкий Высокая От видимого диапазона до ближней ИК Низкая
Германий (Ge) Высокий Низкая Ближняя ИК область Низкая
Фосфид галлия (GaP) Низкий Высокая От УФ до видимой области Варьируется
Арсенид галлия (InGaAs) Низкий Высокая Ближняя ИК область Варьируется
Антимонид арсенида индия (InAsSb) Высокий Низкая От ближней до средней ИК области Высокая
Энзимы арсенида галлия (InGaAs) Высокий Высокая Ближняя ИК область Высокая
Теллурид кадмия ртути (MCT, HgCdTe) Высокий Низкий От ближней до средней ИК области Высокая

Емкость перехода

Емкость перехода (Cj) является важной характеристикой фотодиода, так как от этого зависит ширина полосы пропускания и чувствительность фотодиода. Следует отметить, что большие площади полупроводников охватывают большую часть соединения и увеличивают зарядную емкость. При применении метода обратного смещения ширина полосы обеднения увеличивается, из-за чего снижается емкость заряда и увеличивается скорость работы.

Ширина полосы пропускания и отклик

Сопротивление нагрузки будет взаимодействовать с емкостью перехода фотоприемника, ограничивая таким образом полосу пропускания. Для наилучшего частотного отклика необходимо использовать ограничитель в 50 Ом в сочетании с коаксиальным кабелем на 50 Ом. Полоса пропускания (fBW) и время нарастания (tr) теоретически вычисляются через значения емкости перехода (Cj) и сопротивления нагрузки (RLOAD):

форм3 ф иф

Эквивалентная мощность шумов Эквивалентная мощность шумов (NEP) создается напряжением RMS-сигнала, когда отношение сигнал-шум равно (или близко) к единице. Это свойство необходимо, поскольку эквивалентная мощность шумов определяет способность детектора обнаруживать слабое излучение. Эквивалентная мощность шумов прямо пропорциональна активной площади детектора и определяется следующим уравнением:

Где S/N – отношение сигнал-шум, Δf – ширина полосы шума, и энергия возбуждения измеряется в Вт/см 2 .

Термическое сопротивление Сопротивление нагрузки используется для преобразования генерируемого фототока в выходное напряжение (VOUT) для отображения на осциллографе: ф5 ф ифиВ зависимости от типа фотодиода сопротивление нагрузки может влиять на скорость срабатывания. Для максимальной пропускной способности рекомендуется использовать коаксиальный кабель на 50 Ом с подходящим резистором на 50 Ом, расположенном на противоположном конце кабеля. Сопоставляя кабель с его характеристическим импедансом можно свести к минимуму вызывной сигнал. Если пропускная способность не важна, можно увеличить напряжение для данного уровня освещенности, увеличив сопротивление нагрузки (RLOAD). При неверном расчете длина коаксиального кабеля может повлиять на итог эксперимента, поэтому рекомендуется выбирать кабель как можно более короткий. Шунтирующее сопротивление Сопротивление шунта представляет собой сопротивление нулевого смещения фотодиодного перехода. Идеальный фотодиод имеет бесконечное сопротивление шунта, но реальные значения могут варьироваться от десятка Ω до тысяч MΩ, а кроме того, шунтирующее сопротивление зависит от материала фотодиода. Например, детектор на основе арсенида галлия имеет шунтирующее сопротивление порядка 10 МОм, а германиевый детектор — в диапазоне до килоОм. Таким образом можно регулировать шумовой ток на фотодиоде. Тем не менее, для большинства задач высокая сопротивляемость оказывает малое влияние и обычно игнорируется. Последовательное сопротивление Последовательное сопротивление — это сопротивление полупроводникового материала, обычно им пренебрегают Последовательное сопротивление возникает из-за химических связей внутри фотодиода и используется в основном для определения линейности зависимостей некоторых характеристик фотодиода в условиях нулевого смещения. Общие принципы работы рис2 фиф

Рисунок 2. Схема обратного смещения (DET детекторы). Protection diode – защитный диод. Photodetector — фотоприемник. Voltage regulator – регулятор напряжения. C filter – RC-фильтр. V Bias – V-смещение

Детекторы серии DET основаны на схеме, изображенной выше. Детектор работает в режиме обратного направления, таким образом обеспечивается линейная зависимость чувствительности от приложенного света. Количество создаваемого фототока также зависит от падающего свете и длины волны. Эти данные можно вывести на осциллограф путем присоединения сопротивления нагрузки на выходе. Функция RC-фильтра состоит в том, чтобы с помощью него отделить любой высокочастотный шум, исходящий от сигнала источника питания. рис 3 ф ифРисунок 3.Схема фотоприемника с усилителем. Transimpedance Amp – управляемый током усилитель напряжения. Feedback – обратная связь Можно также использовать фотоприемник с усилителем, чтобы достичь высокого коэффициента усиления. Пользователь может выбрать режим работы. У каждого режима есть ряд преимуществ:

  • Фотогальванический режим: на фотодиоде поддерживается нулевое смещение, так как в точке A сохраняется тот же потенциал, что и в точке B. Это устраняет появление темнового тока.
  • Фотопроводящий режим: фотодиод включен в обратном направлении в схеме с обратным смещением, таким образом полоса пропускания увеличивается, сопровождаясь уменьшением емкости перехода. Коэффициент усиления детектора зависит от элемента обратной связи (Rf). Полоса пропускания детектора может быть рассчитана с использованием следующих величин: ф6 ф ифигде GBP — это коэффициент усиления усилителя, а C D — сумма емкости перехода и емкости усилителя.

Влияние на частоту модуляции

Сигнал фотокондуктора будет оставаться постоянным до предельного времени отклика. Многие детекторы, включая устройства на PbS, PbSe, HgCdTe (MCT) и InAsSb, имеют спектр шума 1 / f (т. е. шум уменьшается с увеличением частоты модуляции), что существенно влияет на время отклика на более низких частотах.

Детектор будет проявлять меньшую чувствительность на более низких частотах модуляции.

Частота и обнаружение максимальны при:

PbS — и PbSe – фотокондуктивные детекторы

Широко используются фотопроводящие детекторы свинцового сульфида (PbS) и селенида свинца (PbSe) для обнаружения инфракрасного излучения от 1000 до 4800 нм. В отличие от стандартных фотодиодов, которые создают ток при воздействии света, электрическое сопротивление фотопроводящего материала уменьшается при освещении светом. Хотя PbS и PbSe-детекторы могут использоваться при комнатной температуре, температурные колебания будут влиять на темновое сопротивление, чувствительность и частоту отклика.

Рисунок 4. Базовая схема фотокондуктора. Active Area – рабочая площадь. Dark Resistance – темновое сопротивление. Ground — заземление. Bias Voltage – напряжение смещения. Output signal – выходной сигнал

Принцип действия

У фотопроводящих материалов падающий свет приводит к увеличению числа заряженных частиц в активной области, что уменьшает сопротивление детектора. Изменение сопротивления влечет к изменению регистрируемого напряжения, поэтому фоточувствительность принято выражать в единицах В / Вт. Пример рабочей схемы показан далее. Обратите внимание, что данная схема не предназначается для практических целей, так как в ней присутствует низкочастотный шум.

Механизм обнаружения основан на проводимости тонкой пленки активной области. Выходной сигнал детектора без падающего света определяется следующим уравнением:

В случае, когда свет попадает на активную область, изменение выходного напряжения определяется таким соотношением:

Частотный отклик

Для получения сигналов переменного тока фотопреобразователи должны подключаться в цепь, где присутствует импульсный сигнал. То есть при использовании этих детекторов в схемах с CW-источниками следует подключать оптический прерыватель. Чувствительность детектора (Rf) при использовании прерывателя рассчитывается уравнением:

Здесь fc — частота модуляции, R0 — отклик при нулевой частоте, τr — время нарастания импульса детектора.

Влияние на частоту модуляции

Сигнал фотокондуктора будет оставаться постоянным до предельного времени отклика. Многие детекторы, включая устройства на PbS, PbSe, HgCdTe (MCT) и InAsSb, имеют спектр шума 1 / f (т. е. шум уменьшается с увеличением частоты модуляции), что существенно влияет на время отклика на более низких частотах.

Детектор будет проявлять меньшую чувствительность на более низких частотах модуляции.

Частота и обнаружительная способность максимальны при:

Температурная устойчивость

Обнаружители состоят из тонкой пленки на стеклянной подложке. Эффективная форма и рабочая площадь фотопроводящей поверхности могут значительно варьироваться в зависимости от условий эксплуатации. При этом рабочие характеристики прибора также меняются, в частности — чувствительность детектора изменяется в зависимости от рабочей температуры.

Температурные характеристики запрещенных полос в соединениях PbS и PbSe отрицательны, поэтому охлаждение детектора сдвигает диапазон спектрального отклика на область более длинных волн. Для достижения наилучших результатов рекомендуется использовать фотодиоды в стабильной среде.

Схема фотопроводника с усилителем

Из-за шума, характерного для фотопроводниковых материалов, эти устройства подключают в цепи переменного тока. Шум постоянного тока, возникающий при смещении, слишком высок что негативно отражается на работе детектора.

ИК-детекторы обычно подключаются в сети переменного тока для снижения шумов. Предусилитель необходим для поддержания стабильности и лучшей регистрации генерируемого сигнала.

На схеме видно, что операционный усилитель установлен в участке цепи обратной связи между точками А и В. Разность между двумя входными потенциалами увеличивается и сохраняется на выходе. Также важно обратить внимание на фильтр верхних частот, блокирующий любой сигнал постоянного тока. Кроме того, сопротивление нагрузочного резистора (RLOAD) должно равняться темновому сопротивлению детектора, чтобы обеспечить получение максимального сигнала. Напряжение блока питания (+ V) должно соответствовать величине напряжения, когда отношение сигнал-шум близко к единице. Некоторые задачи требуют большего напряжения, что провоцирует возрастание шумов.

Выходное напряжение вычисляется следующим образом:

Рисунок 5. Feedback resistor – резистор обратной связи

Отношение сигнал/шум

Так как шум от детектора обратно пропорционален частоте модуляции, на низких частотах шум достигает наибольшего значения. Выходной сигнал детектора линейно зависит от возрастающего напряжения смещения, но влиянием шума на небольшие смещения можно пренебречь. При достижении напряжение смещения, шум детектора будет линейно увеличиваться пропорционально напряжению. Если напряжение слишком высоко, шум будет увеличиваться экспоненциально, тем самым ухудшая отношение сигнал / шум. Чтобы получить наилучшее отношение, частоту модуляции и напряжение смещения необходимо регулировать.

Эквивалентная мощность шумов

Эквивалентная мощность шумов (NEP) создается напряжением RMS-сигнала, когда отношение сигнал-шум равно единице. Это необходимо, поскольку эквивалентная мощность шумов определяет способность детектора обнаруживать малое излучение. Мощность шумов прямо пропорциональна активной площади детектора и определяется следующим уравнением:

Где S/N – отношение сигнал-шум, Δf – ширина полосы шума, и энергия возбуждения измеряется в Вт/см 2 .

Темновое сопротивление
Темновое сопротивление — это сопротивление детектора без падающего света. Важно отметить, что темное сопротивление имеет тенденцию увеличиваться или уменьшаться с температурой. Охлаждение устройства увеличивает темное сопротивление.

Обнаружение (D) и удельная обнаружительная способность(D*)

Обнаружительная способность (D) — еще один критерий оценки работы фотоприемника. Это мера чувствительности, связанная обратной зависимостью с эквивалентной мощностью шума.

Высокие значения обнаружительной способности указывают на высокую чувствительность, что особенно важно для обнаружения сигналов слабого излучения. Обнаружительная способность зависит от длины волны падающего света.

Эквивалентная мощность шумов детектора зависит от активной области детектора, что также влияет на чувствительность. Это затрудняет определение внутренних свойств пары детекторов. Чтобы проигнорировать ненужные зависимости, для оценки работы фотоприемника используется такое понятие как удельная способность к обнаружению (D *), которая не зависит от рабочей области детектора.

Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Thorlabs на территории РФ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *