Конденсатор в цепи переменного тока курс электротехники
Из уроков электротехники известно, что конденсатор не пропускает постоянный ток. Совершенно противоположным образом ведет себя емкость в цепи переменного тока. В данной лекции подробно разберем вопрос, о том, что происходит в цепи переменного тока, когда в ней стоит конденсатор.
Наиболее интересным моментом данной лекции по электротехники является то, как связаны между собой напряжение на емкости и ток через конденсатор для случая, когда конденсатор присутствует в цепи переменного тока.
Почему сразу переменного, спросите Вы. Ответ довольно банален, так как конденсатор в цепи постоянного тока ничем особо не выделяется, а ток через него следует только в начальный момент, пока конденсатор разряжен. Потом, когда он зарядится он разрывает цепь и свободным носителям заряда просто становится некуда течь, вот и вся работа в постоянной цепи. Если у нас, цепь получает переменное питание тут все происходящие в ней процесс намного более интереснее, чем вам кажется.
Как ведет себя конденсатор в цепи переменного тока
Итак рассмотрим типовую схему конденсатора в цепи с источником переменного напряжения:
Почему конденсатор работает рисунок , не разрывая электрическую цепь при протекании через него переменного тока? Для понимания этого процесса рекомендую рассмотреть следующий пример с водным резервуаром:
Водная конструкция, показанная на схеме ниже состоит из двух резервуаров, один из которых обладает герметичным поршнем, а во втором расположена гибкая мембрана способная деформироваться в вертикальном направлении. Верхняя часть в соответствии с рисунком заполнена желтой жидкостью, нижняя часть жидкостью красного цвета. При вводе поршня в левый резервуар, жёлтая жидкость перетекает в правый резервуар, полностью вытесняя красную, которая перетекает в левый сосуд, собираясь под поршнем.
При выводе поршня красная жидкость возвращается в правый резервуар, мембрана выгибается вверх и желтая возвращается в левую часть водного макета. В результате при работе поршня в трубах соединяющих резервуары всё время будет осуществляться перемещение жидкости, но при этом ни одна капля желтой не смешается с красной.
Аналогичным образом ведет себя и конденсатор, включенный в переменную цепь, накапливает на одной своей металлической обкладке положительный заряд, а на другой отрицательный, или — наоборот. Работая в такой цепи конденсатор постоянно перезаряжается, обеспечивая постоянное токовое протекание в схеме выше, при этом ни один электрон не перейдет границу, в роли которой выступает диэлектрический слой конденсатора.
Следует заметить, чем выше емкость конденсатора, тем легче перемещаемому заряду найти свободное место на его обкладках, а значит ниже сопротивление схемы и чем выше частота – тем быстрее перемещается заряд, а значит также меньше сопротивление цепи. Таким образом, сопротивление цепи перемнного тока содержащей конденсатор обратно пропорционально частоте и емкости конденсатора:
Хс = 1 / ωC = 1 / 2πfC
Подадим питание на схему с конденсатором. Если напряжение на его обкладках изменяется по закону синуса, то:
u=Umsin(ωt + φu
Тогда токовая сила в схеме найдется, как производная накапливаемого заряда по времени. Учитывая, что заряд на обкладке определяется определяется как: q=CUс, а емкость С – величина постоянная, тогда можно вывести следующую формулу:
Сдвиг фаз между током и напряжение составляет 90 градусов, с опережением первого.Другими словами, пока ток заряжает конденсатор, поэтому напряжение на его обкладках опаздывает от него на угол Пи — пополам или 90 градусов. Таким образом в идеальном конденсаторе, ток опережает напряжение на угол 90 °.
Теперь обратимся к графикам изменения этих двух основных величин в емкостной цепи.
В течение первой четверти периода смотри диаграмму на рисунке ниже, переменная ЭДС нарастает, конденсатор заряжается, и поэтому по цепи протекает ток заряда i, сила которого максимальна в начальный момент, когда конденсатор еще не заряжен. По мере заряда конденсатора сила зарядного тока будет снижаться. Заряд емкости заканчивается и ток заряда останавливается в тот момент, когда переменная ЭДС перестает возрастать, достигнув своего максимального амплитудного значения. Этот момент соответствует на графике концу первой четверти периода.
После этого ЭДС переменного тока начинает снижаться, параллельно с чем емкость начинает разряжаться. Очевидно, что в течение второй четверти по цепи будет идти разрядный ток. Так как убывание ЭДС происходит в начальный момент достаточно медленно, а затем этот процесс резко ускоряется, поэтому сила тока разряда, имея в начале второй четверти периода небольшую величину, будет возрастать. Таким образом, к концу второй четверти периода емкость разряжается, ЭДС будет стремится к нулю, а ток в цепи достигнет максимального, амплитудного, значения.
В третьей четверти периода ЭДС, меняет свое направление и начинает опять возрастать, а емкость — снова заряжаться. Заряд конденсатора осуществляется в третьей четверти в обратном направлении, т.к изменилось направление ЭДС. Поэтому направление тока заряда будет совпадать с направлением тока разряда во второй четверти, т. е. при переходе от второй четверти к третьей ток в цепи не меняет своего направления.
Пока конденсатор не заряжен, сила тока заряда имеет максимальное значение. По мере увеличения степени заряда конденсатора сила тока заряда идет на убыль. Заряд конденсатора останавливается и движение зарядного тока прекращается в конце третьей четверти периода, в тот момент когда ЭДС достигнет своего амплитудного значения и нарастание ее останавливается.
Таким образом, к концу третьей четверти, емкость конденсатора окажется опять заряженным, но уже в обратном направлении, т. е. на той пластине, где был прежде плюс, будет минус, а где был минус, будет плюс. При этом ЭДС достигнет амплитудного значения (противоположного направления), а ток в цепи будет равен нулю.
В течение последней ¼ периода ЭДС начинает опять убывать, а емкость разряжаться; при этом постепенно увеличивается ток разряда. Направление его совпадает с направлением тока в первой ¼ периода и противоположно направлению тока во второй и третьей четвертях.
Из всего выше изложенного можно сделать вывод, что по цепи с конденсатором протекает переменный ток и что его сила зависит от величины емкости и от частоты переменного тока. Из графика выше видно, что в чисто емкостной цепи фаза переменного тока будет обгонять фазу напряжения на 90°.
Интересен тот факт, что в цепи переменного тока с индуктивностью ток отстает от напряжения, а в цепи с емкостью опережает. И в том и в другом примере между фазами имеется сдвиг, но знак его противоположен.
Видеоурок по теме лекции конденсатор в цепи переменного тока
Емкостное сопротивление
Из предыдущих лекций мы знаем, что ток в цепи с емкостью может идти лишь при изменении приложенного к ней переменного напряжения, причем сила тока, идущего по цепи при заряде и разряде конденсатора, будет тем выше, чем более номинал емкости конденсатора и чем быстрее осуществляются изменения приложеной ЭДС.
Конденсатор в цепи переменного тока
Господа, в сегодняшней статье я хотел бы рассмотреть такой интересный вопрос, как конденсатор в цепи переменного тока. Эта тема весьма важна в электричестве, поскольку на практике конденсаторы повсеместно присутствуют в цепях с переменным током и, в связи с этим, весьма полезно иметь четкое представление, по каким законам изменяются в этом случае сигналы. Эти законы мы сегодня и рассмотрим, а в конце решим одну практическую задачу определения тока через конденсатор.
Господа, сейчас для нас наиболее интересным моментом является то, как связаны между собой напряжение на конденсаторе и ток через конденсатор для случая, когда конденсатор находится в цепи переменного сигнала.
Почему сразу переменного? Да просто потому, что конденсатор в цепи постоянного тока ничем не примечателен. Через него течет ток только в первый момент, пока конденсатор разряжен. Потом конденсатор заряжается и все, тока нет (да-да, слышу, уже начали кричать, что заряд конденсатора теоретически длится бесконечно долгое время, да еще у него может быть сопротивление утечки, но пока что мы этим пренебрегаем). Заряженный конденсатор для постоянного тока – это как разрыв цепи. Когда же у нас случай переменного тока – тут все намного интереснее. Оказывается, в этом случае через конденсатор может протекать ток и конденсатор в этом случае как бы эквивалентен резистору с некоторым вполне определенным сопротивлением (если пока забить забыть про всякие там сдвиги фазы, об этом ниже). Нам надо каким-нибудь образом получить связь между током и напряжением на конденсаторе.
Пока мы будем исходить из того, что в цепи переменного тока находится только конденсатор и все. Без каких-либо других компонентов типа резисторов или индуктивностей. Напомню, что в случае, когда у нас в цепи находится исключительно одни только резисторы, подобная задача решается очень просто: ток и напряжения оказываются связанными между собой через закон Ома . Мы про это уже не один раз говорили. Там все очень просто: делим напряжение на сопротивление и получаем ток. А как же быть в случае конденсатора? Ведь конденсатор-то это не резистор. Там совсем иная физика протекания процессов, поэтому вот так вот с наскока не получится просто связать между собой ток и напряжение. Тем не менее, сделать это надо, поэтому давайте попробуем порассуждать.
Сперва давайте вернемся назад. Далеко назад. Даже очень далеко. К самой-самой первой моей статье на этом сайте. Старожилы должно быть помнят, что это была статья про силу тока . Вот в этой самой статье было одно интересное выражение, которое связывало между собой силу тока и заряд, протекающий через сечение проводника. Вот это самое выражение
Кто-нибудь может возразить, что в той статье про силу тока запись была через Δq и Δt – некоторые весьма малые величины заряда и времени, за которое этот заряд проходит через сечение проводника. Однако здесь мы будем применять запись через dq и dt – через дифференциалы. Такое представление нам потребуется в дальнейшем. Если не лезть глубоко в дебри матана, то по сути dq и dt здесь особо ничем не отличаются от Δq и Δt. Безусловно, глубоко сведущие в высшей математике люди могут поспорить с этим утверждением, но да сейчас я не хочу концентрировать внимание на данных вещах.
Итак, выражение для силы тока мы вспомнили. Давайте теперь вспомним, как связаны между собой емкость конденсатора С, заряд q, который он в себе накопил, и напряжение U на конденсаторе, которое при этом образовалось. Ну, мы же помним, что если конденсатор накопил в себе какой-то заряд, то на его обкладках неизбежно возникнет напряжение. Про это все мы тоже говорили раньше, вот в этой вот статье . Нам будет нужна вот эта формула, которая как раз и связывает заряд с напряжением
Давайте-ка выразим из этой формулы заряд конденсатора:
А теперь есть очень большой соблазн подставить это выражение для заряда конденсатора в предыдущую формулу для силы тока. Приглядитесь-ка повнимательнее – у нас ведь тогда окажутся связанными между собой сила тока, емкость конденсатора и напряжение на конденсаторе! Сделаем эту подстановку без промедлений:
Емкость конденсатора у нас является величиной постоянной. Она определяется исключительно самим конденсатором, его внутренним устройством, типом диэлектрика и всем таким прочим. Про все это подробно мы говорили в одной из прошлых статей . Следовательно, емкость С конденсатора, поскольку это константа, можно смело вынести за знак дифференциала (такие вот правила работы с этими самыми дифференциалами). А вот с напряжением U нельзя так поступить! Напряжение на конденсаторе будет изменяться со временем. Почему это происходит? Ответ элементарный: по мере протекания тока на обкладках конденсатора, очевидно, заряд будет изменяться. А изменение заряда непременно приведет к изменению напряжения на конденсаторе. Поэтому напряжение можно рассматривать как некоторую функцию времени и его нельзя выносить из-под дифференциала. Итак, проведя оговоренные выше преобразования, получаем вот такую вот запись:
Господа, спешу вас поздравить – только что мы получили полезнейшее выражение, которое связывает между собой напряжение, приложенное к конденсатору, и ток, который течет через него. Таким образом, если мы знаем закон изменения напряжения, мы легко сможем найти закон изменения тока через конденсатор путем простого нахождения производной.
А как быть в обратном случае? Допустим, нам известен закон изменения тока через конденсатор и мы хотим найти закон изменения напряжения на нем. Читатели, сведущие в математике, наверняка уже догадались, что для решения этой задачи достаточно просто проинтегрировать написанное выше выражение. То есть, результат будет выглядеть как-то так:
По сути оба этих выражений про одно и тоже. Просто первое применяется в случае, когда нам известен закон изменения напряжения на конденсаторе и мы хотим найти закон изменения тока через него, а второе – когда нам известно, каким образом меняется ток через конденсатор и мы хотим найти закон изменения напряжения. Для лучшего запоминания всего этого дела, господа, я приготовил для вас поясняющую картинку. Она изображена на рисунке 1.
Рисунок 1 – Поясняющая картинка
На ней, по сути, в сжатой форме изображены выводы, которые хорошо бы запомнить.
Господа, обратите внимание – полученные выражения справедливы для любого закона изменения тока и напряжения. Здесь не обязательно должен быть синус, косинус, меандр или что-то другое. Если у вас есть какой-то совершенно произвольный, пусть даже совершенно дикий, не описанный ни в какой литературе, закон изменения напряжения U(t), поданного на конденсатор, вы, путем его дифференцирования можете определить закон изменения тока через конденсатор. И аналогично если вы знаете закон изменения тока через конденсатор I(t) то, найдя интеграл, сможете найти, каким же образом будет меняться напряжение.
Итак, мы выяснили как связать между собой ток и напряжение для абсолютно любых, даже самых безумных вариантов их изменения. Но не менее интересны и некоторые частные случаи. Например, случай успевшего уже нам всем полюбиться синусоидального тока. Давайте теперь разбираться с ним.
Пусть напряжение на конденсаторе емкостью C изменяется по закону синуса вот таким вот образом
Какая физическая величина стоит за каждой буковкой в этом выражении мы подробно разбирали чуть раньше . Как же в таком случае будет меняться ток? Используя уже полученные знания, давайте просто тупо подставим это выражение в нашу общую формулу и найдем производную
Или можно записать вот так
Господа, хочу вам напомнить, что синус ведь только тем и отличается от косинуса, что один сдвинут относительно другого по фазе на 90 градусов. Ну, или, если выражаться на языке математики, то . Не понятно, откуда взялось это выражение? Погуглите формулы приведения . Штука полезная, знать не помешает. А еще лучше, если вы хорошо знакомы с тригонометрическим кругом, на нем все это видно очень наглядно.
Господа, отмечу сразу один момент. В своих статьях я не буду рассказывать про правила нахождения производных и взятия интегралов. Надеюсь, хотя бы общее понимание этих моментов у вас есть. Однако даже если вы не знаете, как это делать, я буду стараться излагать материал таким образом, чтобы суть вещей была понятна и без этих промежуточных выкладок. Итак, сейчас мы получили немаловажный вывод – если напряжение на конденсаторе изменяется по закону синуса, то ток через него будет изменяться по закону косинуса. То есть ток и напряжение на конденсаторе сдвинуты друг относительно друга по фазе на 90 градусов. Кроме того, мы можем относительно легко найти и амплитудное значение тока (это множители, которые стоят перед синусом). Ну то есть тот пик, тот максимум, которого ток достигает. Как видим, оно зависит от емкости C конденсатора, амплитуды приложенного к нему напряжения Um и частоты ω. То есть чем больше приложенное напряжение, чем больше емкость конденсатора и чем больше частота изменения напряжения, тем большей амплитуды достигает ток через конденсатор. Давайте построим график, изобразив на одном поле ток через конденсатор и напряжение на конденсаторе. Пока без конкретных цифр, просто покажем качественный характер. Этот график представлен на рисунке 2 (картинка кликабельна).
Рисунок 2 – Ток через конденсатор и напряжение на конденсаторе
На рисунке 2 синий график – это синусоидальный ток через конденсатор, а красный – синусоидальное напряжение на конденсаторе. По этому рисунку как раз очень хорошо видно, что ток опережает напряжение (пики синусоиды тока находятся левее соответствующих пиков синусоиды напряжения, то есть наступают раньше).
Давайте теперь проделаем работу наоборот. Пусть нам известен закон изменения тока I(t) через конденсатор емкостью C. И закон этот пусть тоже будет синусоидальным
Давайте определим, как в таком случае будет меняться напряжение на конденсаторе. Воспользуемся нашей общей формулой с интегральчиком:
По абсолютнейшей аналогии с уже написанными выкладками, напряжение можно представить вот таким вот образом
Здесь мы снова воспользовались интересными сведениями из тригонометрии, что . И снова формулы приведения придут вам на помощь, если не понятно, почему получилось именно так.
Какой же вывод мы можем сделать из данных расчетов? А вывод все тот же самый, какой уже был сделан: ток через конденсатор и напряжение на конденсаторе сдвинуты по фазе друг относительно друга на 90 градусов. Более того, они не просто так сдвинуты. Ток опережает напряжение. Почему это так? Какая за этим стоит физика процесса? Давайте разберемся.
Представим, что незаряженный конденсатор мы подсоединили к источнику напряжения. В первый момент никаких зарядов в конденсаторе вообще нет: он же разряжен. А раз нет зарядов, то нет и напряжения. Зато ток есть, он возникает сразу при подсоединении конденсатора к источнику. Замечаете, господа? Напряжения еще нет (оно не успело нарасти), а ток уже есть. И кроме того, в этот самый момент подключения ток в цепи максимален (разряженный конденсатор ведь по сути эквивалентен короткому замыканию цепи). Вот вам и отставание напряжения от тока. По мере протекания тока, на обкладках конденсатора начинает накапливаться заряд, то есть напряжение начинает расти а ток постепенно уменьшаться. И через некоторое время накопится столько заряда на обкладках, что напряжение на конденсаторе сравняется с напряжением источника и ток в цепи совсем прекратится.
Теперь давайте этот самый заряженный конденсатор отцепим от источника и закоротим накоротко. Что получим? А практически то же самое. В самый первый момент ток будет максимален, а напряжение на конденсаторе останется таким же, какое оно и было без изменений. То есть снова ток впереди, а напряжение изменяется вслед за ним. По мере протекания тока напряжение начнет постепенно уменьшаться и когда ток совсем прекратится, оно тоже станет равным нулю.
Для лучшего понимания физики протекающих процессов можно в который раз уже использовать водопроводную аналогию. Представим себе, что заряженный конденсатор – это некоторый бачок, полный воды. У этого бачка есть внизу краник, через который можно спустить воду. Давайте этот краник откроем. Как только мы его откроем, вода потечет сразу же. А давление в бачке будет падать постепенно, по мере того, как вода будет вытекать. То есть, грубо говоря, ручеек воды из краника опережает изменение давления, подобно тому, как ток в конденсаторе опережает изменение напряжения на нем.
Подобные рассуждения можно провести и для синусоидального сигнала, когда ток и напряжения меняются по закону синуса, да и вообще для любого. Суть, надеюсь, понятна.
Давайте проведем небольшой практический расчет переменного тока через конденсатор и построим графики.
Пусть у нас имеется источник синусоидального напряжения, действующее значение равно 220 В, а частота 50 Гц. Ну, то есть все ровно так же, как у нас в розетках. К этому напряжению подключают конденсатор емкостью 1 мкФ. Например, пленочный конденсатор К73-17, рассчитанный на максимальное напряжение 400 В (а на меньшее напряжение конденсаторы ни в коем случае нельзя подключать в сети 220 В), выпускается с емкостью 1 мкФ. Чтобы вы имели представление, с чем мы имеем дело, на рисунке 3 я разместил фотографию этого зверька (спасибо Diamond за фото )
Рисунок 3 – Ищем ток через этот конденсатор
Требуется определить, какая амплитуда тока будет протекать через этот конденсатор и построить графики тока и напряжения.
Сперва нам надо записать закон изменения напряжения в розетке. Если вы помните, амплитудное значение напряжения в этом случае равно около 311 В. Почему это так, откуда получилось, и как записать закон изменения напряжения в розетке, можно прочитать вот в этой статье . Мы же сразу приведем результат. Итак, напряжение в розетке будет изменяться по закону
Теперь мы можем воспользоваться полученной ранее формулой, которая свяжет напряжение в розетке с током через конденсатор. Выглядеть результат будет так
Мы просто подставили в общую формулу емкость конденсатора, заданную в условии, амплитудное значение напряжения и круговую частоту напряжения сети. В результате после перемножения всех множителей имеем вот такой вот закон изменения тока
Вот так вот, господа. Получается, что амплитудное значение тока через конденсатор чуть меньше 100 мА. Много это или мало? Вопрос нельзя назвать корректным. По меркам промышленной техники, где фигурируют сотни ампер тока, очень мало. Да и для бытовых приборов, где десятки ампер не редкость – тоже. Однако для человека даже такой ток представляет большую опасность! Отсюда следует вывод, что хвататься за такой конденсатор, подключенный к сети 220 В не следует . Однако на этом принципе возможно изготовление так называемых источников питания с гасящим конденсатором. Ну да это тема для отдельной статьи и здесь мы не будем ее затрагивать.
Все это хорошо, но мы чуть не забыли про графики, которые должны построить. Надо срочно исправляться! Итак, они представлены на рисунке 4 и рисунке 5. На рисунке 4 вы можете наблюдать график напряжения в розетке, а на рисунке 5 – закон изменения тока через конденсатор, включенный в такую розетку.
Рисунок 4 – График напряжения в розетке
Рисунок 5 – График тока через конденсатор
Как мы можем видеть из этих рисунков, ток и напряжение сдвинуты на 90 градусов, как и должно быть. И, возможно, у читателя возникла мысль – если через конденсатор течет ток и на нем падает какое-то напряжение, вероятно, на нем должна выделяться и некоторая мощность . Однако спешу предупредить вас – для конденсатора дело обстоит совершенно не так. Если рассматривать идеальный конденсатор, то мощность на нем не будет вообще выделяться, даже при протекании тока и падении на нем напряжения. Почему? Как же так? Об этом – в будущих статьях. А на сегодня все. Спасибо что читали, удачи, и до новых встреч!
Вступайте в нашу группу Вконтакте
Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.
почему на конденсаторе ток опережает напряжение?
Потому, что в первый момент сопротивление конденсатора равно нулю, а ток максимален. И только по мере полной зарядки конденсатора, напряжение становится равным приложенному, а ток становится равным нулю.
У индуктивности все ровно наоборот.
Владимир КарловПросветленный (35622) 13 лет назад
Он не указал род тока. При ~f > f_p конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах ~f Владимир Карлов Просветленный (35622) 13 лет назад
Похожие вопросы
§ 162. Сдвиг фаз между током и напряжением.
Проделаем следующий опыт. Возьмем описанный в § 153 осциллограф с двумя петлями и включим его в цепь так (рис. 305, а), чтобы петля 1 была включена в цепь последовательно с конденсатором, а петля 2 параллельно этому конденсатору. Очевидно, что кривая, получаемая от петли 1, изображает форму тока, проходящего через конденсатор, а от петли 2 дает форму напряжения между обкладками конденсатора (точками и ), потому что в этой петле осциллографа ток в каждый момент времени пропорционален напряжению. Опыт показывает, что в этом случае кривые тока и напряжения смещены по фазе, причем ток опережает по фазе напряжение на четверть периода (на ). Если бы мы заменили конденсатор катушкой с большой индуктивностью (рис. 305, б), то оказалось бы, что ток отстает по фазе от напряжения на четверть периода (на ). Наконец, таким же образом можно было бы показать, что в случае активного сопротивления напряжение и ток совпадают по фазе (рис. 305, в).
Рис. 305. Опыт по обнаружению сдвига фаз между током и напряжением: слева – схема опыта, справа – результаты
В общем случае, когда участок цепи содержит не только активное, но и реактивное (емкостное, индуктивное или и то и другое) сопротивление, напряжение между концами этого участка сдвинуто по фазе относительно тока, причем сдвиг фаз лежит в пределах от до и определяется соотношением между активным и реактивным сопротивлениями данного участка цепи.
В чем заключается физическая причина наблюдаемого сдвига фаз между током и напряжением?
Если в цепь не входят конденсаторы и катушки, т. е. емкостным и индуктивным сопротивлениями цепи можно пренебречь по сравнению с активным, то ток следует за напряжением, проходя одновременно с ним через максимумы и нулевые значения, как это показано на рис. 305, в.
Если цепь имеет заметную индуктивность , то при прохождении по ней переменного тока в цепи возникает э. д. с. самоиндукции. Эта э. д. с. по правилу Ленца направлена так, что она стремится препятствовать тем изменениям магнитного поля (а следовательно, и изменениям тока, создающего это поле), которые вызывают э. д. с. индукции. При нарастании тока э. д. с. самоиндукции препятствует этому нарастанию, и потому ток позже достигает максимума, чем в отсутствие самоиндукции. При убывании тока э. д. с. самоиндукции стремится поддерживать ток и нулевые значения тока будут достигнуты в более поздний момент, чем в отсутствие самоиндукции. Таким образом, при наличии индуктивности ток отстает по фазе от тока в отсутствие индуктивности, а следовательно, отстает по фазе от своего напряжения.
Если активным сопротивлением цепи можно пренебречь по сравнению с ее индуктивным сопротивлением , то отставание тока от напряжения по времени равно (сдвиг фаз равен ), т. е. максимум совпадает с , как это показано на рис. 305, б. Действительно, в этом случае напряжение на активном сопротивлении , ибо , и, следовательно, все внешнее напряжение уравновешивается э. д. с. индукции, которая противоположна ему по направлению: . Таким образом, максимум совпадает с максимумом , т. е. наступает в тот момент, когда изменяется быстрее всего, а это бывает, когда . Наоборот, в момент, когда проходит через максимальное значение, изменение тока наименьшее , т. е. в этот момент .
Если активное сопротивление цепи не настолько мало, чтобы им можно было пренебречь, то часть внешнего напряжения падает на сопротивлении , а остальная часть уравновешивается э. д. с. самоиндукции: . В этом случае максимум отстоит от максимума по времени меньше, чем на (сдвиг фаз меньше ), как это изображено на рис. 306. Расчет показывает, что в этом случае отставание по фазе может быть вычислено по формуле
При имеем и , как это объяснено выше.
Рис. 306. Сдвиг фаз между током и напряжением в цепи, содержащей активное и индуктивное сопротивления
Если цепь состоит из конденсатора емкости , а активным сопротивлением можно пренебречь, то обкладки конденсатора, присоединенные к источнику тока с напряжением , заряжаются и между ними возникает напряжение . Напряжение на конденсаторе следует за напряжением источника тока практически мгновенно, т. е. достигает максимума одновременно с и обращается в нуль, когда .
Зависимость между током и напряжением в этом случае показана на рис. 307, а. На рис. 307, б условно изображен процесс перезарядки конденсатора, связанный с появлением переменного тока в цепи.
Рис. 307. а) Сдвиг фаз между напряжением и током в цепи с емкостным сопротивлением в отсутствие активного сопротивления. б) Процесс перезарядки конденсатора в цепи переменного тока
Когда конденсатор заряжен до максимума (т. е. , а следовательно, и имеют максимальное значение), ток и вся энергия цепи есть электрическая энергия заряженного конденсатора (точка на рис. 307, а). При уменьшении напряжения конденсатор начинает разряжаться и в цепи появляется ток; он направлен от обкладки 1 к обкладке 2, т. е. навстречу напряжению . Поэтому на рис. 307, а он изображен как отрицательный (точки лежат ниже оси времени). К моменту времени конденсатор полностью разряжен ( и ), а ток достигает максимального значения (точка ); электрическая энергия равна нулю, и вся энергия сводится к энергии магнитного поля, создаваемого током. Далее, напряжение меняет знак, и ток начинает ослабевать, сохраняя прежнее направление. Когда (и ) достигнет максимума, вся энергия вновь станет электрической, и ток (точка ). В дальнейшем (и ) начинает убывать, конденсатор разряжается, ток нарастает, имея теперь направление от обкладки 2 к обкладке 1, т. е. положительное; ток доходит до максимума в момент, когда (точка ) и т. д. Из рис. 307, а видно, что ток раньше, чем напряжение, достигает максимума и проходит через нуль, т. е. ток опережает напряжение по фазе.
Если активным сопротивлением цепи нельзя пренебречь по сравнению с емкостным , то ток опережает напряжение по времени меньше, чем на (сдвиг фаз меньше , рис. 308). Для этого случая, как показывает расчет, сдвиг фаз может быть вычислен по формуле
При имеем и , как это объяснено выше.
Рис. 308. Сдвиг фаз между током и напряжением в цепи, содержащей активное и емкостное сопротивления